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Introduction

Broad context

Variables: Y € R!,X € R?, (Y,X) ~ F.
Data: (Y;,X;)iid,i=1,...,n.
Goal: Reduce dim(X) without loss of information on Y|X.
Reductions: Pursue R(X) = a«TX: R? — RY, q < p, so that
Y 1L X|R(X).

span(«) is called a dimension reduction subspace
(DRS) & o X is called a sufficient reduction.

Dennis Cook | Dimension Reduction in Abundant High Dimensional Regressions



Introduction

Broad contex, cont.

Smallest reduction is characterized by

m Syx =N Sprs; R(X) =n'X;
span(n) = 8y)x = central subspace.

m Can’t really handle n < p yet.

m Chen et al. (2010) pursue variable elimination by
estimating rows of 1 to be 0, but still with p/n — 0
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Introduction

Today’s context

Estimation of R(X) = n"X when n,p — co with n = o(p) or
n =< por p = o(n), where still span(n) = Syx.

Distinctions:

m Bypass estimation of §y|x C R” and instead estimate
R(X) € R? directly, with d = dim(8yx) fixed.

m Emphasize abundant regressions, where many predictors
contribute information about Y.

m Food Science
m Chemometrics
m Biomedical Engineering

Sparsity is not ruled out, but is not required, either.
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Introduction

Today’s context, cont.

m Pursue prediction — R(Xpew) 0r Y[Xpew — rather than
variable selection.

m Use SPICE (Rothman, et al.) to estimate a critical p x p

matrix of weights W.
Tasks:

m Reductive context and R(X)

m Class of estimators IA{W(X)

m Key structural assumptions

m Main results for IA{W(XHQW) — R(Xnew) = Op(r(n,p)),r — 0
as n,p — oo.

m [llustrations
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Inverse regression

Inverse regression

XI(Y:yi)~u+l“[5f(yi)+si,i:1,...,n

mucR, TR, B c R, d<p&r;d,rfixed.
mE(g;)=0,var(g;) =A>0,¢elY.
B RX)=(TTA7IN)IITA" (X — p) e R™.

m f(y) € R" known vector of basis functions, like piecewise
polynomials or indicators if the response is categorical.
Can replace f with an approximation g without affecting
the results if rank{cov(f(Y), g(Y))} =r.
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Estimation

Estimation

Let X € R"*F have rows XZ-T and F € R"*" have rows f’ (y;) with
17TF = 0. Then choose (f1, 3,T) to minimize the Frobenius norm

|| (X _ 1nuT _ ]FBTFT)‘/N\l/ZHF
over p € R?, T € RP*4, g € R¥.
Weight matrix: W € RP*? is an “estimator” of A~ with
population version W.
~ AT~ AT~ _
Reductions : Ry;(X) = (I' WI)~'T W(X —X)
RX) = (r"A=In)-Ir'f A=Y (X — )

Goal : Characterize ZAQ/W(XneW) — R(Xnew) = Op(?), as
n,p — oo.
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Estimation

Specific estimators

Choices for W: Let A be the residual covariance matrix from the
multivariate OLS fit of X on f (requires only n > r + 4). Then
W= W, like W = I, or the ideal case W = AL
m W =diag '(A)
m W= 371, requires n > p +r + 4, allowing n < p.
m W = SPICE estimator of A~ applied to A

m W = Moore-Penrose inverse A of A (simulation only).
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Signal rate, /i(p)

Assume there exists h(p) = O(p) so thatas p — oo
r’wr
h(p)

where T € RP*4, G € R™*4 and W € RP*? is the pop. W.
Abundant signal: h(p) < p

-G >0,

/3

Near Abundant signal: h(p) =< p?
1/3)

Near Sparse signal: h(p) =o(p
Sparse signal: h(p) = O(1)
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Key structure

Agreement between A and W

Define p = WY/2AWY2 ¢ RP*F. p =T, if W=A"". Let || - |
denote the spectral norm. Then we assume
L |pl = Olh(p))
2. E( TWe) O(p) and var(e"We) = O(p?).
Recall var(e) = A.
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Main results

A Main Result

~

RW(Xnew) — R(Xnew) = v + Op(K) + Op(lb) + Op(w)-

v

Rw(&new) — R(&new), which does not depend on n

m E(v) =0 & var(v) is bounded as p — oo
m var(v) — 0asp — oo if ||p|| = o(h(p))
m ||p|| = o(p) in abundant regressions
m No help in sparse regressions
m var(v) = 0 if span(W'/2T") reduces p. Holds trivially if
W:Aflsop:I,,.
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Main results

Rz (Xnew) — R(Xnew) =V + Op(K) + Op (1) + Op(w).

1/2
. p
* <h(p)n>

k =1/ /n in abundant regressions, h(p) = p.
K = \/p/n in sparse regressions, h(p) = O(1).
If W = A~" then Ry (Xnew) — R(Xnew) = Op(K). k' is the
oracle rate. .
Alfn>p+r+4,¢~N0A) &W=A ,then
Ry (Xnew) — R(Xnew) = Op(). (Allows 1 = p.)

mk— Oasn,p— oo
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Main results

~

RW(Xnew) — R(Xnew) = v + Op(K) + Op(lp) + Op(w)-

n ll"(nspa p). || H
__IPIIF
1l')(n’l‘/)’ p) - h(p) \/ﬁ
m w(n,p): Define S = W 1/2(W - W)W~ 1/2,
m S| = Op(w).

m [|E(S?)] = O(w?).
m If the regression is abundant and ||p|| = O(1), then

ﬁW(Xnew) — R(Xnew) = Op(nil/z) + Op(w)
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Main results

W = SPICE estimator of A~ based on A

Assume that (A) the eigenvalues of A are bounded as p — oo,
(B) the errors are sub-Gaussian, (C) the SPICE tuning parameter
= (logry1/2

= .

Let s = s(p) be the total number of non-zero off diagonal
elements of A~

Then for SPICE
w— ((s + 1)logp)l/2

n

and R
RW(Xnew) — R(Xnew) = Op(”il/z) + Op(w)

If s is bounded and the regression is abundant then

~

Rz (Xnew) — R(Xnew) = op(nfl/z 10g1/2p)
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Simulations

Simulations

Data generation:
X|(Y = y) ~ Ty + N, (0, A)

withd =1,T ~N(0,1), Y ~N(0,1) and A = D'/2@D'/2 where
diag(D) ~ U(1,101), ® = (1 — 0)I,, + 81,1.
Fitted model:

XI(Y =y) ~ p+ TBEy) + ¢

withd =1, f(y) = (v, %, y°, y*)T,sor =4,

All results based on averages over 200 replications of the
correlation between IA{W( Xnew) and R(Xpew ) based on 100 Xpew
samples.
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Simulations
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Simulations

1.0 P Y P —
< 0.8 1 < < 0.8
<} 8 2
k- g k!
£ 06 2 £ 06 .
8 8 3 -
(o} @ (<] .
2 0.4 g € 0.4 N
o [ o rd
2 2 , 2 .
0.2 0.2 _.- . 0.2 ,°
0.0 * T T T T 0.0 - T T T T 0.0 T T T T
5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10
logz(n) logz(n) logz(n)
Figure: p =100
W =SPICE, — — — — —
W = Moore-Penrose inverse of A,
W = djagflA, .........

Dennis Cook | Dimension Reduction in Abundant High Dimensional Regressions



Spectroscopy

Spectroscopy: Pork

Goal: Predict the percentage of fat Y in a pork sample.
Data: n = 54 samples of pork. Predictors are absorbance
spectra measured at p = 100 wavelengths.

fy): f(y) = (v, %, v>)T based on graphical evaluation:

290
2.85
2.80

275 —

Absorbance at wavelength 845

270 T T T T ]

Percent Fat, Y
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Spectroscopy

Dimension d: Adapting a permutation test (Cook and Yin 2001)
we inferred d = 1.

Prediction:

EYX=x} = Y wx)Y;
i=1

g(RX)Y;)
> 8(RX)Y))

§ = exp {2 R0 — By T WFR(x) — Bf(y)]}

w;(x)
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Spectroscopy

Spectroscopy: Pork and Beef

Goal: Predict the percentage of fat Y.
Data: n = 103 samples of pork or beef. Predictors are
absorbance spectra measured at p = 95 wavelengths.

fW): f(y) = (y,y* Ind(beef )T
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Conclusions

Some conclusions

m The notion of abundance can be important, depending on
the application.

m Any of the estimators can work well in abundant or
near-abundant regressions. Generally,

m Whenn >p+r+4, A" and SPICE seem the best.

m When n < p +r + 4, SPICE is so far the overall winner, but
has computational problems with large p or large
conditional predictor correlations. More work on
Moore-Penrose inverse and other possibilities needed.

m Screening methods can be developed to insure abundance
or near-abundance.
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