
Bibliography
Introduction

Part I: Rank sparsity
Part II: Joint Rank and Row Sparsity

Simulation Studies

Joint Variable and Rank Selection for Parsimonious
Estimation of High-Dimensional Matrices

Marten Wegkamp

Department of Mathematics
Department of Statistical Science

Cornell University

June 2012

Marten Wegkamp Joint variable and rank selection



Bibliography
Introduction

Part I: Rank sparsity
Part II: Joint Rank and Row Sparsity

Simulation Studies

1 Bibliography

2 Introduction
Multivariate Response Regression Model

3 Part I: Rank sparsity
Rank Selection Criterion
Consistent Effective Rank Estimation
Risk Bounds for the RSC Estimator

4 Part II: Joint Rank and Row Sparsity
Theoretical estimator
Method 1: RSC→RCGL
Rank Constrained Group Lasso
Method 2: GLASSO→RSC

5 Simulation Studies

Marten Wegkamp Joint variable and rank selection



Bibliography
Introduction

Part I: Rank sparsity
Part II: Joint Rank and Row Sparsity

Simulation Studies

Talk based on:

Optimal Selection of Reduced Rank Estimators of
High-Dimensional Matrices.
(with Florentina Bunea and Yiyuan She)
Annals of Statistics 39(2), 1282-1309 (2011).
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Multivariate Response Regression Model

Multivariate Response Regression Model

Observations (X1,Y1), . . . , (Xm,Ym) ∈ Rp × Rn related via
regression model

Y = XA + E

X : m × p design matrix of rank q

A: p × n matrix of unknown coefficients

E : m × n matrix of independent N(0, σ2) errors Eij
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Multivariate Response Regression Model

Standard least squares estimation under no constraints =
regressing each response on the predictors separately.

It completely ignores the multivariate nature of the possibly
correlated responses.

Marten Wegkamp Joint variable and rank selection



Bibliography
Introduction

Part I: Rank sparsity
Part II: Joint Rank and Row Sparsity

Simulation Studies

Multivariate Response Regression Model

Problem: We need to estimate A, that is, nq parameters!

Solution: Impose matrix sparsity!

Let r be the rank of A and |J| be the number of non-zero rows of
A. Number of free parameters (in SVD of A) is in fact

r(n + |J| − r).

Of course, r and J are unknown.
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Multivariate Response Regression Model

Solutions:

(variable selection)
GLASSO: Yuan and Lin ( 2006); Lounici, Pontil, Tsybakov
and van de Geer (2011)

(rank selection)
RSC: Bunea, She, Wegkamp (2011), Giraud (2011), Klopp
(2011)
NNP: Candès and Plan (2011), Rhode and Tsybakov (2011),
Negahban and Wainwright (2011), Bunea, She, Wegkamp
(2011)

(joint rank and row selection)
JRRS: Bunea, She, Wegkamp (2011).
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Multivariate Response Regression Model

Number of free parameters: r(n + |J| − r).

Note m, p, n, q, r , |J| satisfy q ≤ m ∧ p, r ≤ n ∧ |J|, |J| ≤ q.

GLASSO: |J|n + |J| log(p)
RSC or NNP: qr + nr

JRRS: |J|r log(p/|J|) + nr

Improvement possible for n < q. Since (|J|+ n)r ≤ (q + n)r and
(n + |J|)r ≤ 2(n ∨ |J|)(n ∧ |J|) ≤ 2|J|n, JRRS often wins.
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Rank Selection Criterion
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A historical perspective and existing results

Estimation under the constraint rank(A) = r , with r known.

Anderson (1951, 1999, 2002)

Robinson (1973, 1974)

Izenman (1975; 2008)

Rao (1979)

Reinsel and Velu (1998)

All theoretical results (distribution of the reduced rank estimates
and rank selection procedures) are asymptotic, m→∞, everything
else fixed.
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Rank Selection Criterion
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Risk Bounds for the RSC Estimator

A finite sample approach to dimension reduction

We derive reduced rank estimates Â, without prior specification of
the rank.

We propose a computationally efficient method that can
handle matrices of large dimensions.

We provide a finite sample analysis of the resulting estimates.

Our analysis is valid for any m, n, p and r .
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Methodology

We propose to estimate A by the penalized least squares estimator

Â = argmin
B
{‖Y − XB‖2

F + µ · r(B)}

= argmin
B
{‖PY − XB‖2

F + µ · r(B)}

for projection P on X .
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Set k̂ = r(Â) and let B̂k be the restricted LSE of rank k. Then

‖Y − X Â‖2
F + µ · k̂ = min

B
{‖Y − XB‖2

F + µ · r(B)}

= min
k
{‖Y − X B̂k‖2

F + µ · k}
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Closed form solutions

Our first result states that Â, X Â and k̂ = r(Â) have closed form
solutions and can be efficiently computed based on the SVD of PY .

Proposition

k̂ is the number of singular values of PY that exceed
√
µ

X Â =
∑

j≤k̂ djujv
′
j

Â is the rank restricted LSE (of rank k̂)
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Consistent Effective Rank Estimation

Theorem

Suppose that there exists an index s ≤ r such that

ds(XA) > (1 + δ)
√
µ

and
ds+1(XA) < (1− δ)

√
µ,

for some δ ∈ (0, 1]. Then we have

P
{

k̂ = s
}
≥ 1− P {d1(PE ) ≥ δ√µ} .
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We can consistently estimate the index s provided we use a
large enough value for µ to guarantee that the probability of
the event

{
d1(PE ) ≤ δ√µ

}
approaches one.

We call s the effective rank of A relative to µ, and denote it
by re = re(µ).

We can only hope to recover those singular values of the
signal XA that are above the noise level d1(PE ). Their
number, re , will be the target rank of the approximation of
the mean response, and can be much smaller than r = r(A).

The largest singular value d1(PE ) is our relevant indicator of
the strength of the noise.
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Lemma

Let q = r(X ) and assume that Eij are independent N(0, σ2)
random variables. Then

E [d1(PE )] ≤ σ
(√

n +
√

q
)

and, for all t > 0,

P {d1(PE ) ≥ E[d1(PE )] + σt} ≤ exp
(
−t2/2

)
.
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In view of this result, we take

µ = 2σ2(n + q)

as our measure of the noise level.

Summarizing,

Corollary

If dr (XA) > 2
√
µ, then P{k̂ = r} → 1 as q + n→∞.
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Risk Bounds for the Restricted Rank LSE

Theorem

Let B̂k be the restricted LSE of rank k . For every k we have

‖X B̂k − XA‖2
F ≤ 3

∑
j>k

d2
j (XA) + 4kd2

1 (PE )


with probability one.
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Risk Bounds for the Restricted Rank LSE

We bound the error ‖X B̂k − XA‖2
F by an approximation error,∑

j>k d2
j (XA), and a stochastic term, kd2

1 (PE ).

The approximation error is decreasing in k and vanishes for
k > r(XA).

The stochastic term can be bounded by Cσ2k(n + q) with
large probability, and is increasing in k.

k(n + q) is essentially the number of free parameters of the
restricted rank problem as the parameter space consists of all
p × n matrices B of rank k and each matrix has k(n + q − k)
free parameters.

The obtained risk bound is the squared bias plus the
dimension of the parameter space.
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Risk Bound for the RSC Estimator

Theorem

We have, for any µ,

P
[
‖X Â− XA‖2

F ≤ 3
{
‖XB − XA‖2

F + µr(B)
}]

≥ 1− P [2d1(PE ) >
√
µ] ,

for all p × n matrices B.
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Risk Bound for the RSC Estimator

Theorem

In particular, we have, for µ = C0σ
2(q + n) and some C0 > 1,

E
[
‖X Â− XA‖2

F

]
≤ C min

k

∑
j>k

d2
j (XA) + σ2(q + n)k

 .
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Remarks

RSC achieves optimal bias-variance trade-off.

RSC is minimax adaptive.

Minimizer of
∑

j>k d2
j (XA) + µk is effective rank re .

RSC adapts to re .

The smaller r , the smaller the prediction error.

Bounds valid for all m, n, p, q, r .
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Theoretical estimator
Method 1: RSC→RCGL
Rank Constrained Group Lasso
Method 2: GLASSO→RSC

Minimize

‖Y − XB‖2
F + cσ2r(B)

{
2n + 2|J(B)|+ |J(B)| log(

p

2|J(B)|
)

}
over all p × n matrices B. Here c > 3 is a numerical constant.

Theorem

For any c > 3,

E
[
‖XA− X B̂‖2

F

]
. inf

B

[
‖XA− XB‖2

F + pen(B)
]

. σ2r(A)

{
n + |J(A)| log(

p

|J(A)|

}
.
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Theoretical estimator
Method 1: RSC→RCGL
Rank Constrained Group Lasso
Method 2: GLASSO→RSC

Remarks

B̂ adapts to the unknown row and rank sparsity of A
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Two-step procedures

First select rank, then rows.

First select rows, then rank.
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Theoretical estimator
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Method 2: GLASSO→RSC

Method 1

Method 1

Use RSC to select

r̂ =
∑
k

1{dk(PY ) ≥ σ(
√

2n +
√

2q)}

Use RCGL B̂k with k = r̂ to obtain final estimator
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Rank Constrained Group Lasso

B̂k = argmin
rank(B)≤k

{
‖Y − XB‖2

F + 2λ‖B‖2,1

}
.

with λ = Cσ
√

mk
√
λ1(X ′X/m)

k = n: no rank restriction (GLASSO)

λ = 0: reduced-rank regression
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Assumption

Assumption A on Gram matrix

Set Σ = X ′X/m. There exists a set I ⊆ {1, . . . , p} and δI > 0
such that

tr(M ′ΣM) ≥ δI
∑
j∈I
‖mj‖2

2

for all p × n matrices M with rows mj satisfying∑
j∈I
‖mj‖2 ≥ 2

∑
j 6∈I
‖mj‖2.
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Theoretical estimator
Method 1: RSC→RCGL
Rank Constrained Group Lasso
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Row-sparse adaptive

Theorem

Let B̂k be a global minimizer. Then, for any p × n matrix B with
r(B) ≤ k and |J(B)| non-zero rows,

E
[
‖X B̂k − XA‖2

F

]
. ‖XB − XA‖2

F + kσ2

{
n +

(
1 +

λ1(Σ)

δJ(B)

)
|J(B)| log(p)

}
,

provided Σ satisfies Assumption A(J(B), δJ(B)).
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Method 1: RSC→RCGL
Rank Constrained Group Lasso
Method 2: GLASSO→RSC

If the generalized condition number λ1(Σ)/δJ(B) is bounded,
then, within the class of row sparse matrices of fixed rank k ,
the RCGL estimator is row-sparsity adaptive.

Moreover, if the rank r of A is known, then RCGL achieves
the desired rate of convergence in row and rank sparse models.

GLASSO minimizes criterion over all p × n matrices B.

Optimal choice λ = 2
√

2σ
√

mn
(

1 + A log p
n

)1/2
, see Lounici

et al (2011).
Our choice replaces n by k : we minimize over all rank-k
matrices!
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Condition C on signal

C1 dr (XA) > 2
√

2σ(
√

n +
√

q)

C2 log(‖XA‖F ) ≤ (
√

2− 1)2(n + q)/4.
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Theorem

Let Σ satisfy A(J(A), δJ(A)), let λ1(Σ)/δJ be bounded, and let C

hold. Then the two-step JRRS estimator B̂(1) satisfies

E
[
‖X B̂(1) − XA‖2

F

]
. {n + |J| log(p)}rσ2.

Conclusion:
B̂(1) is row and rank adaptive.
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Method 2

Method 2

Minimize
‖Y − XB‖2

F + 2λ‖B‖2,1

with

λ = 2σ
√

mn

√
1 +

A log p

n

Set

Ĵ =
{

j : n−1/2‖B̂j‖ > cm−1/2[1 + A log p/n]1/2
}

Run RSC on restricted dimensions: X
Ĵ
.
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This works, provided

|Σij | ≤
1

7α|J|
and

n−1/2‖Aj‖ ≥ Cm−1/2

[
1 +

A log p

n

]1/2

.

See Lounici et al (2011) for consistency of Ĵ.
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Simulation setup

X has i.i.d. rows Xi from MVN(0,Σ), with Σjk = ρ|j−k|,
ρ > 0, 1 ≤ j , k ≤ p.

A =

[
A1

O

]
=

[
bB0B1

O

]
,

with b > 0, B0 a J × r matrix and B1 a r × n matrix. All
entries in B0 and B1 are i.i.d. N(0, 1).

Eij are iid N(0, 1).
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We report two settings:

p large: m = 30, |J| = 15, p = 100, n = 10, r = 2, ρ = 0.1, σ2 = 1,
b = 0.5, 1.

m large: m = 100, |J| = 15, p = 25, n = 25, r = 5, ρ = 0.1, σ2 = 1,
b = 0.2, 0.4.

We tested four methods: RSC, GLASSO, method 1 and method 2.
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Table: p large

MSE |Ĵ| R̂ M FA
b = 0.5

GLASSO 206 10 10 53% 4%
RSC 485 100 2 0% 100%

method 1 138 19 2 36% 10%
method 2 169 10 2 53% 4%

b = 1

GLASSO 511 14 10 41% 7%
RSC 1905 100 2 0% 100%

method 1 363 21 2 31% 12%
method 2 402 14 2 41% 7%
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Table: m large

MSE |Ĵ| R̂ M FA
b = 0.2

GLASSO 18.1 14 14 4% 1%
RSC 11.9 25 5 0% 100%

method 1 8.3 15 5 0% 1%
method 2 8.9 14 5 4% 1%

b = 0.4
GLASSO 17.7 15 15 0% 0%

RSC 11.5 25 5 0% 100%

method 1 8.1 15 5 0% 0%
method 2 8.1 15 5 0% 0%
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Conclusions

GLASSO often severely misses some true features in the large-p
setup as seen from its high M numbers.

RSC achieved good rank recovery. The drawback is that this
dimension reduction requires using all p variables and thus hurts
interpretability.

Clearly both GLASSO and RSC are inferior to the two JRRS
methods.

Method 1 (RSC→RCGL) dominates all other methods. Its MSE

results are impressive. While it may not give exactly |Ĵ| = |J| = 15,
its M numbers indicate that we did not miss many true features.
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Thanks!
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Efficient Computation of B̂k (Reinsel and Velu, 1998).

Let M = X ′X be the Gram matrix, and let P = XM−X ′.

1 Compute the eigenvectors V = [v1, v2, · · · , vn], corresponding
to the ordered eigenvalues arranged from largest to smallest,
of the symmetric matrix Y ′PY .

2 Compute B̂ = M−X ′Y .
Construct W = B̂V and G = V ′.
Form Wk = W [ , 1 : k] and Gk = G [1 : k , ].

3 Compute the final estimator B̂k = WkGk .
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Algorithm

Given 1 ≤ k ≤ m ∧ p ∧ n, λ ≥ 0, V
(0)
k,λ ∈ On×k .

j ← 0, converged← FALSE
WHILE not converged

S
(j+1)
k,λ ← arg minS∈Rp×k

1
2‖YV

(j)
k,λ − XS‖2

F + λ‖S‖2,1.

Let W ← Y ′XS
(j+1)
k,λ ∈ Rn×k and perform SVD:

W = UwDwV ′w with Dw diagonal.

V
(j+1)
k,λ ← UwV ′w

B
(j+1)
k,λ ← S

(j+1)
k,λ (V

(j+1)
k,λ )′

converged← ‖B(j+1)
k,λ − B

(j)
k,λ‖∞ < ε

j ← j + 1

ENDWHILE

Deliver B̂k,λ = B
(j+1)
k,λ , Ŝk,λ = S

(j+1)
k,λ , V̂k,λ = V

(j+1)
k,λ .
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