
1 

 

 

 

 

 

 

An Introductory SAS Course 
 

-for use with Version 9.4- 
 

 

 

 

 

 

 

Updated by 

Meimei Liu, Nathan Hankey, Rongrong Zhang, Yumin Zhang 

 

 

 

 

 

 

 

 

Previously Updated by 

Cong Cao, Yating Cao, Quan Hu, Xiaosu Tong 

August 2012 

 

Originally created by 

Christina Wassel, Chenghong Li 

January 2002 

 

 

 

 

 

 

Statistical Consulting Service 

 

Purdue University 
 

August, 2016 

  



2 

 

Contents 
 

I. Introduction ................................................................................................................................. 3 

What is SAS? ............................................................................................................................... 3 

How to obtain SAS ...................................................................................................................... 3 

After you start SAS...................................................................................................................... 4 

Reading data into SAS ................................................................................................................. 5 

Important basic syntax to know when creating data sets: ........................................................... 8 

Other Issues ................................................................................................................................. 8 

II. Data Steps and Procedures ......................................................................................................... 9 

What is a DATA step? How are they useful? .............................................................................. 9 

Cleaning and manipulating data sets in a DATA step (recoding, if/then statements) ................. 9 

What is a procedure?  What is an option or statement? ............................................................. 12 

Details of Selected Procedures .......................................................................................... 12-16 

Basic Options and Statements within the Procedures ............................................................... 17 

Details of Selected Statements and Options ...................................................................... 17-26 

How does SAS know which data set to use? ............................................................................. 25 

III. Working with Graphics in SAS .............................................................................................. 26 

proc sgplot ................................................................................................................................. 27 

Exporting graphs........................................................................................................................ 29 

IV. Miscellaneous SAS Issues ...................................................................................................... 30 

Saving files (program, log, and output) ..................................................................................... 30 

Running programs ..................................................................................................................... 30 

Missing values ........................................................................................................................... 31 

Exporting ................................................................................................................................... 31 

How to use the Help Documentation ......................................................................................... 31 

Other SAS support ..................................................................................................................... 33 

 



3 

 

I. Introduction 

  
What is SAS? 
 

SAS is a statistical software package that allows the user to manipulate and analyze data in many different ways.  

Because of its capabilities, this software package is used in many disciplines, including medical sciences, biological 

sciences, and social sciences.  Knowing some SAS programming will likely be of benefit not only with your current 

research, but also in with your future job search.   

 

 

How to obtain SAS 
 

SAS 9.4 is installed on all ITaP (Information Technology at Purdue) Windows machines in all ITaP labs around 

campus.  To start the program, click “Start”, “All Programs”, “Standard Software”, “Statistical Packages”, and 

finally “SAS 9.4.1”.   

 

If you would like to install SAS 9.4 on your home computer or laptop, ITaP Software Loans has SAS installation 

CDs available free of charge to students, faculty, and staff.  You can go to STEW G31:  The hours for software 

distribution are 9 AM to 12 PM and 1 PM to 4 PM Monday through Friday; phone (765) 494-5100.  Remember to 

take your student ID to sign out the disks overnight. 

 

Those with a Purdue career account can also access SAS 9.4 on a personal computer through ITaP's software 

remote.  Navigate to http://goremote.itap.purdue.edu.  The steps are as follows. 

1. If the Citrix Client has been installed on your machine, proceed to the next step; if not, please do the 

following: 

a) Select “Download clients from the Citrix client download site” under the “Message Center” display.  

(Note:  A new browser window or tab will appear, navigating to Citrix’s download site.) 

b) Select “Clients”. 

c) Select the Client download that best fits your machine.  (For example:  Using a Macintosh system, you 

would select “OS X”.) 

d) Once the Client has been downloaded and installed, proceed to the next step. 

2. Log into Software Remote using your Career Account credentials. 

 

 

 
 

3. Once logged in, go to the Standard Software folder then the Statistical Packages folder to find the icon for 

SAS 9.4.   

 

 

http://goremote.itap.purdue.edu/


4 

 

After you start SAS 
 

After you start SAS, you will see four windows, the Explorer window on the left hand side, the output window, the 

log window, and the enhanced editor on the right hand side.  You may have to change the size of the three right side 

windows to display all of them together.  

 

 
 

With the Explorer window, you can open/view data sets that are read into SAS.  In the Explorer window, click on 

“Libraries”, then the “Work” folder, and this will show you any data sets you have read or created in SAS for that 

session.  Be careful, all the data sets you created in work folder are temporary, which means once you close the 

current SAS session, all temporary data sets created will be deleted automatically. 

 

In the Editor window, you will type the program (i.e. SAS commands) that you will eventually run.  It works 

similarly to Microsoft Word (i.,e., you can cut, paste, move the cursor, etc.)  The enhanced program editor will give 

you color-coded procedures, statements, and options (more on these later) that will help you to find errors in your 

program before you even run it.   

 

The Output window is designed to show the SAS program output (after running some code) in .txt format.    Unlike 

previous versions, SAS 9.4 generates SAS output using HTML format so a Results Viewer window is created once 

SAS code is run and the Output window remains blank.  You may change the default format by clicking  “Tools” in 

the menu bar, then “Options” and “Preferences…”; in the new dialogue box, click the “Results” tab.  You may turn 

on/off the listing (i.e., results go in the Output window) and/or HTML output (i.e., results go in the Results Viewer) 

there. 
 

The Log window gives information about how the SAS code that is run/executed. It will inform you of any errors in 

your program and often the reasons for the errors.  The Log window is EXTREMELY IMPORTANT to reference 

when you are not getting any output or the output you expect.   ERROR messages appear where SAS gets confused 

and stops executing the syntax.  WARNING messages mean SAS gets confused but guesses what the job means: it 

modifies whatever it thinks most appropriate and executes the syntax.  You should check the program for potential 



5 

 

errors based on the ERROR and WARNING messages.  Always check the Log window first to determine if your 

program ran properly and the data set you think should be analyzed was analyzed! SAS will analyze the last data set 

created unless otherwise specified so the Log window can be used to double check this.   

 

The Log window below tells us that importing a data set named “Cars.txt” was successful: 406 records and 10 

variables were read into SAS and saved in a temporary data set called “car”. 

 

 
 

Reading data into SAS 
 

There are three common methods for reading data sets into SAS.   

 

1. Using the Import Wizard 

The Import Wizard is a user-friendly functionality of SAS which helps you import external data files of 

various formats.  The steps are as follows (along with some screen capture shots): 

a) Go to “File” menu, then click “Import data”.  This should result in an Import Wizard window  popping 

up. 

b) Click on the pull-down list and select your file type (e.g., xlsx, mdb, csv, or txt).  Then, click “Next”. 

c) Specify the file’s pathname: Type in the place where your file exists (e.g., H:\StatHW\data); or, click 

“Browse” to locate the file.  Click “OK” and “Next”. 

Then SAS will ask you to name your data set.  This can be anything you would like that adhere to the SAS naming 

rules. (See Rules for SAS Variable Names) and will be used for reference in your SAS code.  Once you name it, you 

must continue to use this name in your program to reference this particular data set.  Click “Next” one more time, 

before clicking “Finish”, you will have the opportunity to save a SAS program of proc import which does the 

job of the Import Wizard.  And then click “Finish”.   

 

https://v8doc.sas.com/sashtml/lgref/z1031056.htm#z1031062


6 

 

 
 

 



7 

 

2. Using a DATA step with the infile statement in your SAS code: 

In SAS programming, you use DATA steps to create and modify SAS data sets.  If your data are stored in 

an external file, the infile statement in a DATA step is used to read the delimited text files into SAS (to 

read in anything else, use the Import Wizard).  Suppose you want to read a data file stored on drive A, the 

following code will help you. 
 

data mydata; 

infile 'A:\filename.txt' delimiter='09'x dsd firstobs=2; 

input x1 $ x2; 

run; 
 

 A DATA step starts with the keyword data, followed by the name you want to give to the data 

set.  You can name it anything you like; here it is named mydata.   

 The infile statement requires the pathname for your data file.  Then you can put other options 

(shown in light blue) to specify the data importing.  The option delimiter='09'x means the 

external file uses tab as the delimiter.  dsd stands for “delimiter-sensitive data”, meaning that 

consecutive delimiters are recognized as missing values.  Since most data files have the variable 

names in their first lines, we can tell SAS to read data starting from the second line by the option 

firstobs=2.  

 The input statement defines the variables in your data set so you can use them for analysis.  The 

variables can also be named whatever you would like; here they are “creatively” named x1 and 

x2 (it is often wiser to name the variables so it is clear what 

they refer to).  Since x1 is a character variable, we put $ after the name.   

 

WARNING: Software remote users may encounter difficulties specifying the file pathname in the infile 

statement.  You may only be able to access data sets on your career account drive (W drive). 

 

3. Using DATA step with the cards or datalines statements: 

Another option is to put your data directly into your SAS code.  This generally works best when your data 

set is fairly small (e.g., for a class assignment) or when you can cut and paste the data set from an Excel 

spreadsheet.  An example is shown below. The datalines and cards statements are interchangeable.   

Different from the previous method, we write the input statement before the data.  The two statements, 

cards1 and datalines, are interchangeable.  We type the data after the cards or datalines 

statement.  Note that there are only spaces delimiting each data entry, no commas or other characters.  It is 

very important to put the semi-colon on a new line after all of the data (as shown above), otherwise your 

last line of data will be deleted!   
 

Each line of data listed above represents one observation.  We can put "@@" in the end of the input 

statement to let SAS read multiple observations across data lines.  The following code will create the same 

data set. 
data mydata; 

input x1 $ x2 @@; 
cards; 

Mark 9.2 Dan 11 Amy 10.1 Tom 8.5 

; 

run; 

                                                           
1 The word “cards” comes from the ancient way of storing data on punch cards. 

data mydata; 

input x1 $ x2; 

cards; 

Mark 9.2 

Dan 11 

Amy 10.1 

Tom 8.5 

; 

run; 

data mydata; 

input x1 $ x2; 

datalines; 

Mark 9.2 

Dan 11 

Amy 10.1 

Tom 8.5 

; 

run; 



8 

 

Important basic syntax to know when creating data sets: 
 

In order to successfully run any program to create or modify a SAS data set, you need the following basic elements. 

1) A data statement followed by the name of your data set. 

2) An input statement (unless you import the data set using the infile statement); 

3) A semi-colon to mark the end of every statement. 

4) At least one space between words; and 

5) A run statement. 

 

A semi-colon tells SAS the end of a particular operation, procedure, or statement, and SAS will look for the next 

one.  Thus multiple spaces or multiple lines will not split a statement if no semi-colon is used. 2  A run statement 

tells SAS to process the previous trunk of code that you write.3  Lack of semi-colons and run statements are two 

most common mistakes in a program. 

 

SAS programming code is case insensitive, so both upper and lower cases will work the same.  This applies to the 

keywords in syntax, and also the user-chosen terms like variable names.  For example, the following code will 

generate a data set with only one variable “car,” with the output given on the right.4  Though it is not common to 

mix cases. 

 
dAta mydata; inPUt car $ CaR $ cAr $ @@; 

cards; 

Toyota Honda Nessin Hyundai Kia Mazda  

GM Ford Buick Benz Fiat Volvo  

; 

run; 

proc prINt data=mydata;  

run; 

After you finish writing the code, you should click “ ” icon in the toolbar at the top of the SAS window, or press 

F8 on your keyboard to execute the code. 
 

Other Issues 

 

What if my Excel data file is not reading properly into SAS or not at all?   

 If the Excel data file is not reading into SAS at all, it may be because your Excel data file is still open.  The 

Excel file must be closed before you import it into SAS.   

 There are other reasons that the Excel data file is not reading in properly.  It could be that the data type of 

your Excel cells is not correctly defined.   

 Inappropriate reading also happens when you do not have a header in the first row, since the import 

procedure takes the first row as header by default.  However, this can be changed by options of proc 

import. 

 

How do you know if SAS is reading your data set correctly?   

 Use the proc print procedure and see if the data set in SAS is what you expect.  Or, you can find your 

data set from the SAS explorer window, and double click the icon to open the file.  A third way is to look at 

the log window, which tells you the number of observations and the number of variables it creates. 

                                                           
2 When reading data using DATA step with the cards or datalines statements, you need to start a new line for 

the data text and end with a semicolon in the new line, as what are given in the examples. 
3 A “trunk of code” in SAS usually means a DATA step or a procedure, indicated by keywords in bold dark blue.  

When your program is submitted, a trunk of code will be executed as long as there is a run statement or another 

trunk following it.  It is a good habit to always use a run statement at the end of each trunk of code. 
4 The input statement specifies three data entries as one observation.  Since we essentially only create one variable 

“car” in the code, the final entry during each reading is kept, resulting in the four-observation data set. 



9 

 

II. Data Steps and Procedures 
 

A SAS program is composed of two parts: DATA steps that deal with creating and modifying SAS data sets, and 

procedures that perform specific statistical analyses and/or graphically present the results.  In this section, we first 

demonstrate how to manipulate data sets using DATA steps, and then introduce several common procedures for data 

analysis. 

 

What is a DATA step? How are they useful? 
 

DATA steps are important for several reasons.  First, a data set may not be in a SAS compatible format, although 

this is usually not the case for the data sets in class examples or exercises.  Second, sometimes you need to extract 

some of the variables or some of the observations from a current data set to perform analysis.  Third, different SAS 

procedures may require information in the same data set arranged in different ways.  A DATA step is needed to 

transform data sets into the appropriate arrangement: for example, convert one record with multiple variables into 

multiple single-variable records. 

 

Cleaning and manipulating data sets in a DATA step (recoding, if/then statements) 
 

To demonstrate data manipulation techniques and some SAS procedures, we will use the CARS data set.  This data 

set contains 10 characteristics of 406 types of car.  The 10 characteristics, variable name, and type of variable are 

listed below: 

 

Name Type Description 

mpg Numeric Miles per Gallon 

engine Numeric Engine Displacement (cu. inches) 

horse Numeric Horsepower 

weight Numeric Vehicle Weight (lbs.) 

accel Numeric Time to Accelerate from 0 to 60 mph (sec) 

year Character Model Year (modulo 100, 0 means the year is missing) 

origin Character Country of Origin (1: American; 2: European; 3: Janpanese) 

cylinder Numeric Number of Cylinders 

filter Character cylrec = 1 | cylrec = 2 (FILTER), (0: not selected; 1: selected) 

  

The first step is to read the data set into SAS and create the SAS data set car.  The SAS code using the infile 

statement is   

 
data car; 

infile 'W:\Cars.dat' delimiter='09'x dsd firstobs=2; 

input mpg engine horse weight accel year $  

      origin $ cylinder filter $; 

run; 

 

To print the SAS data set, we use the procedure PRINT.  All procedures are introduced by the phrase PROC.5  To 

only print the first 10 observations of the car data set, we use the option obs=10.  Unlike the option data, which 

allows you to specify the data set to be printed, the obs is a data set option and has to be put in parentheses.  

Printing the data set or part of a data set is good to do to check whether the data set importing was successful.  If you 

want to see only some variables in the data set, you could add a var statement after the proc print line and list 

those variables of interest.  
 

proc print data=car (obs=10);  

var mpg engine horse weight origin;  

run; 

 

 

                                                           
5 For more details on procedures, please see the section “What is a procedure?” 



10 

 

 
 

Note in the output above, the first observation has a missing value for the variable origin.  As a general rule, SAS 

procedures that perform computations handle missing data by omitting the missing values. The way that missing 

values are eliminated is not always the same among SAS procedures. If you do want to remove missing values 

manually, the following code does this and creates a cleaned data set named car_cleaned. 

 

data car_cleaned; 

set car; 

if cmiss(of _all_)=0;  

run; 

 

The set statement means we will create a data set based on the current data set car.  The if statement removes all 

the observations with at least one missing value.  If you are only concerned with missing entries of numeric 

variables, you may replace the if statement by  
 

if nmiss(of _NUMERIC_)=0;  

 

which removes the observation if it has a missing value for any numeric variable. 

 

Suppose you want a data set of cars with 6 cylinders only.  The following SAS code will create a new data set called 

car_6cyl containing only those observations whose value for the variable cylinder is 6.  The if statement is used 

to achieve the subsetting.  

 
data car_6cyl;  

set car_cleaned; 

if cylinder=6;  

run; 

 

The variable cylinder has values 3, 4, 5, 6, and 8.  If you want to keep only those cars with 6 or 8 cylinders, the 

following two programs will work and create the data set car_68cyl: 

 

data car_68cyl;  

set car_cleaned; 

if cylinder lt 6  

  then delete;  

run; 

data car_68cyl;  

set car_cleaned; 

if cylinder lt 6  

  then delete;  

run; 



11 

 

The two if statements above use the less than (lt) and greater than or equal to (ge) operations.  Some common 

mathematical operations for numeric variables are listed in the following table: 

 

Function Operator Example 

Addition + x + y 

Subtraction - x – y 

Multiplication * x * y 

Division / x / y 

Power ** or ^ x ** 2 

Equal = or eq x = 120 

Unequal < > or ne x < > 120 

Less than < or lt x < 120   or   x lt 120 

Less than or equal to <= or le x le 120 

Greater than > or gt x gt 80 

Greater than or equal to >= or ge x ge 80 

 

We can also create new variables in DATA steps.  For example: 

 
data newcar;  

set car_cleaned;  

logmpg = log(mpg); 

run; 

 

We define a new variable called logmpg, which is logarithm of mpg, and create in the new data set called newcar.  

We can print the first five observations here: note the last column is what we just created. 

 

 
 

 

There are many other functions we can use in SAS DATA steps.  Common mathematical functions are listed below. 

 

Function Description 

ABS(x) Absolute value 

EXP(x) Value of the exponential function 

FACT(n) Factorial 

LOG(x) Natural (base e) logarithm 

MOD(x,y) Remainder from the division of x by y 

SIGN(x) Sign of a value 

SQRT(x) Square root of a value 

CEIL(x) Smallest integer that is greater than or equal to x 

FLOOR(x) Largest integer that is less than or equal to x 

INT(x) Integer value 

 

 



12 

 

You can also select variables from a current data set for analysis.  The relevant statements are keep and drop.  For 

example, we can create a data set that only contains the two variables specified, mpg and engine. 
 

data car1;  

set car_cleaned;  

keep mpg engine; 

run; 

 

 

What is a procedure?  What is an option or statement?  

 

A SAS program usually includes one or more (statistical) procedures.  Some frequently used procedures for 

statistical analysis are explained in detail below, such as proc univariate, proc glm, and proc gplot.   

 

A statement is a command usually nested within the DATA steps or procedures that tells SAS a bit more about the 

actions you want to perform or in some cases, allows you to make your analysis more specific.  An option is 

something that even further describes a statement, or in some cases, it may also further describe a procedure.  Some 

statements are necessary while others are optional. 
 

An example SAS procedure is:  
 

proc glm data=car_cleaned; 

class cylinder; 

model mpg=cylinder; 

means cylinder / lines tukey bon; 

run; 

 

It is the glm procedure, with class, model, and means statements; and the other keywords in blue are options.  

A typical procedure starts with proc and its name, followed by several statements.  Within each statement 

(including the proc line), users can specify options.  The meaning of the code above shall become clear as we 

explain the details.  

 

Running a procedure typically results in output shown in the Results Viewer window.  As mentioned earlier, SAS 

9.4 by default enables HTML and ODS Graphics (“ODS” stands for Output Delivery System).  This results in well-

organized tables and figures of output that are not necessarily easy to manipulate.  To get the listing output of earlier 

versions, the setting can be done in two ways: 

1) Modify the default setting by selecting Tools → Options → Preferences → Results from the menu bar at 

the top of the main SAS window.  Check the “Create Listing” box and uncheck the “Create HTML” box. 

Also uncheck the “Use ODS Graphics”.6  

2) You can also control these by the following lines of code prior to running the first procedure:  
 

ods html close;    
ods listing; 

 

To find a complete list of SAS procedures, and/or search for related syntax and examples of a particular procedure, 

please see the section “How to use the help documentation” near the end of this document. 

 
proc univariate 
 

This is one of the most important procedures for elementary statistical analysis.  It outputs the basic statistics of one 

or more variables, and has optional statements to generate Q-Q plots and histograms.  Sample code follows: 
 

proc univariate data=car_cleaned normal plot;  

var mpg;  

qqplot; 

histogram; 

output out=new max=maximum min=minimum mean=mean; 

run; 

                                                           
6 However, note that ODS graphics is really useful for generating nice plots. 



13 

 

The code generates summary statistics about the variable mpg – the variable is specified by the var statement.  The 

var statement is optional.  Without this statement, one univariate analysis is performed for every numeric variable 

in the order they appear in the data set.   

 

qqplot and histogram statements generates a Q-Q plot and a histogram for mpg, respectively: When you do not 

specify any variable in either of the two statements, the plot will be generated for each numeric variable given in 

var statement. 

 

 
 

The output statement will save the mean, maximum, and minimum values for mpg in the data set new.  Note that 

max, min, and mean are how SAS recognizes that you are asking for these values.  What comes after the equality 

sign (=) is whatever you choose to name that new value or variable.  



14 

 

proc sort 
 

proc sort sorts the observations in a data set by some variables in either ascending or descending order.  For 

example: 
proc sort data=car_cleaned out=car_sorted; 

by descending engine;  

run; 

proc print data=car_sorted (obs=10); 

run; 

 
 

The observations of data set car_cleaned are sorted in the descending order, by default, of the variable engine, 

and the sorted data is saved in a data set named car_sorted.  Without the out=car_sorted option, the 

originally unsorted data set will be overwritten by the sorted data set.  You can also sort the observations in the 

ascending order of some variable by not specifying the descending option in the by statement; that is, by 

engine;.  If you need to sort the observations by more than one variable, you can list multiple variables in the by 

statement; for example, by engine horse; will sort in the ascending order first by engine, and then the 

observations with the same engine value will be sorted in the ascending order by the values of horse. 

 
proc means  
 

This procedure produces simple univariate descriptive statistics for numeric variables.  It also calculates confidence 

limits for the mean, and identifies extreme values and quartiles.  Here is an example for mean and its confidence 

limit calculation:  
proc means data=car_cleaned alpha=0.05 clm  

           mean median n min max; 

run;  

 
 



15 

 

The mean, median, sample size, minimal value, maximal value, and 95% confidence intervals will be computed for 

all numerical variables.  The alpha option indicates the confidence level for the confidence limit, and the default 

value is 0.05.  clm tells SAS to calculate the confidence interval of the mean.  n is used to count the sample size.  

Since origin, year, and filter are categorical variables, no statistics will be computed for them.   

 

If you have a lot of variables and you only want to calculate the mean for some of them, use the var statement and 

list the variables after the keyword var.  If you want the means of the variables by group, use the by statement.  For 

example,  

 
proc sort data=car_cleaned out=car_sorted; 

by year;   

run;  

proc means data=car_sorted alpha=0.05 clm mean;  

var engine; 

by year; 

run;  

 

The program tells SAS to compute the mean and confidence interval of engine for each value of year, i.e. male and 

female.  If the by statement is used in proc means, the observations need to be sorted by the same by variable 

beforehand.  Note data car_sorted, the sorted data set, was sorted by year in ascending order. 

 

 
 

 

 
proc summary 
 

This procedure computes descriptive statistics for numeric variables in a SAS data set and outputs the results to a 

new SAS data set.  The syntax of proc summary is the same as that of proc means.  An example follows: 

 
proc summary data=car_sorted print; 

var engine; 

by year; 

output out=sumout; 

run; 



16 

 

 
 

proc summary will be executed when either the print option or the output statement is written. 

 
proc corr 
 

This procedure is used for calculating the correlation between numeric variables.  In addition, the output will give 

the simple summary statistics for each numeric variable.  For example, the Pearson correlation coefficient and its P-

value can be computed. The var statement is used to tell SAS which variables in your data set to consider.   
 

proc corr data=car_cleaned; 

var mpg engine; 

run; 

 

 
 

The correlation coefficient between mpg and engine in this example is -0.81769.  For testing the null hypothesis that 

the coefficient is zero, the P-value is smaller than 0.0001.  In this case, the P-value is definitely less than 0.05, and 

the null hypothesis of zero coefficient is rejected at the 5% significance level.  

 

We can create the correlation coefficient matrix for more than two variables: 

 
proc corr data=car_cleaned; 

var mpg engine weight horse;  

run; 



17 

 

 

 
 

 

 

 

Basic Options and Statements within the Procedures7 

To reiterate…… A statement is a command usually nested within the DATA steps or procedures that tells SAS a bit 

more about the actions you want to perform or in some cases, allows you to make your analysis more specific.  An 

option is something that even further describes a statement, or in some cases, it may also further describe a 

procedure.  Some statements are necessary while others are optional. 

 

 

The class statement 
 

The class statement tells SAS that you have variables in your data set that you want to treat as categorical.  For 

example, in the data set car_cleaned the variable cylinder represents how many cylinders a car engine 

possesses, which takes values 3, 4, 5, 6, and 8.  Since engine does not take values outside of this list, it should be 

considered as categorical, and thus must appear in the class statement of the glm procedure when we perform 

data analysis.  (More about proc glm later.)  The most common usage of the class statement will be in the 

univariate, means, and glm procedures.  The following code gives an example of fitting the ANOVA 

(ANalysis Of VAriance) model for mpg, the fuel efficiency of a given engine.  

 
proc glm data=car_cleaned; 

class cylinder; 

model mpg=cylinder; 

run; 

 

                                                           
7 We focus on proc reg and proc glm here.  Some other statements and options have been introduced in 

previous sections. 



18 

 

 
     

Based on the output, we conclude that the different numbers of cylinders have different fuel efficiency.   

 

If a variable in the class statement is included in the model statement as well, then an F-test for the effect size of 

the categorical variable will appear in the output of proc glm. 
 

 

The model statement 
 

By now, you have already seen the model statement in the above example.  The model statement tells SAS which 

model you would like to use for your data.  The dependent or response variable always goes on the left side of the 

equality sign while the independent variable(s) come after the equality sign on the right.  The above glm example 

shows how the model statement works.  For the common procedure you have learned thus far, the model 

statement is only required (and accepted) in the glm and reg procedures.   

 

The model statement also supports many options in both proc glm and proc reg.  For example, in the model 

statement of proc glm, options exist for choosing the types of sums of squares and asking for confidence and 

prediction intervals.  In proc reg, the model statement has options for these same things, plus many other 

options such as standard errors for the regression coefficients, step-wise regression and specialized regression 

diagnostics.  An example of how to use options in the model statement is as follows. 

 
proc reg data=car_cleaned; 

model mpg=engine / stb; 

run; 

 



19 

 

 
You must always use the forward slash (/) to tell SAS that there are options coming after the model statement. 

You can use as many options as you need in one model statement, but just make sure that all of them are separated 

by at least one space.  The option stb asks for the standardized regression coefficients.   
 

proc reg also includes several fit diagnostic plots by default. These can be reproduced utilizing proc gplot 

as well, which is discussed later on. 

 



20 

 

 

 

 
 

 

 
 
 

 

 

 

 



21 

 

The means and lsmeans statements 
 

Often in an ANOVA analysis, once differences are found among groups, we would like to see exactly where those 

differences occur.  This is done in SAS by the use of the means and lsmeans statements in proc glm or proc 

reg.  Both the statements can be used in conjunction with a variety of options.  If you have no missing values in 

your data set, your design is a balanced one and you consider no covariates, you can use the means statement.  

However, if missing values exist, or there is an imbalance in your design, or you have covariates in your model, you 

must use lsmeans to obtain the proper means and comparisons.  An example follows: 
 

proc glm data=car_cleaned; 

class cylinder; 

model mpg=cylinder; 

means cylinder / lines tukey bon; 

run; 

 

 



22 

 

 
 

The means statement will perform means comparisons for all three cylinder groups in this case.  The options 

lines, tukey, and bon are used. The lines option displays the means comparisons in a more readable format.  

The tukey and bon options correspond to Tukey and Bonferroni comparisons procedures, respectively.  Many 

other options for different means comparison procedures also exist (i.e., Dunnett (dunnett), least squared 

differences (lsd), Duncan (duncan), Scheffe (scheffe), Student-Newman-Kuels (snk)).  When using the 

lsmeans statement, the syntax is a bit different: 
 

lsmeans treatment / adj=tukey stderr; 

 

When using lsmeans, you must use the adj option to obtain Tukey and Bonferroni comparisons, for example.  

The stderr option gives the standard errors for the least squares (ls) means. 
 

 

Options in the procedures  
 

Some options available in the procedures come not in the model or the means statements, but directly after the 

proc statement.  An example of this is: 
 

proc glm data=car_cleaned alpha=0.10; 

class cylinder; 

model mpg=cylinder; 

means cylinder / lines tukey bon; 

run; 

 

In this example, it becomes apparent that the data option is really an option in the proc statement. The alpha 

=0.10 option tells SAS that for any confidence intervals, significance testing, etc. you want an alpha of 0.10.  (This 



23 

 

option is such that any tests in the model/means/lsmeans statement and any confidence intervals generated by 

the output statement are performed at the 90% confidence/10% significance level).   

 

 
 

 

Notice that for this testing procedure, the “minimum significant difference” in mpg means between cylinder groups 

has changed from when the alpha value wasn’t specified.  By default, proc glm will use alpha=0.05 when it is 

not specified in the procedure line. 

 

The output statements  
 

In SAS, all the outputs that appear in the output/results viewer window are reports but not files.  So, we can see 

these reports but they are not actually saved in SAS.  The basic function of the output statement in many 

procedures is to create a new data set containing both the information in the old data set and any new diagnostics or 

statistics that the procedure has created.  For example, if you specify a data set for your proc reg procedure, you 

may want to output that data set along with predicted values and residuals.  While some analysis results appear in 

the output window cannot be saved using the output statement, the tables and plots can be saved in other ways.  

Details can be found in section “IV. Miscellaneous SAS Issues”. 
 

Options for obtaining predicted values, residual values, and other statistics and diagnostics 
 

This is how it works in the output statement: 

 
proc reg data=car_cleaned; 

model mpg=engine weight; 

output out=car_reg r=res p=pred; 

run; 

 

Now you have a data set named car_reg which contains everything that data set car_cleaned contains, plus 

the predicted and residual values from your regression model.  You can make diagnostic plots as follows: 

 
proc gplot data=car_reg; 

plot res*pred; 

plot res*engine; 

plot res*weight; 

run; 

 

These plots can help to assess normality, independence of observations, and constancy of variance.  



24 

 

 
 
 
 
 

 



25 

 

 
 

There are many other options besides residual (r) and predicted (p) values depending on which procedure you are 

using for your analysis.  By searching in the SAS help menu, you can find the keywords (e.g., for residuals, the 

keyword is just r=) for other diagnostics such as Cook’s distance, standard errors, prediction, etc.   

 

How does SAS know which data set to use? 

 

If you are working with multiple data sets that you have output from multiple procedures (e.g., you have one data set 

that SAS created from a proc glm and another data set from a proc reg), you must always specifically give the 

name of the data set you wish to use, otherwise SAS will by default to the most recently used data set. 

 
 

 

  



26 

 

III. Working with Graphics in SAS 
 

The commonly used graphic procedures in SAS are proc gplot and proc sgplot, with the assistance of 

statements such as ods graphics.  proc gplot is a popular choice of plotting the values of two numeric 

variables.  proc sgplot can produce a variety of graphs via easy specification.  In this section, we will introduce 

the basics of proc gplot and how to generate common graphs via proc sgplot.  The interested readers are 

referred to a later section on how to use SAS System Documentation to learn more about these procedures.  

 
proc gplot 
 

proc gplot can produce scatter plots and bubble plots.  When used together with symbol statement, it can also 

show the linear pattern, interpolation, or extrapolation of the given data set.  The following example illustrates the 

scatter plot of mpg versus engine in the data set car_cleaned. 

 
symbol value=circle cv=blue  

       interpol=rlclm95 ci=red co=black; 

proc gplot data=car_cleaned; 

plot mpg*engine / regeqn; 

run; quit; 

 

The plot statement in proc gplot tells SAS to make a scatter plot with mpg and engine on the vertical and 

horizontal axes respectively.  The regeqn option adds the regression equation to the output plot.  This option only 

works when we have written the symbol statement before proc gplot.  The value and cv options give the 

marker type and color of scatters in the plot.  ci and co specify the colors for the interpolation line and the 

confidence limit lines.  The interpol option tells SAS the interpolation curve we want.  In this example, we want 

a regression (r) line (l) with 95% confidence limits (clm95).  You can compare this plot and the one given 

previously. 

 

 
 



27 

 

Other types of interpolation are available.  For example, we can specify a smooth line to fit the data by 

interpol=sm978.  The code and the output are given below. 

 
symbol value=circle cv=blue  

       interpol=sm97 ci=red; 

proc gplot data=car_cleaned; 

plot mpg*engine; 

run; 

quit; 

 

 
 

Note that similar to the other global statement, if no new statement is given, then SAS will by default apply the last 

used one to all the following applicable procedures.  To stop the previous specification, simply submit  

 
symbol; 

 

 
proc sgplot  
 

While many plots are available by proc gplot with certain specification, proc sgplot will reduce the trouble 

and offer even more options.  We will consider the car_cleaned data set and generate several commonly used 

graphs.   

1) Box plot for engine for each group of origin.   

We use the vbox statement, letting engine be the main variable, and origin be the group variable. 
proc sgplot data=car_cleaned; 

vbox engine / group=origin; 

run; 

                                                           
8 The value following sm specifies the smoothness of the line: in the range between 00 and 99, the greater the value, 

the smoother the fitted curve. 



28 

 

 
 

2) Histogram and kernel density estimate for horse.   

The two plots, histogram and kernel density, are compatible with each other and thus proc sgplot 

overlays them. 
proc sgplot data=car_cleaned; 

histogram horse; 

density horse / type=kernel; 

run; 

 
 

3) Interaction plot of cylinder and origin.   

Interaction plots are often used for checking the interaction between two (categorical) variables in 

regression analysis.  To generate such plots in SAS, we need the following steps. 

(i) Sort the data set using the two categorical variables under consideration (i.e. cylinder and origin). 
proc sort data=car_cleaned out=car_sort; 

by cylinder origin; 

run; 



29 

 

(ii) Calculate the mean of weight for all the combinations of cylinder and origin. 
proc means data=car_sort noprint; 

by cylinder origin;  

var mpg; 

output out=car_mpg_mean mean=mpg_mean; 

run; 

(iii) Produce a line plot by proc sgplot. 

proc sgplot data=car_mpg_mean; 

vline cylinder / response=mpg_mean group=origin markers; 

label mpg_mean = "Mean of MPG"; 

run; 

Then the output plot looks like the following one. 

 
 

ods graphics 
 

In Version 9.4, ODS graphics are on by default.  So when certain procedures are run, sets of graphs are 

automatically generated.  If you don't want these plots you can simply submit the command 

 
ods graphics off;  

 

Note that this statement will not suppress the output from proc plot, proc gplot and proc sgplot. 

 

Exporting graphs  
 

Often, it is helpful to export SAS graphics to a Word and/or a PowerPoint document.  There are many different 

formats in which to save graphs and many options for exporting graphs.  The ones presented here are in no way 

exhaustive of all options.  Sometimes, it just takes trial and error to find the best way to export a graph from SAS. 

 

1) Exporting graphs/plots to Word/PowerPoint: 

Right-click on the graph you wish to export, and click “Copy”.  Then, go into your Word or PowerPoint 

document, right-click on the position at which you want to put the graph, and click “Paste”.  This is 

probably the simplest way. 

 

2) Exporting graphs/plots as image files: 

Right-click on the graph you wish to export, and click “Save picture as…”.  Then you may save the image 

in a designated address.  

  



30 

 

IV. Miscellaneous SAS Issues 
 

The color coding 
 

When coding in Editor window, SAS will use different colors to distinguish different parts in SAS syntax. It's easy 

for you to check whether the code is correct. Here are some rules: 

 

Color Explanation Example 

Black General part of codes Variable names, data set names 
Bold Dark Blue Procedure names data, proc sort, proc glm 
Bold Green Number See in the following example 

Light Blue Statements and options in 

procedure 

Statements and options in 

procedure 

Green Comment /* Green */ 

Purple Quote See the following example below 

Yellow highlighted 

area 
Data input when using 

datalines or cards 

See the example on page 7 

 

Saving files (program, log, and output) 
 

Now you are familiar with program editor window, log window, and output window.  If you want to save the work 

you’ve done in a session, you’ll need to save the contents of each window separately.  Usually, you only need to 

save the program; you can always run the program to get the log and output.  To save a program file, you’ll need to 

first make sure the program editor is the active window by clicking in that window, then go to file and select the 

“save” or “save as” command.  Similarly, you can save a log file when a log window is active. 

 

There are multiple ways of saving the output.9  Sometimes when you only want to save a small part of the output, 

simply selecting and copying the contents in the Results Viewer window will suffice.  When the Results Viewer 

window is active, you can click the “Save As” option under the “File” menu, and save the output as a webpage.  If 

you want to save your result as a pdf file, you may use the Output Delivery System (ODS).  For example, if you 

want to save the output from proc glm, just add two additional ods pdf statements. 

 
ods pdf file="W:\myoutput.pdf"; 

proc glm data=car_cleaned; 

class cylinder; 

model mpg=cylinder; 

means cylinder / lines tukey bon; 

run; 

ods pdf close; 

 

If you plan to edit your output in Microsoft Office Word, you may replace the key word pdf by rtf in the first and 

last statements above.  rtf stands for “Rich Text Format,” which is supported by Word. 

 

Running programs 
 

You do not have to run the entire program every time you make a correction to your SAS program.  Each SAS 

procedure is relatively independent of other procedures.  As long as you have the data set you need in this procedure 

in SAS, you can run only part of the program by highlighting the part of the program you want to run and then 

clicking the run button in the tool bars or press F8 on your keyboard. 

 

 

 

 

                                                           
9 When listing is enabled, you may obtain an output file.  If the output window is active, you can right click to get 

the menu, go to the “File” option, then go to “Save” option, choose the location you want and click “Save”. The file 

will be saved as list file(.lst), which can be opened in SAS. 

 



31 

 

 

Missing values 
 

a. In SAS, a numeric missing value is represented by a dot or single period (.), character missing value is 

represented by a single blank enclosed in quotes (' '), and special numeric missing values are represented by a 

single period followed by a single letter or an underscore (for example .a, .b). If your data set has missing 

values, you’ll need to specify them as dots or blank enclosed in quotes in the SAS data set.  

 

b. What if data set does not have dots (or blanks)?   You can add a dot to the corresponding missing value 

locations within a data step.  For example, if you have two variables, X and Y, in your data set, and 10 

observations.  The ninth value of Y is missing.  The following code with an If statement will do: 

 

data mydata;  

set a1; 

if _n_ eq 9 then Y=.; 

run; 

 

c. When importing an Excel data file, SAS will automatically recognize missing values that are blank (i.e. empty 

cells) and replace them with dots or blank enclosed in quotes.  However, values like “NA” in your Excel data 

file will make the corresponding column a character variable in SAS when you import the data: so it may be 

necessary to change those values beforehand. 

 

 

Exporting to Excel, Access, or SPSS (.txt, .xls, xlsx,.sav) 
 

Exporting a data set to another program is the reverse of the import process.  If you go to "File" menu and then 

select "Export Data", an export wizard window pops up.  Then just follow the wizard through the following steps.   

 

Step 1: Choose a data set that you created in the WORK library (where the SAS data sets are stored 

automatically by SAS).  Click “Next>” button when you are done.  

 

Step 2: Choose the file type you want to export to.  Available types include Excel, Access, dBase, 

delimited file, and many others.  Then click “Next>”.   

 

Step 3: Type in the directory path where you want to save your data file.  If you are not sure of the path, 

click on the “Browse…” button and find the location. Then click “OK”.  If exporting to Excel, the wizard 

will ask you to assign a name to the exported table.  This name will appear as the Sheet name tab at the 

bottom of the Excel workbook.  At this time, you may click on the “FINISH” button. This method is 

similar to the second method of importing data mentioned in the Introduction chapter on page 2 of this 

document. 

 

 

How to use the help documentation 
 

The SAS System Documentation is extremely helpful if you want to improve your knowledge of SAS, or even 

general statistics.  It provides the complete syntax information, annotated examples for procedures with data and 

code, and technical details of theories and computation.  

 

There are three ways of opening SAS Documentation.   

1) Click “Help” in the menu bar, and choose “SAS Help and Documentation”; 

2) Click the  icon in the tool bar; or 

3) Press F1 of your keyboard. 

Then you should see the following window. 



32 

 

 
On the left side, there are four tabs.  The contents of the documentation will be shown on the right panel.  The quick 

search box on the top-left corner and the Index and Search tabs are useful when you want to find relevant 

information about some keywords. 

 

There is another way of exploring the Documentation more systematically.  Under the Contents tab, you can find a 

long list of SAS components.  The most useful two items are “Sample SAS Programs” and “SAS Procedure”.  If you 

are curious about details of a certain procedure, click “SAS Procedure”, and select the one of your interest on the 

right panel.   

 

For example, say we want to know more about proc reg.  The Overview tab describes in general what the 

procedure is for.  Under the Getting Started tab, you can find easily accessible, introductory examples of using the 

procedure.  More examples are given under the Examples tab.  If you want to know syntax details, click and search 

under the Syntax tab. 

 



33 

 

 
 

Under the Contents tab, you may explore to see different capabilities of SAS.  For instance, following the pathway 

SAS System Documentation > SAS Products > Base SAS > ODS Graphics > 

SAS 9.4 ODS Graphics: Procedures Guide, Second Edition >  

Introduction to the Procedures > Overview of Plots and Charts >  

Basic Plots and Charts 

you will see a list plots which can be generated by proc sgplot.  

 

You can also work through the SAS tutorial provided in the under “Learning to use SAS”.  The tutorial is also 

available through a pop-up window that appears when you launch a SAS session.  The folder “Sample SAS 

Programs” under the Contents tab include the code for all the examples of each procedure, you may use them to get 

hands-on experience. 

 

Other SAS support 
 

There are many other ways to get help for SAS online and in printed sources.  A quick Google search will often give 

hints for your questions.   

 

Purdue users of SAS can visit the Software Help Desk by the Statistical Consulting Service when classes are in 

session for Fall, Spring and the 8 week Summer semesters.  For availability and location, please check: 

http://www.stat.purdue.edu/scs/help/software_consulting_schedule.html.  

http://www.stat.purdue.edu/scs/help/software_consulting_schedule.html

