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Subtext:

What we think we know (or think we have learned)

may not be so.

Plagiarized from?



Maybe from John Ruskin?:
What John Ruskin actually said was:

“What we think, or what we know, or
what we believe is, in the end, of little
consequence. The only consequence is
® what we do.”

BUT Forbes magazine did write
W | (4/12/2012)

,,\ “What we know, and what we think we
SN know”
(about the new IPhone)




Probably from Wlll Rogers:

“It isn't what we
don't know that
gives us trouble,

it's what we
know that ain't
so.”




Classical Perspective
On Statistical Model Building and Inference

1. Conceptualize Problem

2. Build MODEL for inferential analysis
3. Gather and process Data

4. Produce Inference

Standard inference (estimates, tests and Cls) is based
on this schematic plan.



Contemporary Pragmatism

1. Conceptualize Problem

2. Gather and process Data

3. Build MODEL for inferential analysis
4. Produce Inference

Note reversal of steps #2 and #3.

e There is no currently accepted theory that applies
when the steps are carried out this way.
e But the risks of doing so have long been discussed

in the statistical literature.
References later...



Layout of Talk

Introduction: The dangers of variable selection
Berk, et al. (2010), Berk et al. (2012b)

Insurance Plan #1: “POSI”
Berk, et al (2012a), in revision

Insurance Plan #2: Split sample bootstrap
Berk, et al (2012c), in preparation



Part 1: Examples

Is Race a factor in criminal sentencing,
after controlling for concomitant factors?

Data: Random sample of 500 criminal sentences (in years)
with Race of individual, Sex, Marital status, etc + severity
of crime (on a standard numeric scale, 3 = most severe, 60
= least severe) + #of prior criminal charges + prior record
of drug crime, or psychological problems, or alcohol use

Outcome variable: Y = Loge(sentence + 0.5)



Regression of Y on Race

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t|
Race 0.142 0.0940 1.51 0.1321
[B vs W = 1]

By itself, race does not have a significant (linear) effect.

But this is not really the question of interest!



Better procedure - a regression of Y on all variables:

Term
Intercept

Race
intage

sex (1=Male)
Married?
Employed?
priors
seriousness
HS educ
psych
drugs

alco

4.229

0.118

-0.031
-0.124
-0.072
-0.591

0.0138
-0.0165
0.0841

-0.574
0.535
-0.409

0.1832
Std Error

0.3489

0.0917

0.0057

0.145
0.1212
0.1557
0.0032
0.0042
0.1355
0.4128
0.1642
0.1673

Regression of Y on All Variables
RSquare

Estimate

t Ratio
12.12

1.28

-5.37
-0.85
-0.59
-3.80

4.28
-3.89

0.62
-1.39

3.26
-2.44

Prob>|t|
<.0001*

0.1999

<.0001*
0.3933
0.5521
0.0002*
<.0001*
0.0001*
0.5350
0.1648
0.0012*
0.0149*

Conclusion: After controlling on all other var’s in the

study, Race is (still) not stat sig.
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Best Procedure (?7) =:

Regression of Y on Race plus
other covariates that strongly influence the race effect

Term Estimate Std Error
Intercept 3.99 0.2499
Race 0.219 0.0920
intage -0.0307 0.00569
seriousness -0.0135 0.00441
drugs 0.371 0.1334

t Ratio
15.97
2.38

-5.40
-3.05
2.78

Prob>|t|
<.0001*

0.0179*
<.0001*
0.0024*
0.0056*

Classical Conclusion: Race is a significant factor in

sentencing, after controlling for relevant covariates in the

study.
(P-Value = 0.018)
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Other Objectives
Such a' Y on X model might be analyzed for different

reasons.
For example --
Objective: Find the X-factors that collectively significantly
influence Y and/or Best model for predicting Y
e Model Selection Procedure: All subsets BIC

Result: 4 variables in model (intage, Employed?, seriousness and priors).
All P-values <0.001.

e Model Selection Procedure: All subsets AIC.
Result: 7 factor model (4 factors of BIC model & 3 others.
Not “Race” in either model.

But “psych” has P-value <0.001 in 7 factor model.)
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Question: Are the conventional P-values in these models
“legitimate”?

Answer: NO!!
We need variable selection insurance.

How badly mis-aligned can conventional analysis be
when applied after variable selection?
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A simulation example

e Model: Balanced two-way random effects model. p = 10
blocks. Error df = d = eo,

e Model selection over Treatments X Blocks interactions.
e “Best” model should control for all Blocks that interact with

treatment/control contrast
e Special assumptions:

Error variance known (= 1) [since d=o]&
First block (a dummy) has no interaction term.

e Model selection, M :
Include treatment effect & all interaction terms that are
significant in the full analysis at level ¢ =0.05.
“Conventional” Analysis

The conventional t-statistic for model M is
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N

f= ﬁt-M_'Bt-M .
StdError ( B, M)
IF M had been chosen without reference to the data, then t
would have the t-distribution with d deg of freedom.

By simplifying assumption, d = co. So histogram of t would
then be

And, |t [<1.96 (approx.) means true 8 . €95% conf. interval.
Actually --
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The data IS used to help select the model. The histogram

By =B
StdError ( ﬂAt. P )

/
/
vr"'rﬁ'ﬁgd;li’/ —h_’_"

Prob (95% CI covers true value) = 0.725

For situations with larger p the disparity can be greater. For other
sampling designs and objectives it can be less or somewhat more.
[For p = 30 coverage can be low as 39%.]

of t=

(via a large simulation) is
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Part 2

e Described in the following is our “PoSI” algorithm,
and the associated computational method for
computing the PoSI constant.

e Formulation conditional on Design matrix
X = {xij i=1,..,n, j= 1,..,p}

i.e., Results are for “Fixed X ” formulation;
and also hold, via conditioning, even when X is random
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¢ Pre model-selection observations are assumed as
Y~ N,(XB,01), X is nx p and full rank

Convention: If “intercept” not of model selection interest, assume the columns of X
have been centered.

[Non-normal models are also of interest, but not treated in this part.]
e Also assume, n>p.

A2
e Then o~ = MSE fullmodel

is a valid estimate of 62, free of any model selection
effects.

e A (sub)Model, M, is a subset of {1 } and leads to
X, =| X, :jeM}

X denotes the j-th column of X. X isan nX (# M ) matrix.
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Prologue:

Parameters for a given (sub) model, M
e Denote the corresponding, usual LS estimate by

0 ’ -1 ’
B =X\ X,,) XY
Coordinatesof 5, are 3., , ke M.

e Then

A A ,
Pt = Ueos¥
2
Note 7, = xk.M/‘ ‘xk.MH , Where x_ is the residual vector of x, from

ColSp(XM_{k}).
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Tests and Cls

e Conventional testof 4 : B, , =0 isbased on
_ ¥
ke M ‘ ‘gk.M 6

with Student’s-t null distribution & n = p df.

{

e Conventional CI is

A N A
N el
CIk-M lBk-M - tn—p;l—a/z 6/ Xeorr | -
Note: n — p df, not n — #M. If 6 is known, replace 6 by o andtby Z.
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Meaning of Correlation Coefficients within M

Description #1
e For given M define 8, by

Brows = E(Bross )= 111 XB.

The interpretation of each coefficient
in M
depends on which other coefficients

are in M.

|Exception: If the col’s of X are orthogonal then Sub-model
parameters = Full-model parameters --- 5, , =, Vke M|
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Alternate Descriptions:
e Description #2: S provides the linear “slopes”

within the model with predictors X --ie,
—\2
p.,, =argmin_ E(Y— XMb)
So (within the linear model) -- ,Bk.M Is the expected change

in E(Y) for a unit change in x_ when the other factors in M
are held fixed.

e Description #3: When the chosen model is
proposed for future use, the 5, are the
coefficients for prediction of Y.

i.e, The B, are the coefficients for prediction when the
chosen model is being used.
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Model Selection

The data is examined; a “model” M = M(Y) is chosen.

|[Model selection here is (only) about choice of predictor
variables, not about - e.g. — transformation of Y]
This yields a post-selection design -

XM = the columns of X with indices in M.
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Conventional inference after Model
Selection is Invalid:
Typically
P(,Bk.M eCIk.M)< 1-o
linstead of desired >1- «].

We propose to construct Post Selection Inference
with valid tests and multiple confidence statements
(Family Wise Error Rate) .
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Some Digressions

1. Bock, Judge, et al and also Sclove, et al (1970s) looked

at “pre-test estimators”. Although a sub-model is involved
in these estimators, they are actually estimators of the full
parameter vector, ,B , and not of the parameters of the sub-

model M?&O:{k:,ék;tO}.

2. Similarly, Lasso and other penalization algorithms
should be viewed as giving estimators of the full
parameter vector, rather than as estimators within the
sub-model of parameters estimated to be # 0.
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3. The problem has been known for decades:

Koopmans (1949); Buehler and Fedderson (1963); Brown
(1967); and Olshen (1973); Mosteller and Tukey (1977); Sen
(1979); Sen and Saleh (1987); Dijkstra and Veldkamp (1988);
Arabatzis et al. (1989); Hurvich and Tsai (1990); Regal and
Hook (1991); Potscher (1991); Chiou and Han (1995a,b); Giles
(1992); Giles and Srivastava (1993); Kabaila (1998); Brockwell
and Gordeon (2001); Leeb and Potscher (2003; 2005; 2006a;
2006b; 2008a; 2008b); Kabaila (2005); Kabaila and Leeb
(2006): Berk, Brown and Zhao (2009); Kabaila (2009).
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Ahrens, C., Altman, N., Casella, G.
Eaton, M., Hwang, ].T.G,
Staudenmeyer, J. and Stefanescu, C.

(2001). Leukemia Clusters and
TCE Wastesites in Upstate

New York; How Adding
Covariates Changes the
StOI’y. Environmetrics 12 659-67 2.

ie: The interpretation
of each coefficient
depends on which
other coefficients are
in M.
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PoSI Algorithm
Define constant K so that V M the CI of the form

(CI¥) Cl, 2B . +K6 / xk-MH
satisfies
(*) Pﬁ(ﬁk.MeCI;MforallkeM)zl—oc,

K allowed to depend on ¢, p, n - p and X.
But K does not depend on the rule leading to M, or on
M itself. So (*¥) true for all B, all rules M(Y), all ke M.

e A restricted version of (*) - call it (*k) - is also of
interest. This is (*) but only for a previously fixed

k, under the restriction M D k. [ie, not family-wise]
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Key Equation (**), below
Recall -requirementis that V 3 and V M
() P,(B,.; €CL, , forallke M)>1-a.
Linearity and normality of ,Bk. ,, and centered-ness
yield --
CI . (*)isimplied by

(*%) l—OcSPO_maXM;keM‘tk.M‘SK} :
oY

As areminder, f, e
s

29



Canonical Form

Rotation of Y reduces problem to canonical form

with new X,Y,6° without affecting meaning of 8 or M
(eg, TSH, Chapter 7), where now

(CF) X~pxp,Y~ Np(Xﬁ,Gzlp), (n—p)(%2 ~0' X,

30



PoSI is Possible

Review: PoSI needs K such that
(**) l—aSR)[maXM;keM‘tk.M‘SK].

Theorem: Scheffe’s K = \/ pr, .

Proof: By its construction

satisfies (**).

4 4
cY Y
l—o = P | max <K.|<P|max e M <
c A S 0 M keM A S
¢ 6 |06

e Ksmay give very conservative CISs. (inequality can be Big))
e [t’s possible to do better. Here's our plan:
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Our Proposal for PoSI

e For fixed o, p, n - p and full-design X
computationally find K = K(X) such that (**) holds
- 1e,

l—o = Po[maXM;keM‘tk.M‘ < K].
e For modest p we can always do so by simulating

the null distribution of Y under 8 =0, and using
Monte-Carlo.

: e : : —1
[Computational limitation: the max step involves looking at p2p
possibilities. Clever, “naive” version of this requires (approx) p < 20.]

e Alternatives to “naive” computation are
possible!
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“SPAR” (and “SPAR(*k)")
e A model-selection routine for which (**) is sharp --

B[ max e | <K = B[] <K ]

This is “Single Parameter Adjusted Regression”; formally

Wy ={ W= M (Y):3k € N3ty o =max oyt
e Though artificial, this approximates what a naive
scientist might do - one who combs a large data set
looking for the most “publishable” result.

® A modification of this is somewhat more plausible in the setting
(*k). Here one first settles on a co-variate of principle interest,
and looks for the set of control variates that make this have the
largest apparent effect after including those controls.
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Bounds on PoSI K (for known ¢ =1)

K(x);K(I)ch—l((u(l_a)l/p) /2j |

~\/210gp asp —> oo, n— p —> oo, o fixed
e Upper Bound:

6363\/p <supy K(X) </p2/m +0(p ) <K ~\p.

e Moral from comparison of these bounds:
Calculation of K(X) matters since the value can turn

out anywhere from about 4/2log p to about 0.6363\/; .
(Or, maybe upper bound is as large as \/2/71' \/p )
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Part 3:
Random Design;

Linear Estimation
- but not necessarily a linear model

Inference involves a special Split-Sample bootstrap
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Observational Data
Sample:

(X,.Y,) iid i=1,..n
with X. € R" being absolutely cont. (for simplicity) and
B(Y| X =x)=u(x), var(¥Y| X =x)=07(x) < eo.

Objective: (observe the data and)
e Create a linear model to “explain” the data and/or
e To predict future observations

e Make inference for the slope coefficients in that
model.

36



Our focus:
e Produce valid inference for these coefficients. ie,

Slope Coefficients for Linear Analytical Models:

® Deflne the “BestLinearApproximation" COefflClentS ﬁ — (ﬁl,..,ﬁm) .

B=B" =argmin; {E((Y— X’Z;)z)}.

e Formula:

p=[E(xx)] E(x7)
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The Split-Sample Bootstrap
e Begin with a sample § = {(XZ,YZ)}

e Split it at random into two disjoint parts — Smod, Sinf .
e Use Smod to construct linear model covariates, X (W) .

e Then apply a bootstrap to Sir with these covariates.
(details on next overhead)

e This gives asymptotically valid confidence intervals
(and estimates) of the corresponding BLA coefficients.
e Asymptotics are valid (as n — oo for fixed p)!
ounder mild moment conditions on S, and
ouniformly over all distributions satisfying these
conditions. (This uniformity is important.)
o Allowing p to grow slowly with n may also be OK.

1. Key theory comes from Mammen (1993).
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Details of the Bootstrap

o Calculate the LSE B within Sinf
o Generate a resample (with replacement) of size nf from.

o For this resample calculate LSE ﬁ*
o Repeat K times (large #) to get {B*k k= 1,..,K}.

N

o Create the histogram of {ﬁ*k —B:k= 1,..,K}.

o The quantiles of this histogram estimate the quantiles of the

true CDF ofﬁ—ﬁ.

o Invert this estimated CDF to get confidence intervals.

o Use the median (or the mean) of the estimated CDF as an
estimate.

o Simultaneous intervals (FWER) can be estimated from the p-
dimensional CDF of the bootstrap sample.
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Remarks

e This split sample procedure sacrifices a portion of the
data to the sole purpose of model selection.

e Consequently the inference is based on fewer than n
observations. (And also the model selection.)

e How to balance sample sizes between Smoq and Sinr is
under investigation.

e Scientific embarrassment is quite possible. - e.g.

o The statistician may choose a model from Swmoq claimed
to contain only significant linear factors.

o Then find in the bootstrap on Sinf that some (or all) of
these factors are not significantly different from 0!

e [nsuranceAgainstEmbarrassment (when the setting

allows) would be provided by selection using POSI on
Smod, followed by the bootstrap on Sinr.
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Results with the two insurance plans
in Criminology Data

e For Plan #2 (Bootstrap) we took the first portion of the
data as 250 of the original 500 observations

e Then we performed an “all subsets BIC” variable
selection, and ended up with 7 variables in the model

e The second portion of the data was used to construct
“bootstrap” confidence intervals

e These were compared with the POSI intervals (=Plan
#1) for the same model. These can be, and were,
constructed from the full 500 observations

e Here are the resulting 95% confidence intervals
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e All intervals #1 and #2 considerably overlap (as they should)
e Surprisingly (to us) CI#1 are generally shorter than #2
e “BIC” claims to yield only significant variables, but

e Only 4 variables with #1 are stat’ly significant at 0.05;

and only 1 variable with #2. (This ‘price of insurance’
realistically reflects the fact that “All subsets BIC” is actually too
greedy, and may choose non-significant variables.)

Chosen Variable Cl#1 CI #2
Seriousness -0.024,-0.001]*/[-0.021, 0.005
Prior Drug use -0.024,0.859] |[-0.341, 0,818
Prior Alcohol use -0.912,-0.014]*/[-0.772, 0.379

# of Prior records 0.004, 0.021]* |[0.001, 0.023]
Age at incidence -0.037,-0.008]*|[-0.040, -0.009]*
Gender -0.189, 0.584] |[[-0.467,0.505
Employment (Y or N)|[-0.805, 0.016] |[-0.770,0.312
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Summary
Main themes:
1. Examples to remind that analysis involving both

model selection and inference is problematic
o Main example involved question of effect on sentencing of
Race after controlling for other relevant factors.

2. POSI methodology.

o Creates simultaneously valid Cls for all factors in the model.
These do not depend on the model selection methodology or
the selected model. Except in least favorable case they will be
conservative. Can be modified to treat case of a single
variable of interest (as in the criminology race example).

3. Bootstrap methodology.
o Splits the sample in an unconventional manner, into parts

(1)model selection and (2)inference portions. Applies the
bootstrap on the inference portion, using the selected model.
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