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I. Motivation

Classical Ising model (spins ±1) in two dimensions

H(σ) = −
∑

|x−y|=1

J{x,y}σxσy

σ ∈ {−1, +1}Λ; Λ ⊂ Z2 (finite)

J{x,y} ≡ J > 0 ferromagnetic interaction; x, y ∈ Z2

µΛ(σ) =
1

ZΛ

exp {−βHΛ(σ)} (probability measure)

Phase transition at sufficiently low temperature

βc =
1

2J
log(1 +

√
2)

multiple limits of µΛ as Λ → Z2 if β > βc.

Peierls (1936); Onsager (1944); Yang (1952)
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I. Motivation

McCoy and Wu (1968) investigated the effect of random impurities

Disordered ferromagnets – randomly layered environment
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quad7



I. Motivation/Plan

Phase transitions for systems in a (randomly) layered environment

• Growth processes in random environment

• Some forms of coordinate percolation. Winkler’s compatibility problem.

Common basic tool: multi-scale analysis

One “learns” with simpler hierarchical structures

quad8



I. Motivation/Plan

Phase transitions for systems in a (randomly) layered environment

• Growth processes in random environment

• Some forms of coordinate percolation. Winkler’s compatibility problem.

Common basic tool: multi-scale analysis

One “learns” with simpler hierarchical structures

Based on joint results with H. Kesten, B. Lima, V. Sidoravicius
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II. Oriented percolation in a randomly layered environment

On Z̃2
+ := {(x, y) ∈ Z× Z+ : x + y is even}

consider the following oriented (NW, NE) site percolation model:
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II. Oriented percolation in a randomly layered environment

On Z̃2
+ := {(x, y) ∈ Z× Z+ : x + y is even}

consider the following oriented (NW, NE) site percolation model

• lines Hi := {(x, y) ∈ Z̃2
+ : y = i} are declared bad or good with probabilities δ and

1− δ respectively, independently of each other.

• Sites on good lines are open with probability pG and sites on bad lines are open with

probability pB, all independently of each other.

Regime of interest: 0 < pB < pc < pG, 0 < δ < 1.

What can we say about occurrence of percolation? (a.s. in the environment...)

Natural Guess:

δ large ⇒ no percolation (easy)

δ small ⇒ percolation
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II. Oriented percolation in a randomly layered environment
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II. Oriented percolation in a randomly layered environment

quad17



II. Oriented percolation in a randomly layered environment

C+(0) = {v : ∃ open oriented path from 0 to v}

Let Θ(pG, pB, δ) = P(C+(0) is infinite ).

Theorem (Kesten, Sidoravicius, V.)

∀pG > pc, ∀pB > 0, ∃δ0 > 0 so that Θ(pG, pB, δ) > 0 if δ ≤ δ0. In fact

P(C+
(0) is infinite |ξ) > 0 a.s. in ξ (ξ configuration of lines)

.

quad18



Basic tool: multi-scale analysis

Get started with a very simple situation:

hierarchical model, L large (depending on pG, pB),

ζj :=

{
k, if Lk|j but Lk+1 - j ,

0, if L - j.

Replace each entry ζj = k by k consecutive bad lines (shift the rest to the right)

• bad walls of thickness k: k consecutive bad lines;

• such bad walls at distance of order Lk from each other.

quad19
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This immediately calls to the consideration of rescaled lattices, all similar to the original
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This immediately calls to the consideration of rescaled lattices, all similar to the original

one, and adapted to deal with bad lines of thickness k.

cL

L

(c suitable, depending on pG)

pG > p∗ so that P(event in the picture|seed) ≥ 1− (1− pG)2
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Basic tool: multi-scale analysis

This immediately calls to the consideration of rescaled lattices, all similar to the original

one, and adapted to deal with bad lines of thickness k.

Renormalized k-sites Sk
(i,j), (i, j) ∈ Z̃2

+.
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Recursively define the notion of a good k-site Sk being passable from a (k − 1)-seed.
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Recursively define the notion of a good k-site Sk being passable from a (k − 1)-seed.

It should:

(a) guarantee the existence of open oriented paths that cross it from bottom to top

(b) produce new (k − 1)-seeds on the top,

so that

the existence of oriented k-passable paths implies the existence of open oriented paths at

scale 0, and can essentially be compared with independent site percolation.
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Recursively define the notion of a good k-site Sk being passable from a (k − 1)-seed.

It should:

(a) guarantee the existence of open oriented paths that cross it from bottom to top

(b) produce new (k − 1)-seeds on the top,

so that

the existence of oriented k-passable paths implies the existence of open oriented paths at

scale 0, and can essentially be compared with independent site percolation. Want estimate

pk ≤ P
(

S
k

is s-passable|(k − 1)− seed
)

, k ≥ 1, (∗)

Proposition. Given pB > 0 and pG > p∗, there exists L large enough such that (*)

holds with pk = 1− qk and

qk ≤ q
2
k−1 for all k ≥ 1,

and where q0 = 1− pG.
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The above estimate clearly implies that for L large enough

P (there exists an infinite cluster starting from the origin) ≥
+∞∏

k=0

p
3
k > 0.

• The main difficulty in pushing the estimate at each step is when one faces the bad

wall of larger mass.

• Planarity plays important role in these arguments.

• Enlarging the seeds and taking some extra care replace p∗ by pc.
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bad layer of mass k

seed
S

k

(i, j)

D
r

K

Dr

D
r

SS
(i+1, j-1)

k

(i-1, j-1)

k

k-1
S

K
er

n
el

 o
f 

S
k

quad28



bad  line of mass k-1

reverse partition

reverse partition

forward partition

S
(i, j)

k-1

S
(i, j+1)

k-1

S
k-1

(i, j+1)

bad line of mass k-2

bad line of mass k-2
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Dealing with random layers

• Step 1: Devise a suitable grouping procedure

• Step 2: Perform the recursive (much more involved!) estimates

quad30



Step 1: Grouping procedure

ξ ∈ {0, 1}N sampled from the Bernoulli distribution Pδ with low density δ.

Γ = {i : ξi = 1} - correspond to the “bad lines” (of level 0):

L ≥ 3 integer.
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Step 1: Grouping procedure

ξ ∈ {0, 1}N sampled from the Bernoulli distribution Pδ with low density δ.

Γ = {i : ξi = 1} - correspond to the “bad lines” (of level 0):

L ≥ 3 integer. Start with L-runs ...

Assuming 64δL2 < 1 the procedure converges:

Each x ∈ Γ will be “re-incorporated” finitely many times a.s.; the final partition is

well defined.
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Step 1: Grouping procedure

On a set Ξ(δ) of full measure we can decompose Γ into sets Ci, called clusters, to which

an N-valued mass m(Ci) is attributed (m(Ci) ≤ |Ci|) in a way that

d(Ci, Cj) ≥ L
min{m(Ci),m(Cj)}

, for all i, j

The Ci := C∞,i are obtained by the (limiting) recursive procedure outlined above. Each

constructed cluster has a level (the step when it was born!) and a mass.

m m1 2 3

d d1

M

M =

m

m1 m2 m3+ + _ _ logLd1 logL d2

C
1

C
2

C
3

quad35



Step 2: Multi-scale analysis for fixed realization of good/bad lines

Assume 3 ≤ L, 64δL2 < 1.

χ(ξ) := inf{k ≥ 0: d(C, 0) ≥ M
m(C)

for all C ∈ C∞ with m(C) > k}

with χ(ξ) = ∞ if the above set is empty or ξ /∈ Ξ(δ)

Then:

Pδ{ξ : χ(ξ) < ∞} = 1 and Pδ{ξ : χ(ξ) = 0} > 0.

We prove

P
(

C
+
(0) is infinite)|χ(ξ) < ∞

)
> 0.

Conceptually, the structure is similar to that in the simple hierarchical situation, but:

• rescaled lattices depend also on ξ;

• main estimate (drilling through the higher mass) within a good k-site Sk is much more

involved; our estimates require L somehow larger (L ≥ 192 suffices);

• pk ↗ 1 exponentially in k.
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III. Some related results

Bramson, Durrett, Schonmann (1991)
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IV. Coordinate percolation. Winkler’s compatibility

(η, ξ) a pair of sequences in Ξ = {0, 1}N

Allowed to: remove ones from η; remove zeros from ξ

Can one map both sequences to the same semi-infinite sequence?

If YES, say that (η, ξ) is compatible.
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(η, ξ) a pair of sequences in Ξ = {0, 1}N

Allowed to: remove ones from η; remove zeros from ξ

Can one map both sequences to the same semi-infinite sequence?

If YES, say that (η, ξ) is compatible.

Winkler’s compatibility question:

Does it exist (p′, p) ∈ (0, 1)2 such that

Pp′ ⊗ Pp{(η, ξ) ∈ Ξ× Ξ: (η, ξ) are compatible} > 0 ?

P. Gács (2004). Recent preprints: Basu, Sly (2012), Sidoravicius (2012).

Let p ∈ (0, 1). Say that η ∈ Ξ is p-compatible if

Pp{ξ ∈ Ξ: (η, ξ) is compatible} > 0.
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IV. Coordinate percolation. Winkler’s compatibility

Theorem (Kesten, Lima, Sidoravicius, V.)

For every ε > 0 there exist 0 < pε < 1 and a binary sequence η ≡ ηε ∈ Ξ, such

that Zηε is a discrete fractal with Hausdorff dimension dH(Zη) ≥ 1− ε, and such that

Pp{ξ ∈ Ξ: (η, ξ) is compatible} > 0

for any p < pε.

Notation: Zη = {i ≥ 1: ηi = 0}

For the proof

• exploit a representation as coordinate oriented percolation;

• essential ingredient: the grouping procedure mentioned before.

Move from ξ to ψ ∈ ZN+: ψi ≥ 1 representing the length of the corresponding run of 1s.

Ψ =
{

ψ ∈ ZN+ : ψi ≥ 1 implies ψi+1 = 0
}

.

quad42



IV. Coordinate percolation. Winkler’s compatibility

Coordinate percolation process.

Oriented graph G = (V,E), where

V = Z2
+ E = { vertical n.n., northeast diagonals } oriented upwards

Given ζ, ψ ∈ Ψ, define the site configuration ωζ,ψ on G: for v = (v1, v2) with

v1, v2 ≥ 1

ωζ,ψ(v) =

{
1 if ζv1

≥ ψv2
,

0 otherwise.

v ∈ V open iff ωζ,ψ(v) = 1

(ωζ,ψ(0, 0) = 1, ωζ,ψ(v) = 0 if v1 ∧ v2 = 0)

quad43



Simulations of coordinate percolation (by Lionel Levine)
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IV. Coordinate percolation. Winkler’s compatibility
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Figure 1: oriented cluster of the origin

For the compatibility question, we need more than an open oriented path.

A vertex v = (v1, v2) with v1, v2 ≥ 1 is heavy if ψv2
≥ 1.

quad50



IV. Coordinate percolation. Winkler’s compatibility

Permitted path: does not cross two heavy vertices with the same first coordinate.
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Figure 2: open permitted path from the origin
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IV. Coordinate percolation. Winkler’s compatibility

Lemma

Let ζ, ψ ∈ Ψ. If there exists an infinite open permitted path π starting from the origin

for the percolation configuration ωζ,ψ, then the pair (ζ, ψ) is compatible.
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IV. Coordinate percolation. Winkler’s compatibility

M -spaced sequences

M ≥ 2 integer. A sequence ψ ∈ Ψ is M -spaced if:

a) ij(ψ) ≥ M j for all j ≥ 1, where

ij(ψ) = inf{n ∈ N : ψn ≥ j} (+∞ if { } = ∅)

b) j − i ≥ Mmin{ψi,ψj}, for all 1 ≤ i < j.

ΨM := {ξ ∈ Ψ: ξ is M -spaced}
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IV. Coordinate percolation. Winkler’s compatibility

M -spaced sequences

M ≥ 2 integer. A sequence ψ ∈ Ψ is M -spaced if:

a) ij(ψ) ≥ M j for all j ≥ 1, where

ij(ψ) = inf{n ∈ N : ψn ≥ j} (+∞ if { } = ∅)

b) j − i ≥ Mmin{ψi,ψj}, for all 1 ≤ i < j.

ΨM := {ξ ∈ Ψ: ξ is M -spaced}

Theorem

Let L ≥ 2 and M ≥ 3(L + 1) be integers, ζ(L) the hierarchical sequence as before,

and ψ ∈ ΨM . Then the configuration ωζ(L),ψ has an infinite open permitted path π

starting from the origin.

Corollary

If ψ ∈ ΨM with M = 3(L + 1) the pair (ζ(L), ψ) is compatible.
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IV. Coordinate percolation. Winkler’s compatibility

Using this and the grouping lemma discussed before, one gets:

Theorem

Let L ≥ 2 and M = 3(L + 1). If p < 1
64M2 , ζ̃(L) ∈ Ψ is given by

(ζ̃(L))j =

{
3Mk−1, if Lk|j and Lk+1 - j,
0 , if L - j,

and η(L) is the corresponding binary sequence, then

Pp{ξ ∈ Ξ: (η(L), ξ) is compatible} > 0.

Remark. The statement about the zero set of η(L) is simple to verify, by classical results

(Barlow and Taylor).
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V. Related problems

Winkler’s Clairvoyant Demon problem
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Winkler’s Clairvoyant Demon problem
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V. Related problems

Winkler’s Clairvoyant Demon problem
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Winkler’s Clairvoyant Demon problem
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Formulation as oriented percolation problem - Noga Alon
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V. Related problems

Winkler’s Clairvoyant Demon problem

Negative answer if n = 2 or n = 3;

n ≥ 4 - open question

Positive answer in the unoriented case for n ≥ 4: P Winkler (2000); Balister, Bollobas,

Stacey (2000)

For the oriented model: Gács (2000): The Clairvoyant Demon has a hard task ...
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V. Related problems

- Stretched lattices: Jonasson, Mossel, Peres ; Hoffman

- Unoriented percolation; Potts model: Kesten, Lima, Sidoravicius, V.

- Percolation of words: Grimmett, Liggett, Richthammer (2008), Lima (2008, 2009)

- Rough isometries: Peled (2010), recent work: Basu, Sly, Sidoravicius.
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