Nonparametric Modeling of Regulatory Network

Ping Ma
Department of Statistics
& Institute for Genomic Biology
University of Illinois Urbana-Champaign

Central Dogma of Molecular Biology



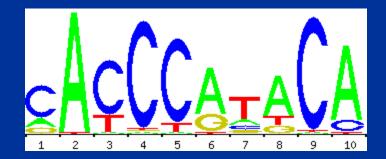
Transcription Regulation

Transcription factors (regulatory proteins) bind to genes, turning on or shutting off their expressions.

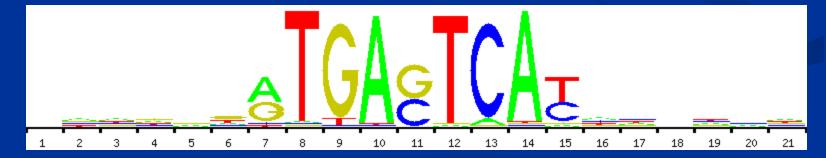
Transcription Factor Binding

 Transcription Factor Binding Motif (TFBM): Common patterns in DNA sequences at transcription factor binding sites.

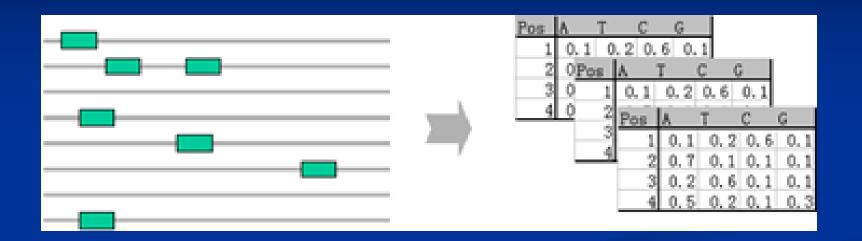
RAP1



GCN4

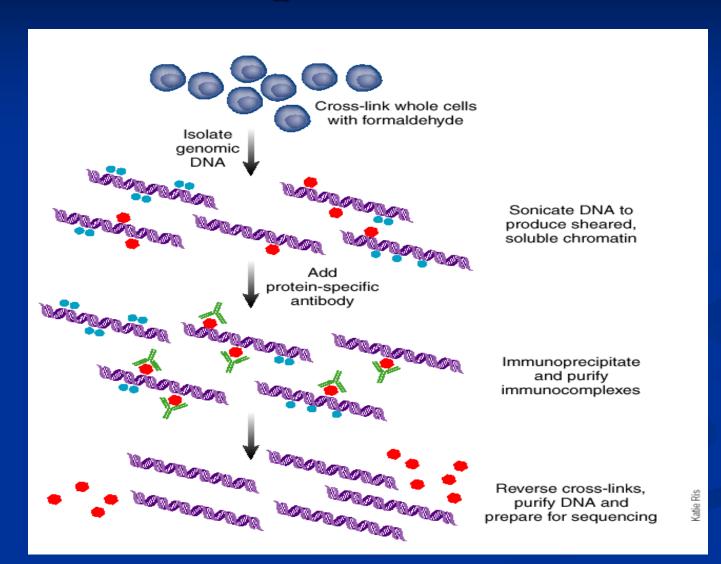


Transcription Factor Binding



Gene	Mf1	Mf2	Mf3	
gene1	(X)	X	X	
gene1 gene2	X	X	X	
gene3	X	X	X	

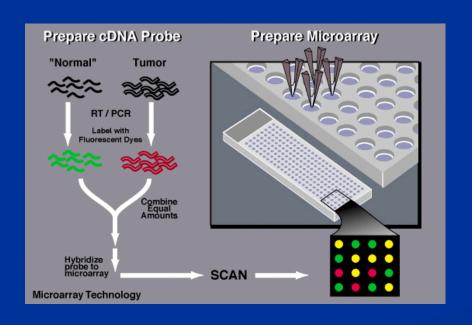
Transcription Factor Binding



Mardis Nat Meth. 2007

Gene Expression

- To quantify the abundance of each transcript
- Two approaches:



Hybridization (Microarray)

Sequence (RNA-Seq)

Linking gene expression with TF binding

- Linear Regression
 Motif Regressor (Conlon et al 2003 PNAS)
 Motif Express (Zamdborg and Ma 2009 NAR)
- Nonlinear Regression
 RSIR (Zhong et al 2005, Bioinformatics)
 Correlation Pursuit (Zhong et al 2012, JRSSB)

Converting Gene Expression to Clusters

- Gene expression is noisy
- Clustering gene expression to get robust clusters
- Linking gene clusters with TF binding data.
 Bayesian Network (Beer and Tavazoie 2004
 Cell)

Proportional Odds Model (Yuan et al 2007 PLoS Comput. Biol.)

Desirable Features

- Flexible function form to link gene expression (clusters) with TF binding
- Integration of new expression data

Our Method

Gene expression clusters and TF binding

Notation: $y = (y_{\langle 1 \rangle}, \dots, y_{\langle \Gamma \rangle}) \in \mathcal{Y} = \prod_{\gamma=1}^{\Gamma} \mathcal{Y}_{\gamma}, \ y_{\langle \gamma \rangle} \in \mathcal{Y}_{\gamma}, \ x \in \mathcal{X}.$

Task: Estimate p(y|x); it is a special case of conditional density estimation on generic $\mathcal{X} \times \mathcal{Y}$ (Gu 1995, SS), for \mathcal{Y} discrete.

Penalized Likelihood

To estimate $p(y|x) = e^{\eta(x,y)} / \int_{\mathcal{Y}} e^{\eta(x,y)}$, for $\eta = \eta_y + \eta_{xy}$, minimize $-\frac{1}{n} \sum_{i=1}^{n} \left\{ \eta(x_i, y_i) - \log \int_{\mathcal{Y}} e^{\eta(x_i, y)} \right\} + \lambda J(\eta),$

where $J(\eta)$ is roughness functional and λ is smoothing parameter.

Functional ANOVA

• On $\mathcal{U}=\mathcal{X}\times\mathcal{Y}$, for averaging operators $A_{x}1=1$, $A_{y}1=1$, $\eta(z)=(I-A_{x}+A_{x})(I-A_{y}+A_{y})\eta$ $=A_{x}A_{y}\eta+(I-A_{x})A_{y}\eta+A_{x}(I-A_{y})\eta+(I-A_{x})(I-A_{y})\eta$ $=\eta_{\emptyset}+\eta_{x}(x)+\eta_{y}(y)+\eta_{xy}(x,y),$ with side conditions $A_{x}\eta_{x}=A_{x}\eta_{xy}=A_{y}\eta_{y}=A_{y}\eta_{xy}=0$.

• On
$$\mathcal{U} = \mathcal{X} \times \mathcal{Y}$$
, with $\eta = \eta_{\emptyset} + \eta_{u} = \eta_{\emptyset} + \eta_{x} + \eta_{y} + \eta_{xy}$,
$$p(x,y) = \frac{e^{\eta_{u}}}{\int_{\mathcal{U}} e^{\eta_{u}}} = \frac{e^{\eta_{x} + \eta_{y} + \eta_{xy}}}{\int_{\mathcal{X} \times \mathcal{Y}} e^{\eta_{x} + \eta_{y} + \eta_{xy}}}, \quad p(y|x) = \frac{e^{\eta_{y} + \eta_{xy}}}{\int_{\mathcal{Y}} e^{\eta_{y} + \eta_{xy}}}.$$

Penalized Likelihood

To estimate $p(y|x) = e^{\eta(x,y)} / \int_{\mathcal{Y}} e^{\eta(x,y)}$, for $\eta = \eta_y + \eta_{xy}$, minimize $-\frac{1}{n} \sum_{i=1}^{n} \left\{ \eta(x_i, y_i) - \log \int_{\mathcal{Y}} e^{\eta(x_i, y)} \right\} + \lambda J(\eta),$

where $J(\eta)$ is roughness functional and λ is smoothing parameter.

- NOVA structures $\eta = \sum_{\beta} \eta_{\beta}$ are built in via tensor product splines, with $J(\eta) = \sum_{\beta} \theta_{\beta}^{-1} J_{\beta}(\eta_{\beta})$ involving extra smoothing parameters θ_{β} .
- Smoothing parameters are selected by cross-validation.

Cross-Validation

- $\mathsf{KL}(\eta, \eta_{\lambda}) = \int_{\mathcal{X}} \left\{ \int_{\mathcal{Y}} (\eta \eta_{\lambda}) p(y|x) \log \int_{\mathcal{Y}} e^{\eta} + \log \int_{\mathcal{Y}} e^{\eta_{\lambda}} \right\} p(x).$
- ► Estimate $\int_{\mathcal{X} \times \mathcal{V}} \eta_{\lambda}(x, y) p(x, y)$ by $\frac{1}{n} \sum_{i} \eta_{\lambda}^{[i]}(x_{i}, y_{i})$.
- $V(\lambda) = -\frac{1}{n} \sum_{i} \left\{ \eta_{\lambda}(x_{i}, y_{i}) \log \int_{\mathcal{Y}} e^{\eta_{\lambda}(x_{i}, y)} \right\} + \frac{1}{n} \sum_{i} \left(\eta_{\lambda} \eta_{\lambda}^{[i]} \right) (x_{i}, y_{i})$

Inference

- ► Task: Test $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
 - KL Projection: Given η̂ ∈ H₀ ⊕ H₁, minimize KL(η̂, η) over η ∈ H₀ to obtain η̃, then inspect the "entropy" decomposition,

$$\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c),$$

where $\eta_c \in \mathcal{H}_0$ is a "baseline" fit; Gu (2004, CJS).

- ▶ If $\rho = KL(\hat{\eta}, \tilde{\eta})/KL(\hat{\eta}, \eta_c)$ is small, one loses little by cutting out \mathcal{H}_1 .
- One may take $\eta_c = \eta_1 + \cdots + \eta_{\Gamma}$.

Bayesian Confidence Interval

- ▶ A quadratic $J(\eta)$ acts like the (minus) log likelihood of a Gaussian process prior for η .
- Substituting $L(\eta) = -\frac{1}{n} \sum_{i=1}^{n} \left\{ \eta(x_i, y_i) \log \int_{\mathcal{Y}} e^{\eta(x_i, y)} \right\}$ by its quadratic approximation $Q_{\hat{\eta}}(\eta)$ at $\hat{\eta}$, $Q_{\hat{\eta}}(\eta) + \lambda J(\eta)$ appears as a Gaussian posterior log likelihood with $E\left[\eta(x, y)\right] = \hat{\eta}(x, y)$.
- ► Cls for $\eta(x,y)$ have little meaning, as $p(y|x) = e^{\eta(x,y)} / \int_{\mathcal{Y}} e^{\eta(x,y)}$.
- ▶ y-Contrasts: $\theta(x) = \sum_{y} c_y \log p(y|x) = \sum_{y} c_y \eta(x,y)$, for $\sum_{y} c_y = 0$.
 - ▶ The normalizing constant $\int_{\mathcal{V}} e^{\eta(x,y)}$ cancels out in y-contrasts.
- Based on $Q_{\hat{\eta}}(\eta) + \lambda J(\eta)$, one may calculate $E[\theta(x)] = \sum_{y} c_{y} \hat{\eta}(x, y)$ and $Var[\theta(x)]$ to construct Bayesian confidence intervals for $\theta(x)$.

Mixed Effect Models

- For univariate responses, one may use $\zeta_i = \eta(x_i) + \mathbf{z}_i^T \mathbf{b}$, $\mathbf{b} \sim N(\mathbf{0}, B)$, where $\eta(x)$ is fixed-effect and $\mathbf{z}^T \mathbf{b}$ comprises random effects.
- For inequality of the property of the propert

The Yeast Data

- Yeast Stress Experiment: Gasch et al (2000, Mol. Biol. Cell).
- Yeast samples were put under environmental stresses such as heat shock, hydrogen peroxide, and amino acid starvation.
- Gene expressions were measured before and after the application of the stress, and genes are classified as responsive or non-responsive to the stress.
- TFBM Matching Scores: Beer and Tavazoie (2004, Cell).
- A motif was compared against the upstream 800 base pairs of a gene, and a matching score was calculated.
- A higher score results from more frequent or better quality matches, indicating more likely binding.
- ▶ The data (x_i, y_i) are from n = 2587 genes.
- $y \in \{0,1\}^3$: Responsiveness to 3 environmental stresses.
- x ∈ R⁵¹: Matching scores to 51 TFBMs.

Data Screening: Yeast Data

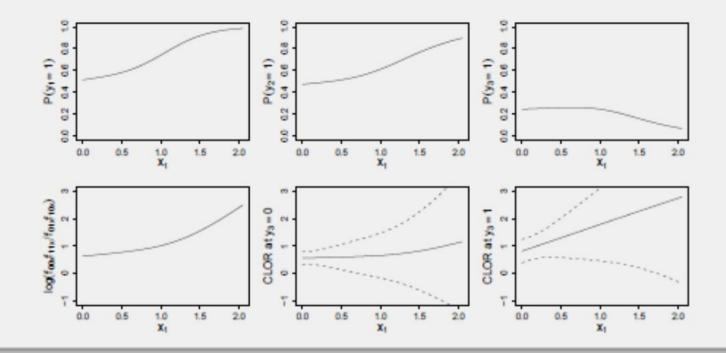
- ▶ Variable Screening: x's are skewed with many 0's, so \sqrt{x} is used.
- For each x-variable, fit $\hat{\eta} = \eta_y + \eta_{xy}$, and project $\hat{\eta}$ to $\tilde{\eta} = \eta_y$, obtaining $\rho = \mathsf{KL}(\hat{\eta}, \tilde{\eta})/\mathsf{KL}(\hat{\eta}, \eta_c)$; η_y , η_{xy} both have 7 terms.

- The top 5 on the list were used in further analysis.
- "Half" of data are at origin (1203/2587), and the "rest" on axes.
- Counts of non-zero x_(i)x_(j) are listed below.

	PAC	RRPE	GCN4	RAP1	CAD1
PAC	416	211	38	53	68
RRPE		534	59	70	98
GCN4			273	42	49
RAP1				323	53
CAD1					447

Data Analysis: Yeast Data

- Initial Model: 7 terms in η_y , $7 \times 7 = 49$ terms in η_{xy} , where on the x-axis one has $\eta_x = \eta_1 + \eta_2 + \eta_3 + \eta_4 + \eta_5 + \eta_{12} + \eta_{25}$.
- Final Model: 7 terms in η_y , $7 \times 6 = 42$ terms in η_{xy} , with η_{25} dropped out on the x-axis.
- ▶ The effects of PAC are shown below, with the other 4 TF fixed at 0.

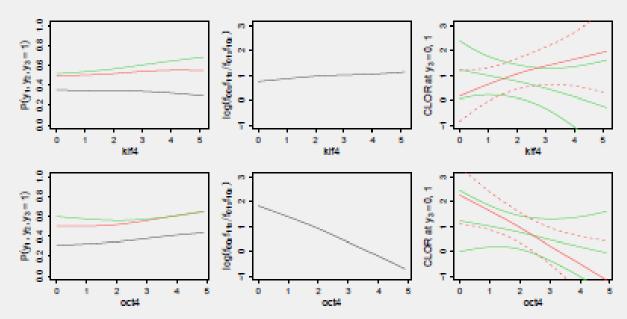


The Stem Cell Data

- Gene expression of mouse embryonic stem cells: Cai et al (2010).
- ► Expression levels measured on day 0, 4, 8, 14; {4,8,14} compared against 0.
- Genes are tagged as differentially expressed or not, at 3 time points.
- Transcription Factor Association Strength: Ouyang et al (2009).
- Association strengths between TFs and genes, based on ChIP-seq profiles.
- ▶ The data (x_i, y_i) are from n = 1027 genes.
- ▶ $y \in \{0,1\}^3$: Expression at 3 time points.
- ▶ $x \in R^4$: TFAS scores of 4 TFs, NANOG, SOX2, OCT4, and KLF4.
- NANOG, SOX2, OCT4 regulate pluripotency; KLF4 regulates differentiation.
- Genes are also clustered as up-regulation and down-regulation.

Data Analysis: Stem Cell Data

- Initial Model: 7 terms in η_y , $7 \times 15 = 105$ terms in $\eta_{x,y}$, where on the x-axis all interactions were included.
- ► Final Model: 7 terms in η_y , $7 \times 13 = 91$ terms in $\eta_{x,y}$, with terms involving NANOG–SOX2–OCT4 removed.
- "Slices" of the fit are shown below, with the other TFASs fixed at medians.



Left: $P(y_{(1)}, y_{(2)}, y_{(2)} = 1)$. Right: Log odds ratio of $y_{(1)}, y_{(2)}$ at $y_{(3)} = 0, 1$.

Software

R package gss

http://cran.r-project.org/web/packages/gss/

Joint work with Chong Gu