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In statistical consulting, we help the clients to formulate and solve research problems involving
data. The crucial part is proper problem formulation, for which we need to ask the right questions
to query experimental settings, data collection/preprocessing details, and the research questions
the clients wish to address; there is no cheat sheet on this part.

Once the problems are properly formulated, actual data analysis could be routine albeit labo-
rious. This cheat sheet enlists some commonly used techniques and notes on some useful insights
and niche settings. The key is to apply the right tools in the right settings.

Different research questions may require different data analytical approaches using different
parts of the data. If you can address the clients’ needs using simple tools, don’t attempt sophisti-
cated procedures.

1 Basic Techniques

The bread-and-butter tools compiled here should cover most of the everyday data analysis needs.
These tools are conceptually elementary, but some are technically and/or computationally sophis-
ticated, such as the rank-based tests, the polychoric correlation, and the proportional odds models.
With the readily available software facilities, one may simply focus on the conceptual settings and
the proper interpretations of the analysis results.

1.1 Graphical Displays

A picture is worth a thousand words. Before formal analysis, it is often a good idea to plot the
data to gain some insights and get a feel about what you are getting into.

For categorical data, standard plots include bar charts and pie charts.
For continuous data, histograms and scatter plots are commonly used. Colors and/or plot-

ting symbols could be used to superimpose scatter plots of multiple groups of data. Side-by-side
boxplots are effective in contrasting multiple 1-D distributions.

Scatter plot matrix should be looked at before multiple regression is attempted.
Transformations of continuous data might be needed to spread out the scatter more evenly.

1.2 Simple Tests

Two-sample t-tests and one-way ANOVA are commonly used for the analysis of treatment ef-
fects (of one factor) using independent samples. A common population variance is usually assumed,
to be estimated by the pooled sample variances. The default two-sample t-test implemented in the
R function t.test() however does not assume a common population variance.
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Replacing the original data by their ranks in the pooled data, one has the Wilcoxon rank-

sum test (two-sample) and the Kruskal-Wallace test (general one-way ANOVA); the Wilcoxon
rank-sum test is equivalent to the Mann-Whitney test.

To test against a known population mean or median, one has the one-sample t-test and the
Wilcoxon signed-rank test.

With paired samples, take intra-pair differences and perform the one-sample t-test using the
differences; this is the paired t-test. Intra-pair ranking leads to the sign test, treating the signs
of the differences as Bernoulli observations.

The t-tests do assume normality, but they are robust; theoretical properties still hold “to an
extent” when normality is violated. Non-normality alone should not be the basis for abandoning
t-tests, especially with small to moderate sample sizes. For highly skewed data, proper transfor-
mations typically help.

With the rank-based tests, one trusts the ordering of the values more than the values themselves,
and one loses a lot of power relative to the t-tests. The rank-based tests are practically useful only
when the sample size is large.

The rank-sum test and signed-rank test are implemented in the R function wilcox.test()

using the exact (discrete) null distributions. The Kruskal-Wallace test is implemented in the R
function kruskal.test(), which reduces to the rank-sum test in the two-sample setting but uses
χ2 approximation.

The rank-based tests actually assume continuous random variables with zero probability for
ties. In practice, ties do occur, and tie handling is usually intuitive but ad hoc.

1.3 Correlations

To assess the association between a pair of random variables (X,Y ), one has a few versions of
correlations. Write σ2x = Var(X), σ2y = Var(Y ), and σxy = Cov(X,Y ). Pearson correlation

ρ = σxy/(σxσy), or simply the correlation, is defined for all pairs with finite variances; it makes
more sense for continuous pairs, and is most interpretable for bivariate normal. Observing (xi, yi),
the sample version is r =

∑

i(xi − x̄)(yi − ȳ)/
√

∑

i(xi − x̄)2
∑

i(yi − ȳ)2.
For (X,Y ) both continuous, with cdf’s FX(x) and FY (y), respectively, consider UX = F−1

X (X)
and UY = F−1

Y (Y ); UX , UY ∼ U(0, 1). Spearman’s ρ is the Pearson correlation between UX and
UY . Observing (xi, yi), one may order xi’s and yi’s separately and replace the original observations
by their respective ranks, then calculate the sample correlation of the two sets of ranks.

Consider (X1, Y1), (X2, Y2) i.i.d. from a bivariate distribution, Kendall’s τ is defined as

P
(

(X1 −X2)(Y1 − Y2) > 0
)

− P
(

(X1 −X2)(Y1 − Y2) < 0
)

.

Observing (xi, yi), i = 1, . . . , n, there are N =
(

n
2

)

(i, j) pairs, Nc = #{(xi − xj)(yi − yj) > 0}
concordant and Nd = #{(xi − xj)(yi − yj) < 0} discordant, and the sample τ is (Nc −Nd)/N .

Spearman’s ρ and Kendall’s τ both assume continuous random variables with zero probability
for ties. Practical tie handling is intuitive but ad hoc.

One may calculate all three versions of correlations using the R function cor(), with argument
method set to "pearson" (the default), "spearman", or "kendall".

For ordinal variables such as Likert scales, one may perceive them as interval-censored from
latent continuous variables, with the intervals defined through unknown cut-points. Assuming
bivariate normal for the latent variables, one may maximize the likelihood of the data with respect
to parameters in the cut-points and the correlation coefficient, and the resulting MLE of correlation
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coefficient yields the polychoric correlation; without loss of generality, the variances of latent
variables could be set to 1. Similar idea can be used to calculate the sample correlation between a
continuous variable and an ordinal variable. Check out R package polycor.

1.4 Response Modeling

For continuous responses, possibly after proper transformations, one may use standard linear

models with normal errors, Yi = xT
i β + ǫi, ǫi ∼ N(0, σ2), as implemented in R function lm().

For binary responses, one may use logistic regression, as implemented in R function glm().
For ordinal responses, one may use proportional odds models, where the ordinal response is
taken as interval-censored from a latent continuous variable Ỹ following a logistic distribution, with
cdf ez/(1 + ez) for z = (ỹ − xTβ)/σ; without loss of generality, one may set σ = 1 and estimate
the cut-points (multiple “intercepts”) along with β (common “slopes”). Proportional odds models
are implemented in R package MASS (function polr()) and package ordinal (function clm()).
Technically, logistic regression is a special case of proportional odds models, with one cut-point.

For event count responses, the default choice is Poisson regression, as implemented in glm(),
and if the purpose is to model the event rate, an offset term is often needed to adjust for the amount
of exposure. As an alternative, negative binomial regression is sometimes used to accommodate
over-dispersion, but the model is not as interpretable.

For nominal categorical responses with three or more categories, one may use multinomial

regression; an implementation is in R function multinom() in package nnet. The response here
is technically multivariate, whereas the models listed earlier all deal with univariate responses.

2 Sample Size Planning and Power Calculation

To ensure certain “minimal performance level” of inferential procedures, sample size planning is
often desired at the design stage before data are being collected. It is analytically tractable only in
a few simple settings.

Confidence intervals (CIs) and hypothesis testing are primary inferential tools. For CIs, one
would like them to be no wider than some prespecified width given coverage. For tests, one would
like the power (rejection probability) be above some prespecified level for specific alternatives.

The key word here is planning, so power calculation is meaningless when the data have already
been collected, or after the study design has been set.

2.1 One/Two-Sample Settings

Consider Yi ∼ N(µ, σ2), i = 1, . . . , n, for σ2 known. Inferences concerning µ are based on Ȳ ∼
N(µ, σ2/n). The width of CI for µ is governed by σ/

√
n, and the powers of tests for H0 : µ = µ0

are known monotone functions of
√
n|µ− µ0|/σ.

For two samples Yij ∼ N(µi, σ
2
i ), i = 1, 2, j = 1, . . . , ni, for σ

2
i ’s known, inferences concerning

µ1−µ2 are based on Ȳ1− Ȳ2 ∼ N(µ1−µ2, σ21/n1+σ22/n2). The width of CI for µ1−µ2 is governed
by

√

σ21/n1 + σ22/n2, and the powers of tests for H0 : µ1 = µ2 are known monotone functions of
|µ1 − µ2|/

√

σ21/n1 + σ22/n2.
For σ2’s unknown, one needs prior knowledge or pilot studies to obtain their ballpark values. The

actual inferences would be using t-statistics instead of z-statistics, and the performance guarantee
based on the “z-calculations” only holds approximately for n large.
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For Y ∼ Bin(n, p), where Y =
∑

i Yi with Yi ∼ Bin(1, p), σ2 = Var(Yi) = p(1 − p) ≤ (0.5)2.
Using the normal approximation of binomial, one may plug in σ = 0.5 for conservative sample size
planning for inferences concerning p.

2.2 General Case

For anything beyond a two-sample setting, there could be many tests/CIs of interest, of which each
could have their own required sample sizes, so a generic notion of sample size planning or power
calculation may not be clearly defined.

For an example, consider balanced one-way ANOVA with Yij ∼ N(µi, σ
2), i = 1, . . . , I, j =

1, . . . , n, for σ2 known. Potentially of interest are the test for H0 : µ1 = · · · = µI , and inferences
concerning contrasts θ =

∑

i ciµi for given ci’s satisfying
∑

i ci = 0.

For a single contrast θ =
∑

i ciµi, θ̂ =
∑

i ciȲi· ∼ N
(

θ, (σ2/n)
∑

i c
2
i

)

, and sample size planning
is straightforward. One may even set common performance requirement for “standardized” ci’s,
say

∑

i c
2
i = 1, to target a common sample size for all such contrasts.

The test forH0 : µ1= . . .=µI is based onX2=n
∑

i(Ȳi·−Ȳ··)2/σ2, which follows a noncentral χ2

distribution with (I−1) df and noncentrality parameter λ = n
∑

i(µi−µ̄)2/σ2; X2/(I−1) ∼ F(I−1),∞

for λ = 0. The power of the test might be monotone in λ, but who has the mental capacity to
unpack

∑

i(µi − µ̄)2 into individual µi’s for intuitive perception, or do different µi configurations
sharing the same

∑

i(µi − µ̄)2 value represent equivalent alternatives in practice?
For σ2 unknown, t-tests and F -test will be used. One needs a ballpark value of σ2 for sample

size planning, and the performance guarantee only holds approximately.
More complicated cases are less tractable, but given any specific setting and a specific test, one

can always generate data from specific alternatives of interest, to simulate the power one sample

size, one alternative at a time.

2.3 Further Notes

Sample size planning is realistic for single-purpose studies involving quantitative measures.
Sample size planning is generally unrealistic for survey based studies, the main reason being that

such studies typically have multiple purposes. Also, while one may treat sums/averages of Likert
scales as semi-continuous, their inter-subject variability is not your typical physical measurement
error, unlikely to remain constant for different cohorts of subjects; this would invalidate possible
σ2 values otherwise obtainable from previous/pilot studies.

Of course, sample size planning is always doable for binary polling using simple random sam-
pling, as noted at the end of §2.1, but the n typically runs into four figures or more.

3 Mixed-Effect Models

Consider Yi = xT
i β + zTi b + ǫi, or in matrix terms, Y = Xβ + Zb + ǫ, where b ∼ N(0, B),

ǫ ∼ N(0, σ2I), independent. One has E[Y] = Xβ and Var(Y) = σ2I + ZBZT . This is a mixed-
effect model with the fixed effects in xTβ and the random effects in zTb. The matrix B is structured
involving a few parameters, and terms in σ2I + ZBZT are known as variance components.

Fixed effects should be reproducible “in the future,” such as lab settings and physical measure-
ments, whereas random effects are “sampled from the general population” in which the analysis
results are to be applied, say the machine operators or batches of supplies.
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3.1 Random Intercepts

Random effects provide a convenient device for modeling correlations among observations. Two
common examples are repeated measures in longitudinal studies and observations taken from clus-
tered subjects.

In longitudinal studies, a subject is followed over time and multiple observations are taken from
the same subject along the way. Rewrite the model as Yij = xT

ijβ+zTijb+ǫij for the jth observation

from subject i, one may set zTijb = bi for bi ∼ N(0, τ2), independent; bi’s are the subject effect and

B = τ2I, and the intra-subject correlation is seen to be τ2/(τ2 + σ2).
With clustered subjects, say in medical studies involving multiple clinics, one may assume inter-

cluster independence but often has to entertain intra-cluster correlations. Write Yij = xT
ijβ+bi+ǫij

for the observation taken from the jth subject in cluster i, for bi ∼ N(0, τ2); τ2/(τ2 + σ2) is then
the intra-cluster correlation.

As “mean components,” bi’s modify the intercept to be subject/cluster-specific.

3.2 Parameter Estimation

It is straightforward to write down the joint likelihood of (β, σ2, B), but the MLE of the variance
components are typically biased. The preferred method is to estimate β and (σ2, B) separately.

Write I − X(XTX)−1XT = UUT , where U is of full column rank, UTU = I. One may use
UTY ∼ N(0, σ2I + UTZBZTU) to estimate (σ2, B) via MLE; the method is known as restricted
ML (REML), and typically delivers unbiased estimates.

Given (σ2, B), one may minimize (Y − Xβ)T (σ2I + ZBZT )−1(Y − Xβ) to estimate β, or
minimize (Y − Xβ − Zb)T (Y − Xβ − Zb) + σ2bTB−1b to estimate (β,b) jointly. The β̂ from
the two approaches are identical.

R package lme4 implements normal-error mixed-effect models in function lmer() with syntax
mimicking that of lm(). Random intercepts can be entered as fit=lmer(y~...+(1|id),...),
where id is a factor of subject/cluster IDs; summary(fit) will report the REML estimates of
(τ2, σ2) along with β̂ and Var(β̂), but fitted(fit) returns Xβ̂ + Zb̂.

3.3 Non-Gaussian Regression

Inserting xTβ + zTb in the place of xTβ, one may incorporate random-effects in non-Gaussian
regression. REML is no longer possible. The joint likelihood of (β,b, B) should be easy to write
down, but the marginal likelihood of (β, B) is generally intractable.

Function glmer() in package lme4 implements non-Gaussian mixed-effect models for the fami-
lies implemented in glm(); (β,b) appear to be estimated jointly given B, and B is estimated via
some numerical approximation of the marginal likelihood of (β, B).

Package ordinal implements mixed-effect proportional odds models in function clmm().

4 Blocking

Blocks are some physical entities on which experiments are conducted, and an additive block effect
is typically a nuisance. Blocks crossed with treatment levels often help to enhance statistical power,
whereas blocks nested under treatment levels are typically the experimental units.
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4.1 Paired t-Test and Crossed Blocks

Consider Yij = µi + bj + ǫij , where ǫij ∼ N(0, σ2), bj ∼ N(0, τ2), with treatment levels i = 1, 2 and
subjects j = 1, . . . , n; bj ’s are the subject effect as in §3.1 and ǫij ’s are measurement errors. One
is interested in inferences concerning δ = µ1 − µ2. In practice, the inter-subject variability is often
much larger than the measurement error, so if feasible, paired data allowing the cancellation of bj ’s
are usually preferred over independent data.

For paired t-test, one works with dj = Y1j−Y2j = δ+(ǫ1j−ǫ2j) = δ+ej . The test for H0 : δ = 0
is based on t =

√
nd̄/sd with (n− 1) df, where s2d = 1

n−1

∑

j(dj − d̄)2 = 1
n−1

∑

j(ej − ē)2 = s2e.
Working with the standard additive ANOVA Yij = µ + αi + bj + ǫij with both αi and bj as

fixed effects, the test for H0 : α1 = α2 = 0 is based on F = MSA/MSE with (1, n − 1) df’s,
where MSA =

∑

i,j(Ȳi· − Ȳ··)
2/(2− 1) = nd̄2/2 and MSE = 1

(2−1)(n−1)

∑

i,j(Yij − Ȳi· − Ȳ·j + Ȳ··)
2 =

1
n−1

∑

i,j(ǫij − ǭi· − ǭ·j + ǭ··)
2 = s2e/2. The F -test here duplicates the paired t-test.

Keep the same setting as above but allow more than 2 treatment levels, say I. For any contrast
of µi’s, θ =

∑

i ciµi with
∑

i ci = 0, θ̂ =
∑

i ciȲi· = θ +
∑

i ci(b̄ + ǭi·) = θ +
∑

i ciǭi·, so inferences
concerning the contrasts of µi’s should remain the same regardless whether bj ’s are taken as fixed or
random. This remains true when one has more than one observation per cell, as long as the design
remains balanced. The standard error for a general linear combination of µi’s, say the intercept,
would however differ for bj ’s treated as fixed or random, as b̄ will not cancel out.

In the balanced case, the REML estimate of σ2 in the mixed-effect model should be identical to
the MSE in the standard additive ANOVA unless τ̂2 = 0, so the standard errors for the contrasts of
µi’s should be the same coming from lm(y~trt+blk) or lmer(y~trt+(1|blk)); possible numerical
differences should be due to differences in σ̂2.

By the way, a nonparametric test based on intra-block ranking is Friedman’s test, which
reduces to the sign test for pairs; it is implemented in R function friedman.test().

4.2 More Paired Tests

Inserting the structure µi + bj into non-Gaussian regression frameworks, one may induce paired
tests for binary, ordinal, or event count data. For inferences concerning the contrasts of µi’s, fixed
and random bj ’s may no longer be technically equivalent, but treating bj ’s as fixed effect does not
feel too much off with “balanced designs.”

What amounts to a “balanced design” should be straightforward for Bernoulli or ordinal re-
sponses, but binomial and Poisson responses can be perceived as sums of smaller parts; Y1 + Y2 ∼
Bin(m1 + m2, p) for Yi ∼ Bin(mi, p), Y1 + Y2 ∼ Poisson(λ1 + λ2) for Yi ∼ Poisson(λi). For
Yij ∼ Bin(mij , pij), where log pij/(1 + pij) = µi + bj , a balanced design should be mij = m. For
Yij ∼ Poisson(δije

µi+bj ) with known exposure δij , a balanced design should be δij = δ; an offset
log(δij) can balance the estimation but not the design.

For a concrete case, consider Bernoulli pairs Yij ∼ Bin(1, pij), where log pij/(1 + pij) = αi + bj
for α1 = −α2 = α; bj ’s are parameters of fixed effect, free of constraint. The log likelihood of a
pair (Y1j , Y2j) is seen to be

l(α, b) = Y1(α+ b)− log(1 + eα+b) + Y2(−α+ b)− log(1 + e−α+b),

where the subscript j is omitted in the notation. For the (1, 1) and (0, 0) pairs, l(α, b) is maximized
at b = ±∞, contributing no information on α. For the (0, 1) and (1, 0) pairs, l(α, b) is maximized
at b = 0. The profile log likelihood of α is thus
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(n1,0 − n0,1)α− (n1,0 + n0,1) log{(1 + eα)(1 + e−α)} = 2{n1,0α− (n1,0 + n0,1) log(1 + eα)},

simply the log likelihood of n1,0 ∼ Bin(n1,0+n0,1,
eα

1+eα ), where n0,1, n1,0 are the respective number
of (0, 1), (1, 0) pairs. The induced paired test for H0 : α = 0 thus reduces to a sign test, or the
McNemar test for a 2× 2 square table (see §5.2).

4.3 Nested Random Blocks

For random blocks nested under treatment levels, one may write Yijk = µi + bj(i) + ǫijk, where
ǫijk ∼ N(0, σ2), bj(i) ∼ N(0, τ2). We assume the balanced case, with i = 1, . . . , I, j = 1, . . . , J ,
k = 1, . . . ,K, which allows clean formulas.

Inferences concerning µi are based on Ȳi·· ∼ N
(

µi,
1
J (τ

2 + σ2/K)
)

, and
∑

i,j(Ȳij· − Ȳi··)
2 =

∑

i,j(bj(i)− b̄·(i)+ ǭij·− ǭi··)2 has expectation I(J−1)(τ2+σ2/K), so one may simply work with the

block means Ȳij· = µi + bj(i) + ǭij· = µi + eij ; remember that the blocks here are the experimental
units. This works as long as the block size K is fixed, regardless whether j(i)’s are balanced.

One may also use µi+bj(i) in non-Gaussian regression, where one could entertain one observation
per block. In fact, even in the Gaussian case, bj(i) and ǫij could be identifiable if ǫij ∼ N(0, wijσ

2)
for some known wij ’s unequal; this would be the case for Ȳij· if the block sizes Kij vary.

4.4 Split-Plots

Now suppose the blocks are nested under level i of one factor but crossed with level k of another
factor. One may write Yijk = µ+αi + bj(i) + γk + ǫijk, where

∑

i αi = 0 =
∑

k γk; the effects of the
two factors are additive here.

With µ̂ + α̂i = Ȳi·· = µ + αi + b̄·(i) + ǭi··, inferences concerning αi’s involve b̄·(i) + ǭi··, so an
estimate of (τ2 + σ2/K) will go to the denominator in a test. The experimental units for αi are
the blocks indexed by j(i).

With µ̂ + γ̂k = Ȳ··k = µ + γk + b̄·(·) + ǭ··k, contrasts of γ̂k’s involve only ǭ··k as b̄·(·) will cancel
out, so only an estimate of σ2 is needed. The experimental units for γk are the individuals indexed
by ijk.

4.5 Miscellaneous

With the repeated measures Yij = xT
ijβ + bi + ǫij as in §3.1, xij ’s for the same subject i may

only differ in a factor covariate. Assuming additivity for the effect of that factor and those of the
rest covariates, one may write xT

ijβ = x̃T
i β̃ + µk, where k denotes the factor level. To assess the

treatment effect in the µk’s, one may merge b̃i = x̃T
i β̃+ bi as a nuisance, yielding Yij = µk+ b̃i+ ǫij ;

the term x̃T β̃ here can be replaced by arbitrary function of the common covariates x̃.
In unbalanced cases with Yij = µi + bj + ǫij as in §4.1, one should treat the random bi’s as

they are using a mixed-effect model. An example of such is a mixture of paired and independent

observations, where paired data were expected but some of the pairs had one leg missing; if all
pairs are crippled, bj and ǫij are not identifiable, and one goes back to the two-sample t-test with
independent data.

Things get complicated when the blocks are neither nested nor crossed, say if the interaction
(αγ)ik is to be entertained in the setting of §4.4, and/or with whatever imbalance in the design. It
should be a safe exercise to enter the variables as they are in the lmer() or glmer() fits using the
original data.
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5 Contingency Tables

Consider categorical variablesX1, . . . , Xm withK1, . . . ,Km categories, respectively. An observation
(x1, . . . , xm) tallies one count to a cell in a K1 × · · · ×Km array. Adding over all observations, one
has an m-way contingency table of dimension K1 × · · · ×Km.

The joint distribution of (X1, . . . , Xm) is multinomial with K1 × · · · ×Km cells, and of interest
are possible structures among the cell probabilities, such as the (conditional) independence relations
among the margins.

For an example, consider a 2 × 2 table with joint distribution
( p00 p01
p10 p11

)

and observed counts
(

n00 n01

n10 n11

)

; (n00, n01, n10, n11) ∼ Multinomial(n··; p00, p01, p10, p11), where n·· = n00+n01+n10+n11.
The two margins are independent when pij = pi·p·j , where pi· = pi0 + pi1 and p

·j = p0j + p1j are
marginal probabilities.

5.1 Surrogate Poisson Regression

For Yi ∼ Poisson(λi), i = 1, . . . , k, independent, it is known that

(Y1, . . . , Yk)|
∑

i Yi ∼ Multinomial(
∑

i Yi; p1, . . . , pk),

where pi = λi/
∑

j λj . Drawing on this, one may treat the cell counts in a contingency table
as independent Poisson responses and fit surrogate Poisson regression with cell characteristics as
covariates; the fitted cell counts always add up to the observed total, and yield the estimated
multinomial probabilities with simple scaling. Structures among the λi’s are identical to structures

among the pi’s, but the λi’s are free of any “unity constraint” in a form like
∑

i pi = 1.
For an example, consider a 3-way table with cell counts Yijk ∼ Poisson(λijk). One may write

log λijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk,

where the intercept µ must be included to ensure the equivalence of surrogate Poisson regression
with the intended multinomial fitting. If all terms are included, one has the saturated fit λ̂ijk =
Yijk. Keeping only the main effects, the three margins are independent of each other. Dropping
terms (βγ)jk + (αβγ)ijk, one has the conditional independence of j and k given i. Conditional
independence structures can be represented by undirected graphs, and this line of models are in
the toolbox for graphical modeling.

For a 2 × 2 table, the association between the two margins is often measured by the log odds

ratio η = log
p
00
p
11

p
01
p
10

, with η = 0 at independence. Now suppose

log λijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk

for j, k binary. Normalizing the 2 × 2 “slices” of the 3-way array λijk with fixed i, one has the
conditional distributions of (j, k) given i, with a constant log odds ratio η = (βγ)00 + (βγ)11 −
(βγ)01 − (βγ)10 not varying with i.

Remember that this is not response modeling, but a device to explore structures among multi-
nomial probabilities. One may explore any structure of interest for the application at hand, not
just conditional independence.

Now consider a one-way table with Yi ∼ Poisson(λi), i = 0, . . . , k, and one is to fit a binomial
model pi =

(

k
i

)

pi(1− p)k−i. This can be achieved via

log λi = µ+ i log p
1−p + log

(

k
i

)

,
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where k log(1−p) is absorbed into µ; the i here is numeric, its coefficient is the logit of the binomial
p, and there is an offset term in log

(

k
i

)

.

The classical goodness-of-fit statistic χ2 =
∑

i
(Oi−Êi)

2

Êi

, for i a generic subscript adding over all

cells, can be obtained in the sum of squared Pearson residuals; its numerical value should be close
to the residual deviance of the fit.

5.2 Square Tables

Square tables result from paired observations on the same categorical variable, such as the residence
of people at two time points, product ratings by two raters, etc.; not all k × k tables are square
tables despite the appearance.

Square tables are generally diagonal heavy, so independence is out of question. Of potential
interest is the level of diagonal dominance. Perceiving two layers of table entries, one with inde-
pendent margins and the other diagonal exclusive, one may consider

log λij = µ+ αi + βj + γ1I[i=j=1] + · · ·+ γkI[i=j=k],

where αi + βj are for the independence layer and the γlI[i=j=l] terms yield saturated fits on the
diagonal; this is the mover-stayer model of James Lindsey. The mass of the independence layer is
given by

∑

i,j e
µ+αi+βj , and a simple calculation yields the percent diagonal-exclusive as an intuitive

measure for diagonal dominance.
If a pair of off-diagonal cells (i, j), (j, i) demonstrate serious lack of fit to the mover-stayer model,

then maybe the two categories are easily confused, and a possible merger might be considered.
A structure of common interest for a square table is its symmetry, H0 : pij = pji, ∀i, j, for which

one has the McNemar test; check out R function mcnemar.test().

5.3 Non-Integer Entries

In some applications, an observation may not be fully committing to a single category on a variable
X, in which case non-integer entries could be formed in a contingency table.

For an example, consider performance ratings on a 3-level Likert scale received by a person on
a team from his teammates; the team size varies so some normalization is necessary. On a 4-person
team, the ratings received could be (0, 2, 1), and on a 7-person team, the ratings received might be
(3, 1, 2). “Taking the average” is an intuitive choice, but for categorical variables, an average is not
a number but a composition p (see §7), (0, 2, 1)/3 and (3, 1, 2)/6 for the hypothetical ratings given
above; the usual fully committing scenario is a special case, with p a unit vector.

In general, an observation on a categorical variable Xi can be taken as a composition pi, and
an observation of (X1, . . . , Xm) is an array formed by the outer product of the pi’s, with total mass
one. Adding over all observations, one gets a contingency table with possibly non-integer entries,
which could be analyzed the same way as the usual tables with integer entries.

6 Dimension Reduction

Multiple continuous variables are generally correlated, and the variability is often concentrated in
some lower dimensional spaces. Dimension reduction techniques help one to zero in onto those
dimensions of most interest. The methods compiled here assume normality to various extent, are
sensitive to transformations, and some are even sensitive to linear scaling.
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6.1 Principal Component Analysis

Consider X = (X1, . . . , Xp)
T with Var(X) = Σ. Let Σ = UΛUT be the eigenvalue decomposition

of Σ, where Λ = diag(λ1, . . . , λp) with λj ’s in decreasing order. UTX = X̃ = (X̃1, . . . , X̃p)
T are

the principal components (PCs), uncorrelated, with Var(X̃j) = λj . The “total” variability of X is
quantified by trace(Σ) =

∑

j λj in the setting, invariant under orthogonal transformations of X,
and one would focus on a few leading PCs that capture a major portion of the “total” variability.
Clearly, the results are sensitive to individual scalings of the Xj ’s, and linear combinations of the
Xj ’s should make practical sense.

In practice, one uses the sample version of Σ in the analysis, and for that to be reliable, the
sample size n should be much larger than p. Check out R functions prcomp() and princomp().

Using the leading PCs as covariates in regression analysis instead of the original Xj ’s, one may
eliminate multicollinearity, reduce estimation variance, but could suffer on model interpretability.

6.2 Factor Analysis

Consider Y = µ + LF + ǫ, where L is p ×m, F ∼ N(0, I), ǫ ∼ N(0,Ψ) for Ψ = diag(ψ1 . . . , ψp);
Var(Y) = Σ = LLT + Ψ. F1, . . . , Fm are the common factors, ǫ1, . . . , ǫp are the errors or specific

factors, and L is the loading matrix with lij the loading of Yi on Fj . Note that Fj ’s are latent and
LF = (LP )(P TF) = L̃F̃ for any Pm×m orthogonal, so the common factors are well defined only up
to an orthogonal transformation, or rotation.

Technically, Σ = LLT +Ψ may not have a solution except for m = p, but minor discrepancies
are part of practical estimations using empirical data. The number of common factors, m, is often
obtained from a principal component analysis of Y; likelihood ratio tests also help. Check out R
function factanal() and R package psych.

Factor analysis is widely used in social sciences to uncover hidden patterns among large number
of survey questions, and the analysis results may be used to group questions into subscales.

Unfortunately, it has been a common practice to apply factor analysis directly on Likert scale
questions, effectively treating ordinal variables as multivariate normal. A remedy to this is to make
use of the polychoric correlation (see §1.3), attempting a decomposition of Σ = LLT + Ψ for Σ a
correlation matrix obtained from R package polycor.

6.3 Canonical Correlations

Consider X with Var(X) = Σxx, Y with Var(Y) = Σyy, and Cov(X,Y) = Σxy. One seeks a, b
to maximize Cor(aTX,bTY), where aTa = bTb = 1 for definiteness; the solution yields the first
pair of canonical variables (X̃1, Ỹ1) = (aT1 X,b

T
1 Y) with canonical correlation ρ1 = Cor(X̃1, Ỹ1).

Repeating the process but keeping X̃j uncorrelated with X̃1, . . . , X̃j−1 and Ỹj uncorrelated with
Ỹ1, . . . , Ỹj−1, one gets the second pair, the third pair, etc.

Technically, canonical correlation analysis is readily available from the singular value decom-

position Σ
−1/2
xx ΣxyΣ

−1/2
yy = UΛV T , with aj ’s in the columns of Σ

−1/2
xx U , bj ’s in the columns of

Σ
−1/2
yy V , and ρj ’s in the diagonals of Λ. Check out R function cancor().

6.4 Partial Least Squares Regression

Consider Yi = α+ xT
i β + ǫi, or Y = α+Xβ + ǫ. With Xn×p less than full column rank, which is

the case when p > n or with severe collinearity, β̂ = (XTX)−1XTY no longer works.
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In the spirit of forward regression, one may select the “best” linear predictor, the next “best”,
etc., one term at a time, not in the columns of X but in some linear combinations thereof.

First centralize Y and the columns of X to obtain Y(0) = P⊥
1
Y and X(0) = P⊥

1
X, where P⊥

1
=

I − 1
n11

T . For a linear combination of the original predictors, z =
∑p

j=1 cjxj = xTc with samples

in Xc, its sample covariance with the response Y is Y(0)TX(0)c/(n − 1). By Cauchy-Schwarz,
(Y(0)TX(0)c)2 ≤ (Y(0)TX(0)X(0)TY(0))(cTc), with the maximum attained at c ∝ X(0)TY(0), so
the “best” linear predictor of Y is in z1 ∝ X(0)X(0)TY(0). Working with Y(1) = P⊥

z1
Y(0) and

X(1) = P⊥
z1
X(0), for P⊥

z1
= I − z1z

T
1 /(z

T
1 z1), one obtains the next “best” linear predictor in z2 ∝

X(1)X(1)TY(1), and so on so forth, up to say zl. One then fit Y = α+ (z1, . . . , zl)β̃ + ǫ.

Clearly, 1T zj = zTj zk = 0, ∀j 6= k, so α̂ = Ȳ ,
ˆ̃
βj = (zTj Y)/(zTj zj). P⊥

z
’s are idempotent so

X(j)TY(j) = X(j)TY, thus Y needs no updating. The process can be stopped adaptively as with
standard forward regression, or up to a prespecified l, but it ends automatically once zTj Y = 0.

Actually, the extra sum of squares (SS) gained by adding Xc is (YTXc)2/cT(XTX)c, not
(YTXc)2/cTc, but the Xc maximizing the extra SS is the projection of Y in the column space
of X, solving the least squares problem directly.

While similar to the PCs of §6.1 that decompose the variability of X variables, the zj ’s here
decompose the linear association of X variables with Y .

R implementations of partial least squares regression can be found in many packages, such as
caret and pls.

6.5 Discriminant Analysis

Bayes Rule under Multivariate Normal

Consider Xi ∼ N(µi,Σi), i = 1, 2. Observing a future X, one is to identify which population it
might have come from. The Bayes rule compares the log likelihood ratio

−1
2(x−µ1)

TΣ−1
1 (x−µ1)+

1
2(x−µ2)

TΣ−1
2 (x−µ2)+K = −1

2x
T (Σ−1

1 −Σ−1
2 )x+(µT

1 Σ
−1
1 −µT

2 Σ
−1
2 )x+K

against a threshold that is determined by the prior of i and the misclassification costs; the discrim-

inant function −1
2x

T (Σ−1
1 − Σ−1

2 )x+ (µT
1 Σ

−1
1 − µT

2 Σ
−1
2 )x is quadratic in x.

If Σ1 = Σ2, the discriminant function reduces to a linear function in x, (µ1 − µ2)
TΣ−1x.

With training sample sizes much larger than the dimension of X, one simply substitutes the
sample versions of µi and Σi.

Fisher’s Linear Discriminants

Consider a one-way ANOVA structure with multivariate responses, Xij = µi + ǫij , i = 1, . . . , g,
j = 1, . . . , ni, ǫij ∼ N(0,Σ). One seeks linear combinations of X that best separate the groups.

Write W =
∑

i,j(Xij − X̄i)(Xij − X̄i)
T , B =

∑

i,j(X̄i − X̄)(X̄i − X̄)T , where X̄i =
∑

j Xij/ni,

X̄ =
∑

i,j Xij/
∑

i ni. One looks to maximize Fc = (cTBc)/(cTWc) with respect to c; Fc is

proportional to the overall F -test in a standard one-way ANOVA with observations X̃ij = cTXij .
Given the eigenvalue decomposition W−1/2BW−1/2 = UΛUT with eigen vectors u1, . . . ,ug−1

associated with the non-zero eigenvalues λ1 > · · · > λg−1, Fc is maximized at c1 ∝ W−1/2u1

with value λ1, and cT1 x is the first discriminant. Imposing constraints cTWci = 0, ∀i < k, Fc is
maximized at ck ∝ W−1/2uk with value λk, yielding the k-th discriminant cTk x. For W singular,
one may substitute the Moore-Penrose inverse W+ in the place of W−1.
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For g = 2, B ∝ (x̄1 − x̄2)(x̄1 − x̄2)
T , u1 ∝W−1/2(x̄1 − x̄2), so Fisher’s discriminant is given by

(x̄1 − x̄2)
TW−1x, the same as the sample version of (µ1 − µ2)

TΣ−1x since W ∝ Σ̂.
R implementations of linear and quadratic discriminant analysis can be found in package MASS,

in the lda() and qda() functions.

7 Compositions

A composition refers to the proportions of a set of parts that make up a whole. For example, local
residential trash are collected as recyclables and non-recyclables, and per household observations
could come in as (73.5%, 26.5%), (37.4%, 62.6%), etc.

Compositions are closely related to multinomial observations, say y ∼ Multinomial(m,p), where
y = (y1, . . . , yk)

T ,
∑

j yj = m, p = (p1, . . . , pk)
T ,

∑

j pj = 1. One may record a multinomial
observation as (m,y/m), where the composition y/m carries just part of the information.

7.1 Distances Between Compositions

A composition can be perceived as a discrete probability distribution, and a discrepancy measure
between compositions p and q could be the Kullback-Leibler KL(p,q) =

∑

j pj log(pj/qj) or its
symmetrized version SKL(p,q) = KL(p,q) + KL(q,p) =

∑

j(pj − qj)(log pj − log qj). To assess
discrepancies from a base line, say p0, KL(p0,p) might be appropriate. In general, SKL(p,q)
would be more adequate. SKL(p,q) is not a normed distance like the Euclidean distance.

To visualize the relative proximity of a set of compositions, one may compute the pair-wise
SKL’s to form a distance matrix, then feed it into multi-dimensional scaling (MDS). Many R
packages have MDS implementations, including cmdscale() in package stats, and isoMDS() and
sammon() in package MASS.

7.2 Regression with Compositions as Responses

In applications involving compositions, one may wish to regress observed compositions on covariates,
or simply to use a “sample mean” to estimate the “population mean.” Unfortunately, compositions

alone contain insufficient information to support the task.
For logistic regression with binomial response y ∼ Bin(m, p), one may enter the response in two

categories as (y,m− y), or as y/m coupled with m as weight; y/m is the same as (y/m, 1− y/m)
for two categories, a composition. With y/m alone and m missing, logistic regression can not be
done properly.

Let p be the “sample” composition and π be the “population” composition, it is intuitive to
argue that E[p] = π. The “weight” m however controls the “variance” of p, without which one
can not properly quantify the “lack-of-fit” of the fitted π̂.

A “sample” composition p should be accompanied by a “weight” m to quantify how reliable
it is to portray the “population” composition π. With (m,p), one may simply extend logis-
tic/multinomial regression to non-integer (m,mp).

For pi from a homogeneous population without covariate, the proper sample mean can only
be defined with the “weights” mi supplied, p̄ = (

∑

imipi)/(
∑

imi). The mi’s in the p̄ definition
could be relative, but one does need absolute mi’s to quantify the likely deviation of p̄ from π.
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