Dimension Reduction in Abundant High Dimensional Regressions

Dennis Cook

University of Minnesota

8th Purdue Symposium June 2012

In collaboration with Liliana Forzani & Adam Rothman, *Annals of Statistics*, February 2012, 353–384

Broad context

Variables: $Y \in \mathbb{R}^1$, $\mathbf{X} \in \mathbb{R}^p$, $(Y, \mathbf{X}) \sim F$.

Data: (Y_i, X_i) iid, i = 1, ..., n.

Goal: Reduce $\dim(\mathbf{X})$ without loss of information on $Y|\mathbf{X}$.

Reductions: Pursue $R(\mathbf{X}) = \boldsymbol{\alpha}^T \mathbf{X} : \mathbb{R}^p \to \mathbb{R}^q$, $q \leq p$, so that

 $Y \perp \mathbf{X} | R(\mathbf{X}).$

 $span(\alpha)$ is called a dimension reduction subspace

(DRS) & $\alpha^T \mathbf{X}$ is called a sufficient reduction.

Broad contex, cont.

Smallest reduction is characterized by

- $S_{Y|X} = \cap S_{DRS}$; $R(X) = \eta^T X$; span $(\eta) = S_{Y|X} = \text{central subspace}$.
- Can't really handle n < p yet.
- Chen et al. (2010) pursue variable elimination by estimating rows of η to be 0, but still with $p/n \to 0$

Today's context

Estimation of $R(\mathbf{X}) = \mathbf{\eta}^T \mathbf{X}$ when $n, p \to \infty$ with n = o(p) or $n \times p$ or p = o(n), where still $\mathrm{span}(\mathbf{\eta}) = \mathbb{S}_{Y|\mathbf{X}}$.

Distinctions:

- Bypass estimation of $S_{Y|X} \subseteq \mathbb{R}^p$ and instead estimate $R(X) \in \mathbb{R}^d$ directly, with $d = \dim(S_{Y|X})$ fixed.
- Emphasize <u>abundant</u> regressions, where many predictors contribute information about *Y*.
 - Food Science
 - Chemometrics
 - Biomedical Engineering

Sparsity is not ruled out, but is not required, either.

Today's context, cont.

- Pursue prediction $R(\mathbf{X}_{new})$ or $Y|\mathbf{X}_{new}$ rather than variable selection.
- Use SPICE (Rothman, et al.) to estimate a critical $p \times p$ matrix of weights **W**.

Tasks:

- Reductive context and $R(\mathbf{X})$
- Class of estimators $\widehat{R}_{\widehat{\mathbf{w}}}(\mathbf{X})$
- Key structural assumptions
- Main results for $\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) R(\mathbf{X}_{\text{new}}) = O_p(r(n, p)), r \to 0$ as $n, p \to \infty$.
- Illustrations

Inverse regression

$$\mathbf{X}|(Y=y_i) \sim \mathbf{\mu} + \mathbf{\Gamma} \mathbf{\beta} \mathbf{f}(y_i) + \mathbf{\varepsilon}_i, i = 1, \dots, n.$$

- $\mathbf{\mu} \in \mathbb{R}^p$, $\Gamma \in \mathbb{R}^{p \times d}$, $\beta \in \mathbb{R}^{d \times r}$, d ; <math>d, r fixed.
- $E(\varepsilon_i) = 0$, $var(\varepsilon_i) = \Delta > 0$, $\varepsilon \perp Y$.
- $R(\mathbf{X}) = (\mathbf{\Gamma}^T \mathbf{\Delta}^{-1} \mathbf{\Gamma})^{-1} \mathbf{\Gamma}^T \mathbf{\Delta}^{-1} (\mathbf{X} \mathbf{\mu}) \in \mathbb{R}^d.$
- $\mathbf{f}(y) \in \mathbb{R}^r$ known vector of basis functions, like piecewise polynomials or indicators if the response is categorical. Can replace \mathbf{f} with an approximation \mathbf{g} without affecting the results if rank $\{\text{cov}(\mathbf{f}(Y), \mathbf{g}(Y))\} = r$.

Estimation

Let $X \in \mathbb{R}^{n \times p}$ have rows \mathbf{X}_i^T and $\mathbb{F} \in \mathbb{R}^{n \times r}$ have rows $\mathbf{f}^T(y_i)$ with $\mathbf{1}_n^T \mathbb{F} = 0$. Then choose $(\hat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\Gamma}})$ to minimize the Frobenius norm

$$\|(\mathbf{X} - \mathbf{1}_n \mathbf{\mu}^T - \mathbf{F} \mathbf{\beta}^T \mathbf{\Gamma}^T) \widehat{\mathbf{W}}^{1/2} \|_F$$

over $\mu \in \mathbb{R}^p$, $\Gamma \in \mathbb{R}^{p \times d}$, $\beta \in \mathbb{R}^{d \times r}$.

Weight matrix: $\widehat{\mathbf{W}} \in \mathbb{R}^{p \times p}$ is an "estimator" of $\mathbf{\Delta}^{-1}$ with population version \mathbf{W} .

Reductions:
$$\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}) = (\widehat{\boldsymbol{\Gamma}}^T \widehat{\mathbf{W}} \widehat{\boldsymbol{\Gamma}})^{-1} \widehat{\boldsymbol{\Gamma}}^T \widehat{\mathbf{W}} (\mathbf{X} - \bar{\mathbf{X}})$$

$$R(\mathbf{X}) = (\boldsymbol{\Gamma}^T \boldsymbol{\Delta}^{-1} \boldsymbol{\Gamma})^{-1} \boldsymbol{\Gamma}^T \boldsymbol{\Delta}^{-1} (\mathbf{X} - \boldsymbol{\mu})$$

Goal : Characterize $\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) - R(\mathbf{X}_{\text{new}}) = O_p(\mathbf{?})$, as $n, p \to \infty$.

Specific estimators

Choices for $\widehat{\mathbf{W}}$: Let $\widehat{\boldsymbol{\Delta}}$ be the residual covariance matrix from the multivariate OLS fit of \mathbf{X} on \mathbf{f} (requires only n > r + 4). Then

- $\widehat{\mathbf{W}} = \mathbf{W}$, like $\mathbf{W} = \mathbf{I}_p$ or the ideal case $\mathbf{W} = \mathbf{\Delta}^{-1}$.
- $\widehat{\mathbf{W}} = \widehat{\mathbf{\Delta}}^{-1}$, requires n > p + r + 4, allowing $n \approx p$.
- $\widehat{\mathbf{W}} = \text{SPICE}$ estimator of $\mathbf{\Delta}^{-1}$ applied to $\widehat{\mathbf{\Delta}}$
- $\widehat{\mathbf{W}} = \text{Moore-Penrose inverse } \widehat{\boldsymbol{\Delta}}^- \text{ of } \widehat{\boldsymbol{\Delta}} \text{ (simulation only)}.$

Signal rate, h(p)

Assume there exists h(p) = O(p) so that as $p \to \infty$

$$\frac{\mathbf{\Gamma}^T \mathbf{W} \mathbf{\Gamma}}{h(p)} \to \mathbf{G} > 0$$
,

where $\Gamma \in \mathbb{R}^{p \times d}$, $\mathbf{G} \in \mathbb{R}^{d \times d}$, and $\mathbf{W} \in \mathbb{R}^{p \times p}$ is the pop. $\widehat{\mathbf{W}}$.

Abundant signal: $h(p) \approx p$

Near Abundant signal: $h(p) \approx p^{2/3}$

Near Sparse signal: $h(p) = o(p^{1/3})$

Sparse signal: h(p) = O(1)

Agreement between Δ^{-1} and W

Define $\rho = \mathbf{W}^{1/2} \Delta \mathbf{W}^{1/2} \in \mathbb{R}^{p \times p}$. $\rho = \mathbf{I}_p$ if $\mathbf{W} = \Delta^{-1}$. Let $\| \cdot \|$ denote the spectral norm. Then we assume

- **1.** $\|\mathbf{p}\| = O(h(p))$
- 2. $E(\varepsilon^T \mathbf{W} \varepsilon) = O(p)$ and $var(\varepsilon^T \mathbf{W} \varepsilon) = O(p^2)$. Recall $var(\varepsilon) = \Delta$.

A Main Result

$$\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) - R(\mathbf{X}_{\text{new}}) = \mathbf{v} + O_p(\kappa) + O_p(\psi) + O_p(\omega).$$

- $\mathbf{v} = R_{\mathbf{W}}(\boldsymbol{\varepsilon}_{\text{new}}) R(\boldsymbol{\varepsilon}_{\text{new}})$, which does not depend on n
 - $E(\mathbf{v}) = 0$ & $var(\mathbf{v})$ is bounded as $p \to \infty$
 - $\operatorname{var}(\mathbf{v}) \to 0 \text{ as } p \to \infty \text{ if } \|\mathbf{p}\| = o(h(p))$
 - $\|\mathbf{\rho}\| = o(p)$ in abundant regressions
 - No help in sparse regressions
 - $var(\mathbf{v}) = 0$ if span($\mathbf{W}^{1/2}\mathbf{\Gamma}$) reduces $\mathbf{\rho}$. Holds trivially if $\mathbf{W} = \mathbf{\Delta}^{-1}$ so $\mathbf{\rho} = \mathbf{I}_{n}$.

$$\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) - R(\mathbf{X}_{\text{new}}) = \mathbf{v} + O_p(\kappa) + O_p(\psi) + O_p(\omega).$$

■ $\kappa \to 0$ as $n, p \to \infty$:

$$\kappa = \left(\frac{p}{h(p)n}\right)^{1/2}$$

- **1** $\kappa = 1/\sqrt{n}$ in abundant regressions, $h(p) \approx p$.
- **2** $\kappa = \sqrt{p/n}$ in sparse regressions, h(p) = O(1).
- 3 If $\widehat{\mathbf{W}} = \mathbf{\Delta}^{-1}$ then $\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) R(\mathbf{X}_{\text{new}}) = O_p(\kappa)$. κ^{-1} is the oracle rate.
- If n > p + r + 4, $\varepsilon \sim N(0, \Delta)$ & $\widehat{\mathbf{W}} = \widehat{\Delta}^{-1}$, then $\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) R(\mathbf{X}_{\text{new}}) = O_p(\kappa)$. (Allows $n \asymp p$.)

$$\widehat{R}_{\widehat{\boldsymbol{W}}}(\boldsymbol{X}_{\text{new}}) - R(\boldsymbol{X}_{\text{new}}) = \boldsymbol{\nu} + O_p(\kappa) + O_p(\psi) + O_p(\omega).$$

 $\blacksquare \ \psi(n,p,\mathbf{\rho})$:

$$\psi(n, p, \mathbf{\rho}) = \frac{\|\mathbf{\rho}\|_F}{h(p)\sqrt{n}}$$

- $\omega(n,p)$: Define $\mathbf{S} = \mathbf{W}^{-1/2}(\widehat{\mathbf{W}} \mathbf{W})\mathbf{W}^{-1/2}$.
 - $\|\mathbf{S}\| = O_p(\boldsymbol{\omega}).$
 - $\blacksquare \|E(\mathbf{S}^2)\| = O(\omega^2).$
- If the regression is abundant and $\|\rho\| = O(1)$, then

$$\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) - R(\mathbf{X}_{\text{new}}) = O_p(n^{-1/2}) + O_p(\omega)$$

$\widehat{\mathbf{W}} = \mathbf{SPICE}$ estimator of $\mathbf{\Delta}^{-1}$ based on $\widehat{\mathbf{\Delta}}$

Assume that (A) the eigenvalues of Δ are bounded as $p \to \infty$, (B) the errors are sub-Gaussian, (C) the SPICE tuning parameter $\approx (\frac{\log p}{n})^{1/2}$.

Let s = s(p) be the total number of non-zero off diagonal elements of Δ^{-1} .

Then for SPICE

$$\omega = \left(\frac{(s+1)\log p}{n}\right)^{1/2}$$

and

$$\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) - R(\mathbf{X}_{\text{new}}) = O_p(n^{-1/2}) + O_p(\omega)$$

If *s* is bounded and the regression is abundant then

$$\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}}) - R(\mathbf{X}_{\text{new}}) = O_p(n^{-1/2}\log^{1/2}p)$$

Simulations

Data generation:

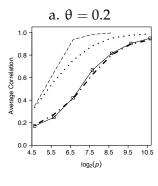
$$\mathbf{X}|(Y=y) \sim \mathbf{\Gamma} y + N_p(0, \mathbf{\Delta})$$

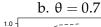
with d = 1, $\Gamma \sim N(0, 1)$, $Y \sim N(0, 1)$ and $\Delta = \mathbf{D}^{1/2} \boldsymbol{\Theta} \mathbf{D}^{1/2}$ where diag(\mathbf{D}) $\sim U(1, 101)$, $\boldsymbol{\Theta} = (1 - \theta)\mathbf{I}_p + \theta \mathbf{1}_p \mathbf{1}_p^T$. Fitted model:

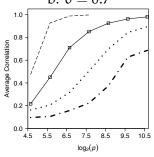
$$\mathbf{X}|(Y = y) \sim \mathbf{\mu} + \Gamma \mathbf{\beta} \mathbf{f}(y) + \mathbf{\epsilon}$$

with d = 1, $\mathbf{f}(y) = (y, y^2, y^3, y^4)^T$, so r = 4,

All results based on averages over 200 replications of the correlation between $\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{X}_{\text{new}})$ and $R(\mathbf{X}_{\text{new}})$ based on 100 \mathbf{X}_{new} samples.







$$\begin{array}{c} \text{C. }\theta = 0.99 \\ \text{1.0} \\ \text{0.8} \\ \text{0.8} \\ \text{0.0} \\ \text{0.0} \\ \text{0.2} \\ \text{0.2} \\ \text{0.2} \\ \text{0.2} \\ \text{0.5} \\ \text{0.5}$$

 $log_2(p)$

Figure: n = p/2

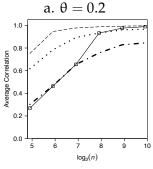
$$\widehat{\mathbf{W}} = \text{SPICE}, ----$$

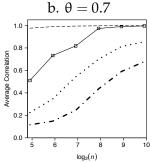
$$\widehat{\mathbf{W}} = \text{Moore-Penrose inverse of } \widehat{\mathbf{\Delta}}, -----$$

 $\widehat{\mathbf{W}} = \text{diag}^{-1} \widehat{\mathbf{\Delta}}, \cdots \cdots$

$$\widehat{\mathbf{W}} = \operatorname{diag}^{-1}\widehat{\boldsymbol{\Delta}}, \dots$$

$$\widehat{\mathbf{W}} = \mathbf{I}_v - \cdots$$





c. $\theta = 0.99$

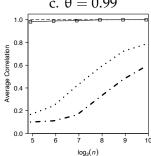


Figure: p = 100

$$\widehat{\mathbf{W}} = \text{SPICE}, ----$$

$$\widehat{\mathbf{W}} = \operatorname{SPICE}, --- \widehat{\mathbf{W}} = \operatorname{Moore-Penrose}$$
 inverse of $\widehat{\boldsymbol{\Delta}}, --- \widehat{\mathbf{W}} = \operatorname{diag}^{-1} \widehat{\boldsymbol{\Delta}}, \cdots$

$$\widehat{\mathbf{W}} = \operatorname{diag}^{-1}\widehat{\boldsymbol{\Delta}}, \cdots$$

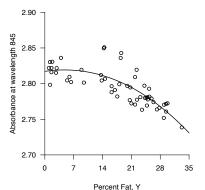
$$\widehat{\mathbf{W}} = \mathbf{I}_n - \cdots$$

Spectroscopy: Pork

Goal: Predict the percentage of fat *Y* in a pork sample.

Data: n = 54 samples of pork. Predictors are absorbance spectra measured at p = 100 wavelengths.

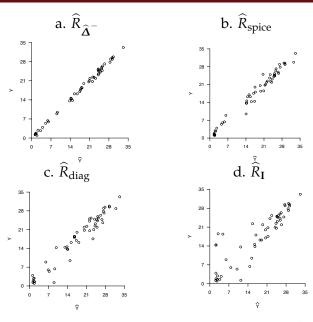
f(y): $f(y) = (y, y^2, y^3)^T$ based on graphical evaluation:



Dimension *d*: Adapting a permutation test (Cook and Yin 2001) we inferred d = 1.

Prediction:

$$\begin{split} \widehat{E}\{Y|\mathbf{X} = \mathbf{x}\} &= \sum_{i=1}^{n} w_{i}(\mathbf{x})Y_{i} \\ w_{i}(\mathbf{x}) &= \frac{\widehat{g}(R(\mathbf{x})|Y_{i})}{\sum_{i=1}^{n} \widehat{g}(R(\mathbf{x})|Y_{i})} \\ \widehat{g} &= \exp\left\{-2^{-1}[\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{x}) - \widehat{\mathbf{\beta}}\mathbf{f}(y_{i})]^{T}\widehat{\boldsymbol{\Gamma}}^{T}\widehat{\mathbf{W}}\widehat{\boldsymbol{\Gamma}}[\widehat{R}_{\widehat{\mathbf{W}}}(\mathbf{x}) - \widehat{\mathbf{\beta}}\mathbf{f}(y_{i})]\right\}. \end{split}$$

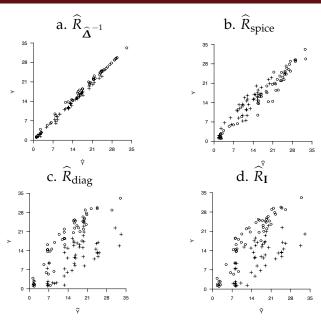


Spectroscopy: Pork and Beef

Goal: Predict the percentage of fat Y.

Data: n = 103 samples of pork or beef. Predictors are absorbance spectra measured at p = 95 wavelengths.

$$f(y)$$
: $f(y) = (y, y^2, \text{Ind}(beef))^T$



Some conclusions

- The notion of abundance can be important, depending on the application.
- Any of the estimators can work well in abundant or near-abundant regressions. Generally,
 - When n > p + r + 4, $\widehat{\Delta}^{-1}$ and SPICE seem the best.
 - When n , SPICE is so far the overall winner, but has computational problems with large <math>p or large conditional predictor correlations. More work on Moore-Penrose inverse and other possibilities needed.
- Screening methods can be developed to insure abundance or near-abundance.

