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Central Dogma of Molecular

Biology




Transcription Regulation

Transcription factors (regulatory proteins)
bind to genes, turning on or shutting off their
expressions.



Transcription Factor Binding

m Transcription Factor Binding Motit (TFBM):

Common patterns in DNA sequences at
transcription factor binding sites.
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Transcription Factor Binding




Transcription Factor Binding
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Gene Expression

m To quantify the abundance of each transcript

m Two approaches:
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Linking gene expression with
TF binding
m [inear Regression
Motit Regressor (Conlon et al 2003 PNAS)
Motit Express (Zamdborg and Ma 2009 NAR)
® Nonlinear Regression

RSIR (Zhong et al 2005, Bioinformatics)
Correlation Pursuit (Zhong et al 2012, JRSSB)



Converting Gene Expression to
Clusters

m Gene expression 1S NOISy
m Clustering gene expression to get robust clusters
m [inking gene clusters with TF binding data.

Bayesian Network (Beer and Tavazoie 2004
Cell)

Proportional Odds Model (Yuan et al 2007
PLoS Comput. Biol.)



Desirable Features

m Flexible function form to link gene expression

(clusters) with TF binding

B Integration of new expression data



Our Method

m Gene expression clusters and TT binding

Notation: y = (yi1y,---. %) €V = H::1 YV, Vo€V, xe X

Task: Estimate p(y|x); it is a special case of conditional density
estimation on generic & x V (Gu 1995, SS), for )V discrete.




Penalized Likelihood
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To estimate p(y|x) = e" [, €MX¥) for i = 1), + 1, minimize
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where J(n) is roughness functional and A is smoothing parameter.




Functional ANOVA

On U = & x ), for averaging operators Ayl =1, A, 1=1
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Penalized Likelihood

To estimate p(y|x) = e"*¥) / fy e"*¥) for 1 = 1, + 11,5, Minimize

—2 Y11 {n(xi, yi) — log fy, €50} + 3 J(n),
where J(77) is roughness functional and A is smoothing parameter.

ANOVA structures y = ) _ ;75 are built in via tensor product splines,

with J(n) = 3" 47:71J5(n3) involving extra smoothing parameters 65.
are selected by cross-validation.

Cross-Validation
» KL(m.my) = [ { [y (n—ny)e(yIx) —log [5, €7 + log [}, €™ } p(x)

» Estimate [, ., ma(x,y)p(x,y) by 7 =5 .rli-[’l]{x,-.y,-].




Inference

Task: Test Hy: 1€ Hy versus H; 1€ Ho @ Hy.

KL Projection: Given 7j € Ho & Hi, minimize KL(1, 1) over i £ Hq
to obtain #}, then inspect the “"entropy” decomposition,

KL(f, ) = KL(3, ) + KL(F, 7c)
where ¢ € Ho is a "baseline” fit; Gu (2004, CJS).
If p = KL(#),17)/KL(7),7c) is small, one loses little by cutting out H;.
One may take e =m + -+ + 7y




Bayesian Confidence Interval

A quadratic J(n) acts like the (minus) log likelihood of a Gaussian
process prior for 1.

Substituting L(n) = =2 "7, {n(xi.yi) — log Iy e"*¥) 1 by its
quadratic approximation Q5(n) at 7}, Qz(n) + AJ(n) appears as a
Gaussian posterior log likelihood with E [n(x,y)] = fi(x, y).
Cls for n(x, y) have little meaning, as p(y|x) = e"?':""f"’]ff f:]_;. en(X:y),
y-Contrasts: 6(x) =), ¢y logp(y|x) =3 _,gn(x,y), for 3} ¢ =0.
The normalizing constant ]'Jr e"*¥) cancels out in y-contrasts.
Based on Q;(17) + AJ(n), one may calculate E[8(x)] =3, ¢i(x, y)
and Var[f(x)| to construct Bayesian confidence intervals for (x).




Mixed Effect Models

For univariate responses, one may use (; = 1(x;) + erI:-. b ~ N(0, B),
where 7(x) is fixed-effect and z" b comprises random effects.

Given J|1. n = 0, specify b, satisfying ]'1 b, = 0, then minimize

-

—a i1 An(xi,yi) + 2/ by, — log [y, e+ 0y} L bTT b + AJ(n),

n £ai=1 1

where b comprises components of by, with b ~ N(0,cX ™).




The Yeast Data

Yeast Stress Experiment: Gasch et al (2000, Mol. Biol. Cell).

Yeast samples were put under environmental stresses such as heat shock,
hydrogen peroxide, and amino acid starvation.

Gene expressions were measured before and after the application of the
stress, and genes are classified as responsive or non-responsive to the stress.

TFBM Matching Scores: Beer and Tavazoie (2004, Cell).

A motif was compared against the upstream 800 base pairs of a gene, and a
matching score was calculated.

A higher score results from more frequent or better quality matches,
indicating more likely binding.

The data (x;, y;) are from n = 2587 genes.

y € {0,1}*: Responsiveness to 3 environmental stresses.

x € R®': Matching scores to 51 TFBMs.




Data Screening: Yeast Data

Variable Screening: x's are skewed with many 0's, so /x is used.

» For each x-variable, fit 7j = 1, + 1, and project 7j to 7} = 7, obtaining

p = KL(#, 1) /KL(#}, e )

TF| PAC RRPE GCN4 RAP1 CAD1 YAP1
,1;|{J_EDD 0.446 0.203 0.284 0255 0221

» [he top 5 on the list were used in further analysis.

"Half" of data are at origin (1203/2587), and the “rest” on axes.

» Counts of non-zero x,,x;, are listed below.

PAC RRPE GCN4 RAP1 CAD1

PAC | 416 211 38 53 68
RRPE 534 59 70 08
GCN4 273 42 49
RAP1 323 53
CAD1 447




Data Analysis: Yeast Data

Initial Model: 7 terms in 7y, 7 x 7 = 49 terms in 15, where on the
x-axis one has 1y =1 + 10 + 13 + 12 + 15 + 712 + 725,

Final Model: 7 terms in 7y, 7 x 6 = 42 terms in 1y,, with 75
dropped out on the x-axis.

The effects of PAC are shown below, with the other 4 TF fixed at 0.
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The Stem Cell Data

Gene expression of mouse embryonic stem cells: Cai et al (2010).

Expression levels measured on day 0, 4, 8, 14; {4,8, 14} compared against 0.

Genes are tagged as differentially expressed or not, at 3 time points.

Transcription Factor Association Strength: Ouyang et al (2009).

Association strengths between TFs and genes, based on ChlP-seq profiles. |

The data (x;, y;) are from n = 1027 genes.

y € {0,1}°: Expression at 3 time points.
x € R*: TFAS scores of 4 TFs, NANOG, SOX2, OCT4, and KLF4.
NANOG, SOX2, OCT4 regulate pluripotency; KLF4 regulates differentiation.

Genes are also clustered as up-regulation and down-regulation.




Data Analysis: Stem Cell Data

Initial Model: 7 terms in 7, 7 x 15 = 105 terms in 7, where on the
x-axis all interactions were included.

Final Model: 7 terms in 7y, 7 x 13 = 91 terms in 7, with terms
involving NANOG-50X2-0CT4 removed.

“Slices” of the fit are shown below, with the other TFASs fixed at medians.
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Software

m R package gss
http:/ /cran.r-project.org/web/packages/gss/



http://cran.r-project.org/web/packages/lmbc/
http://cran.r-project.org/web/packages/lmbc/
http://cran.r-project.org/web/packages/lmbc/
http://cran.r-project.org/web/packages/lmbc/

Joint work with Chong Gu



