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|. Motivation

Classical Ising model (spins 4=1) in two dimensions

H(o) = — Z J (21020

|lz—y|=1

o€ {—1,+1}* A C Z* (finite)

Jizyy = J > 0 ferromagnetic interaction; =,y € 77

1
pa(o) = 7 exPp {—BHx(o)} (probability measure)
A

Phase transition at sufficiently low temperature
6 L (1++2)
c — —<10
2] °

multiple limits of ua as A — Z* if 8 > ..

Peierls (1936); Onsager (1944); Yang (1952)
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McCoy and Wu (1968)
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Disordered ferromagnets — randomly layered environment
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I. Motivation/Plan

Phase transitions for systems in a (randomly) layered environment
e Growth processes in random environment

e Some forms of coordinate percolation. Winkler's compatibility problem.

Common basic tool: multi-scale analysis

One “learns” with simpler hierarchical structures

Based on joint results with H. Kesten, B. Lima, V. Sidoravicius
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On ii = {(x,y) EZ X Zs: x+ yiseven}

consider the following oriented (NW, NE) site percolation model

e lines H; := {(z,y) € Zi y = i} are declared bad or good with probabilities § and
1 — & respectively, independently of each other.

e Sites on good lines are open with probability ps and sites on bad lines are open with
probability pz, all independently of each other.

Regime of interest: 0 < pp < p. < pg, 0 < & < 1.
What can we say about occurrence of percolation? (a.s. in the environment...)

Natural Guess:

0 large = no percolation (easy)

d small = percolation
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Il. Oriented percolation in a randomly layered environment
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CT(0) = {v: 3 open oriented path from 0 to v}
Let ©(pg, pB,d) = P(CT(0) is infinite ).
Theorem (Kesten, Sidoravicius, V.)
Vpe > pe, Ypp > 0, 369 > 0 so that O(pg, pr,d) > 0if § < Jp. In fact

P(C™(0) is infinite |€) > 0 a.s. in & (€ configuration of lines)



Basic tool: multi-scale analysis

Get started with a very simple situation:

hierarchical model, L large (depending on pg, pB),
¢ e k, if L*|j but L*T14 4,
77 lo, if Ltj.
Replace each entry (; = k by k consecutive bad lines (shift the rest to the right)

e bad walls of thickness k: k consecutive bad lines;

e such bad walls at distance of order L* from each other.



Basic tool: multi-scale analysis

This immediately calls to the consideration of rescaled lattices, all similar to the original
one, and adapted to deal with bad lines of thickness k.
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Basic tool: multi-scale analysis

This immediately calls to the consideration of rescaled lattices, all similar to the original
one, and adapted to deal with bad lines of thickness k.
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pa > p* so that P(event in the picture|seed) > 1 — (1 — pg)?



Basic tool: multi-scale analysis

This immediately calls to the consideration of rescaled lattices, all similar to the original
one, and adapted to deal with bad lines of thickness k.
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Renormalized k-sites Sf; ;, (4,7) € Z7.
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Recursively define the notion of a good k-site S* being passable from a (k — 1)-seed.
It should:

(a) guarantee the existence of open oriented paths that cross it from bottom to top
(b) produce new (k — 1)-seeds on the top,

so that

the existence of oriented k-passable paths implies the existence of open oriented paths at
scale 0, and can essentially be compared with independent site percolation. Want estimate

pr < P (Sk is s-passable|(k — 1) — seed) : kE>1, (*)

Proposition. Given pg > 0 and pg > p°, there exists L large enough such that (*)
holds with pr = 1 — g and

qx < qp_,  forallk >1,

and where go = 1 — pq.



The above estimate clearly implies that for L large enough

+00
P (there exists an infinite cluster starting from the origin) > H pz > 0.
k=0

e The main difficulty in pushing the estimate at each step is when one faces the bad
wall of larger mass.

e Planarity plays important role in these arguments.

e Enlarging the seeds and taking some extra care replace p* by p..
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Dealing with random layers

e Step 1: Devise a suitable grouping procedure

e Step 2: Perform the recursive (much more involved!) estimates
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Step 1: Grouping procedure

¢ €40, 1}N sampled from the Bernoulli distribution Ps with low density 9.
I' = {i: & = 1} - correspond to the "“bad lines” (of level 0):

L > 3 integer. Start with L-runs ...

Assuming 646 L* < 1 the procedure converges:

Each x € I' will be “re-incorporated” finitely many times a.s.; the final partition is
well defined.



Step 1: Grouping procedure

On a set Z(9) of full measure we can decompose I' into sets C;, called clusters, to which
an N-valued mass m(C;) is attributed (m(C;) < |C;|) in a way that

d(C;, C;) > L™t ™G = for all 4,

The C; := Co; are obtained by the (limiting) recursive procedure outlined above. Each
constructed cluster has a level (the step when it was born!) and a mass.

m m

1 3

M

M=m + m,+ m3_Uong1J _Uongzj




Step 2: Multi-scale analysis for fixed realization of good/bad lines

Assume 3 < L, 646L°% < 1.
x(&) := inf{k > 0: d(C,0) > M™% for all C € Co with m(C) > k}
with x(§) = oo if the above set is empty or £ € =(6)

Then:
Ps{€: x(€) < oo} = 1 and Py{¢: x(&) = 0} > 0.

We prove

P <C+(O) is infinite)|x (&) < oo) > 0.

Conceptually, the structure is similar to that in the simple hierarchical situation, but:

e rescaled lattices depend also on &;

e main estimate (drilling through the higher mass) within a good k-site S* is much more
involved; our estimates require L. somehow larger (L > 192 suffices);

e pi 1 exponentially in k.
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IV. Coordinate percolation. Winkler's compatibility

Theorem (Kesten, Lima, Sidoravicius, V.)

For every € > 0 there exist 0 < p. < 1 and a binary sequence n = n. € =, such
that Z,, is a discrete fractal with Hausdorff dimension dy(Z,) > 1 — €, and such that

P,{¢& € E: (n, &) is compatible} > 0

for any p < pe..

Notation: Z, = {7 > 1: n; = 0}

For the proof

e exploit a representation as coordinate oriented percolation;

e essential ingredient: the grouping procedure mentioned before.

Move from & to ¢ € lez ; > 1 representing the length of the corresponding run of 1s.

U= {4y €Z: ¢ > 1implies i1 = 0}.



IV. Coordinate percolation. Winkler's compatibility

Coordinate percolation process.
Oriented graph G = (V, E), where

V= Zi E = { vertical n.n., northeast diagonals } oriented upwards

Given (, v € W, define the site configuration w¢ on G: for v = (v1,v2) with
V1, U2 Z 1

1 if Cvl > %%2,
0 otherwise.

wep(v) = {

v € Vopen iff we y(v) =1

(weap(0,0) =1, weyp(v) =0if vy A vy =0)
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IV. Coordinate percolation. Winkler's compatibility

Figure 1: oriented cluster of the origin

For the compatibility question, we need more than an open oriented path.

A vertex v = (v1, v2) with vy, v > 1 is heavy if 9, > 1.



IV. Coordinate percolation. Winkler's compatibility

Permitted path: does not cross two heavy vertices with the same first coordinate.

,,,,,,,,,,,,,, N v
! ¥y
”””””””” e /?/}; y éﬁ
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I

Figure 2: open permitted path from the origin



IV. Coordinate percolation. Winkler's compatibility

Lemma

Let (, ¢ € W. If there exists an infinite open permitted path 7 starting from the origin
for the percolation configuration we 4, then the pair ({, 1)) is compatible.
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M > 2 integer. A sequence ¢ € W is M-spaced if:
a) i;(¢p) > M forall j > 1, where
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IV. Coordinate percolation. Winkler's compatibility

M -spaced sequences
M > 2 integer. A sequence ¢ € W is M-spaced if:
a) i;(¢p) > M forall j > 1, where
ij(¢) = inf{n € N: ¢, > j} (+ooif { } =0)
b) j — i > M™™Vi¥i} forall1 < i < j.

Wy = {& € U: £ is M-spaced}

Theorem

Let L > 2 and M > 3(L + 1) be integers, (L) the hierarchical sequence as before,
and ¢ € Wy Then the configuration w¢(r),y has an infinite open permitted path 7w
starting from the origin.

Corollary

If ¢p € Wy with M = 3(L + 1) the pair (((L), 1) is compatible.



IV. Coordinate percolation. Winkler's compatibility

Using this and the grouping lemma discussed before, one gets:
Theorem

let L >2and M =3(L+1). If p < 5, ((L) € ¥ is given by

- 3SM*1 if L¥|j and LFt' 45,
(C(L)); = . .
0, if L {7,
and (L) is the corresponding binary sequence, then

P{& € =: (n(L), &) is compatible} > 0.

Remark. The statement about the zero set of n(L) is simple to verify, by classical results
(Barlow and Taylor).



V. Related problems

Winkler’s Clairvoyant Demon problem
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Winkler’s Clairvoyant Demon problem
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V. Related problems

Winkler’s Clairvoyant Demon problem
Negative answer if n = 2 or n = 3;
n > 4 - open question

Positive answer in the unoriented case for n > 4: P Winkler (2000); Balister, Bollobas,
Stacey (2000)

For the oriented model: Gacs (2000): The Clairvoyant Demon has a hard task ...



V. Related problems

- Stretched lattices: Jonasson, Mossel, Peres : Hoffman
- Unoriented percolation; Potts model: Kesten, Lima, Sidoravicius, V.

- Percolation of words: Grimmett, Liggett, Richthammer (2008), Lima (2008, 2009)

- Rough isometries: Peled (2010), recent work: Basu, Sly, Sidoravicius.
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