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Getting and installing R 
R is a free and open source statistical software. You can download R from the 
following website: https://cran.r-project.org/. R is available for Linux, OS X and 
Windows, just click download R according your operating system. For now we just 
need base distribution and you can choose base and click ‘Download R x.x.x for …’ to 
get it.  

Install packages 
The R package comes with numerous basic functions, like mean() and median(), 
and procedures, such as lm for linear regression.  More advanced functions and 
procedures will be in packages. In this example, we will be installing the ggplot2 
package, which can be used to create advanced graphics. 

The first step is to enter the following command in the R console window 

install.packages("ggplot2") 

You should see information appear in the R console window as it is installed.  If 
there are no errors, the package is installed. To load the package for use, enter the 
following in the R console window 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.1.3 

You will often see these warning messages but there is rarely a compatibility issue.  
To use the functions and procedures in the package, you will need to load the 
package each time you open R, although you only need to install the package once. 
‘##’ is a prompt that indicates the message from the R console. 

Basic data structure 

Vector 
A vector is a contiguous collection of objects of the same type. Common types of 
vectors include logical, integer, double, and character. Here are some examples of 
vectors 

x <- c(3,2,5,6,55) 
x 

## [1]  3  2  5  6 55 

y <- c("a", "d", "e", "hi") 
y 

## [1] "a"  "d"  "e"  "hi" 

https://cran.r-project.org/


Here x is a vector of integers and y is a vector of characters. You can use the function 
c() to create a vector. The letter c stands for concatenate. You must separate the 
values using a comma. You can put as many items as you want inside a vector.  
Typing the name of a vector as a command prints the vector elements in order.   
To access one element of the vector, you can use the following code 

x[3] 

## [1] 5 

This command asks for the third element of the vector x.   

It is also possible to have a vector of length one (i.e., a named constant). 

cool <- 4 
cool 

## [1] 4 

Here cool is a vector with length one that contains the value 4. 

List 
A list is another data structure in R. It is similar to a vector, however it differs in that 
you can put objects of different types into a list. Here is an example: 

person <- list("black hair", "brown eyes", 22, TRUE) 
person 

## [[1]] 
## [1] "black hair" 
##  
## [[2]] 
## [1] "brown eyes" 
##  
## [[3]] 
## [1] 22 
##  
## [[4]] 
## [1] TRUE 

Here the person variable is a list with 4 objects. You can access elements in a list the 
same way you access elements in a vector. For example, 

person[2] 

## [[1]] 
## [1] "brown eyes" 

This will show us the second element in person. 



Matrix 
A matrix is a two dimensional data structure in R. Similar to a vector, matrices must 
contain objects of the same type.  

mat <- matrix(NA, nrow = 4, ncol = 5) 
mat 

##      [,1] [,2] [,3] [,4] [,5] 
## [1,]   NA   NA   NA   NA   NA 
## [2,]   NA   NA   NA   NA   NA 
## [3,]   NA   NA   NA   NA   NA 
## [4,]   NA   NA   NA   NA   NA 

In the preceding example, mat is a matrix with 4 rows and 5 columns. The values 
inside mat are all set to NA. This is essentially an empty (or missing) matrix. 
You can access a row of a matrix by the following command. 

mat[row.number,] 

Where row.number is the row you want to look at. You must include a comma after 
the row number since the matrix is two dimensional. You can access a column of a 
matrix by having the comma first 

mat[,col.number] 

We can fill the matrix with whatever objects we like, provided all the objects are of 
the same type.  In the following example, we fill in the rows of the matrix mat one at 
a time.  Each row is basically a vector so we can use the same commands we can use 
to specify a vector.   

mat[1,] <- c(2,3,7,5,8) 
mat[2,] <- rep(4, 5) 
mat[3,] <- 33:37 
mat[4,] <- seq(23, 31, 2) 
mat 

##      [,1] [,2] [,3] [,4] [,5] 
## [1,]    2    3    7    5    8 
## [2,]    4    4    4    4    4 
## [3,]   33   34   35   36   37 
## [4,]   23   25   27   29   31 

For the second row we used the rep() function, which stands for repeat. This 
function takes two numbers; the first number is the number you want to repeat and 
the second number is how many times you want this number to be repeated. For the 
third row, we used the : function. This function takes two numbers, the first number 
before the colon indicates the start and the second number after the colon indicates 
the end of a numeric sequence. The function, by default, will create a vector that 
increases by one from the start to the end. For the last row, we used the seq() 
function, which stands for sequence. This function takes 3 arguments. The first 



argument is the start value, the second argument is the ending value, and the last 
argument is how much you want to increment by. The seq()function will create a 
vector that starts at the start, ends at the end, and increases by the increment value. 
You will notice that all four rows are assigned vectors of length 5. This is because we 
have 5 columns.  

You can set the column and row names of a matrix using the functions colnames() 
and rownames() respectively. Here is an example: 

rownames(mat) <- c("r1", "r2", "r3", "r4") 
rownames(mat) 

## [1] "r1" "r2" "r3" "r4" 

 

To look at the contents of one row of a matrix, we state the row number followed by 
a comma: 

mat[2,] 

## [1] 4 4 4 4 4 

This shows us the second row. We can also look at a column putting the comma first 

mat[,3] 

## [1]  7  4 35 27 

This shows us the third column. You can access one element of a matrix by 
specifying the element’s row and column number 
mat[4,5] 

## [1] 31 

This will show us the element in the fourth row and the fifth column.  
 
Dataframe 
A dataframe is another two-dimensional data structure in R. Much like a list, a 
dataframe can contain objects of different types. However objects within one 
column must be the same. Here is an example of a data frame 
df <- data.frame(haircolor = c("red", "black", "blonde"), eyecolor = c(
"green", "brown", "blue"), age = c(22, 23, 25), phd = c(T, T, F)) 
df 

##   haircolor eyecolor age   phd 
## 1       red    green  22  TRUE 
## 2     black    brown  23  TRUE 
## 3    blonde     blue  25 FALSE 



This dataframe has three rows and 4 columns. The 4 columns represent different 
variables. You can access one column of the dataframe by the following 

df$age 

## [1] 22 23 25 

where df is the name of the dataframe and age is the column you want to look at. 
You can also use the matrix operators to access rows, columns, and elements of a 
data frame. Here is an example: 

df[3,] 

##   haircolor eyecolor age   phd 
## 3    blonde     blue  25 FALSE 

df[,2] 

## [1] green brown blue  
## Levels: blue brown green 

df[3,3] 

## [1] 25 

Array 
An array is a data structure in R that has 2 or more dimensions. Here is an example 
of an array 

my_arr <- array(1:8, c(2,2,2)) 
my_arr 

## , , 1 
##  
##      [,1] [,2] 
## [1,]    1    3 
## [2,]    2    4 
##  
## , , 2 
##  
##      [,1] [,2] 
## [1,]    5    7 
## [2,]    6    8 

Here we have created an array called my_arr using the function array(). The first 
argument in array() is a vector of the numeric values we want in the array. The 
second argument are the dimensions of my array presented as a vector. You can see 
in the output, the array is filled with the values 1 to 8, and there are two 2x2 
matrices. The first 2 specifies the number of rows, the second 2 specifies the number 
of columns, and the third 2 specifies the number of matrices . You can access 
elements of the array with the following code: 



my_arr[,,1] 

##      [,1] [,2] 
## [1,]    1    3 
## [2,]    2    4 

This returns the first 2x2 matrix. 

my_arr[1,,1] 

## [1] 1 3 

This returns the first row in the first matrix. 

my_arr[,1,1] 

## [1] 1 2 

This returns the first column in the first matrix. 

 

Reading and Exporting data 

1. Reading in free formatted data using the built-in module in R 
Studio 
R Studio is a popular IDE for R. It is free and available at https://www.rstudio.com/   
for both Windows and OS X. Probably the easiest way to import data is using the 
built-in module in R Studio. It can take care of all the details for you. If you are new 
to R, it is highly recommended to do that. In this example, we will import a dataset 
with the name ‘Cars.csv’. The dataset is available on our website 
(http://www.stat.purdue.edu/scs/help/Intro_stat_software.html ) and you can 
download it and put it at your working directory. 

1. Click Import Dataset in environment panel. It can either be from text file or from 
web URL, depends on whether you can try to import a local file. 

 

https://www.rstudio.com/%20forP
http://www.stat.purdue.edu/scs/help/Intro_stat_software.html


2. Locate the file and a pop-up window will appear 

 
 

3. Specify the name of the data frame of the file imported in the box under 'Name', 
the default setting is the file name without its extended name. Click to choose 
whether there is a headings row in the data file or not. The content of the data 
frame will show up in the right lower part of the window. Be careful when it 
looks like this: 

 



This suggests there was a header row but the ‘Yes’ was not selected.   

Change the Heading to be 'Yes', the file will load properly. Also it will take care of the 
missing values which are coded as ‘NA’ in this document. 

 

 

2. Reading in free formatted data from an ASCII file using the 
read.table function 
 
The read.table() function can read in any type of delimited ASCII file. It works 
pretty much the same as import dataset procedures in R studio. Actually, what this R 
module does is translate your specifications into function calls.  So, read.table is 
doing that directly. 

Here is an example for reading in the Car.csv file we just loaded by using 'Import 
Dataset' module. 

cars <- read.table(file = "Cars.csv", header = TRUE, sep = ",") 

The data will be stored as a data frame and be assigned to the variable ‘cars’ on the 
left hand side of ‘<-“. Three most important argument of read.table are: 

• file: Specify the file location, if no specific path is specified, it will look for files 
in current working directory. So we can either specify the full path or just the 
file name if it is in the working directory. 



• header: Whether the file's first row is a header row or not, default value is 
FALSE 

• sep: Specifies the separator, default value is ‘ ‘. 

For more detail, read the help document by using the ‘help()’ function. You can also 
learn similar functions which are developed for a certain type of files there. For 
example, the following command will give you the help document for read.table 
function. 

help("read.table") 

 

3.Exporting files using write.table function 
 
The write.table function outputs data frame. Suppose we made some changes on 
‘cars’ that we just read in and would like to save somewhere then write.table 
function can be used . The arguments it takes are similar to read.table. Here is an 
example: 

write.table(cars, file = "Cars2.csv", sep = "\t", row.names = FALSE,  
            col.names = TRUE) 

• The first argument is to specify which data frame to be exported. 

• file: the path of file to be created. 

• sep: separator, the default separator is a blank space but any separator can be 
specified in the sep option. In the example we used a Tab separator. 

• row.names and col.names: whether those names will appear in the output file. 
The default values are both TRUE. 

Basic Statistics 
 

The following commands are commonly used to explore and describe a data set.   

Here is a print out the data set for reference: 
 
Cars 
 

##      mpg engine horse weight accel year origin cylinder filter_.  mpg1 
## 1    9.0    4.0    93    732   8.5    0     NA       NA       NA  9.98 
## 2   10.0  360.0   215   4615  14.0   70      1        8        0 10.87 
## 3   10.0  307.0   200   4376  15.0   70      1        8        0  9.63 
## 4   11.0  318.0   210   4382  13.5   70      1        8        0 12.12 
## 5   11.0  429.0   208   4633  11.0   72      1        8        0 10.63 



## . 
## . 
## . 
## 398 46.6   86.0    65   2110  17.9   80      3        4        1 47.93 
## 399   NA  133.0   115   3090  17.5   70      2        4        1    NA 
## 400   NA  350.0   165   4142  11.5   70      1        8        0    NA 
## 401   NA  351.0   153   4034  11.0   70      1        8        0    NA 
## 402   NA  383.0   175   4166  10.5   70      1        8        0    NA 
## 403   NA  360.0   175   3850  11.0   70      1        8        0    NA 
## 404   NA  302.0   140   3353   8.0   70      1        8        0    NA 
## 405   NA   97.0    48   1978  20.0   71      2        4        1    NA 
## 406   NA  121.0   110   2800  15.4   81      2        4        1    NA 
 

 
  

There are some missing values, so we need to remove these missing values first. 

 

Removing missing values: 

cars=cars[-which(is.na(cars),arr.ind=T),] 

Summary of Statistics 
#summary(dataset/variable) 
summary(cars) 

##       mpg            engine          horse           weight     
##  Min.   :10.00   Min.   : 68.0   Min.   : 46.0   Min.   :1613   
##  1st Qu.:17.50   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2220   
##  Median :23.00   Median :151.0   Median : 92.0   Median :2790   
##  Mean   :23.64   Mean   :193.6   Mean   :103.4   Mean   :2958   
##  3rd Qu.:29.00   3rd Qu.:261.0   3rd Qu.:123.5   3rd Qu.:3590   
##  Max.   :46.60   Max.   :455.0   Max.   :230.0   Max.   :5140   
##      accel            year           origin         cylinder     
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   Min.   :4.000   
##  1st Qu.:14.00   1st Qu.:73.00   1st Qu.:1.000   1st Qu.:4.000   
##  Median :15.50   Median :76.00   Median :1.000   Median :4.000   
##  Mean   :15.57   Mean   :76.03   Mean   :1.567   Mean   :5.462   
##  3rd Qu.:17.05   3rd Qu.:79.00   3rd Qu.:2.000   3rd Qu.:8.000   
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   Max.   :8.000   
##     filter_.           mpg1       
##  Min.   :0.0000   Min.   :10.63   
##  1st Qu.:0.0000   1st Qu.:17.16   
##  Median :1.0000   Median :22.71   
##  Mean   :0.7441   Mean   :23.58   
##  3rd Qu.:1.0000   3rd Qu.:29.34   
##  Max.   :1.0000   Max.   :47.93 



Data Structure 
#str(dataset/variable) 
str(cars) 

## 'data.frame':    379 obs. of  10 variables: 
##  $ mpg     : num  10 11 11 11 12 12 12 13 13 13 ... 
##  $ engine  : num  360 318 429 400 455 400 350 400 400 350 ... 
##  $ horse   : int  215 210 208 150 225 167 180 170 175 165 ... 
##  $ weight  : int  4615 4382 4633 4997 4951 4906 4499 4746 5140 ...  
##  $ accel   : num  14 13.5 11 14 11 12.5 12.5 12 12 12 ... 
##  $ year    : int  70 70 72 73 73 73 73 71 71 72 ... 
##  $ origin  : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ cylinder: int  8 8 8 8 8 8 8 8 8 8 ... 
##  $ filter_.: int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ mpg1    : num  10.9 12.1 10.6 10.8 12.3 ... 

Mean and Variance 
#mean(variable,na.rm(removing NA)=True) 
mean(cars$mpg) 

## [1] 23.64248 

#var(variable) 
var(cars$mpg) 

## [1] 59.8734 

Number of Observation in the Variable 
#length(variable) 
length(cars$mpg) 

## [1] 379 

Median 
#median(variable,na.rm=T) 
median(cars$mpg) 

## [1] 23 

Quantile 
#quantile(variable,level,na.rm=T), the argument na.rm==T means any NA a
nd NaN's are removed from x before the quantiles are computed. 
quantile(cars$mpg,0.25) 

##  25%  
## 17.5 
 
 



These commands are used for basic statistical inference 
 
T-test 
The default options of t-test in R are “x”, ”y”, “alternative”, “mu”, “paired”, “var.equal” 
and “conf.level”,  and their default values  are  as follows: 

t.test(x, y = NULL, 
       alternative = c("two.sided", "less", "greater"), 
       mu = 0, paired = FALSE, var.equal = FALSE, 
       conf.level = 0.95, ...) 

 
One Sample t-test 
#t.test(variable, mean under null hypothesis) 
t.test(cars$mpg,mu=25) 

##  
##  One Sample t-test 
##  
## data:  cars$mpg 
## t = -3.4155, df = 378, p-value = 0.0007058 
## alternative hypothesis: true mean is not equal to 25 
## 95 percent confidence interval: 
##  22.86096 24.42400 
## sample estimates: 
## mean of x  
##  23.64248 

 
Independent Sample t-test (Unequal Variance) 
#t.test(variable1,variable2) 
t.test(cars$mpg,cars$mpg1) 

##  
##  Welch Two Sample t-test 
##  
## data:  cars$mpg and cars$mpg1 
## t = 0.10196, df = 755.88, p-value = 0.9188 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -1.052830  1.168186 
## sample estimates: 
## mean of x mean of y  
##  23.64248  23.58480 

 

 



Independent Sample t-test (Equal Variance) 
#t.test(variable1,variable2,var.equal=True) 
t.test(cars$mpg,cars$mpg1,var.equal=T) 

##  
##  Two Sample t-test 
##  
## data:  cars$mpg and cars$mpg1 
## t = 0.10196, df = 756, p-value = 0.9188 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -1.052830  1.168186 
## sample estimates: 
## mean of x mean of y  
##  23.64248  23.58480 

 
Paired t-test 
#t.test(variable1,variable2,paired=T) 
t.test(cars$mpg,cars$mpg1,paired=T) 

##  
##  Paired t-test 
##  
## data:  cars$mpg and cars$mpg1 
## t = 1.0662, df = 378, p-value = 0.287 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -0.0486872  0.1640434 
## sample estimates: 
## mean of the differences  
##               0.0576781 

Chi-Squared Tests 
We are going to use a made-up a data set in the following example as Cars.csv does 
not lend itself to a Chi-Squared test.  The data set will be a two-way contingency 
table, where the two factors are Degree (levels are High and Low) and clinic (5 
levels from Worse to Marked Improvement), and the response variable is y.  

Data input: 
y1<-c(1,13,16,15,7) 
y2<-c(11,53,42,27,11) 
 
y<-cbind(y1,y2) 
dimnames(y)<-list(clinic=c("Worse","Stationary","Slight Improvement", 
                          "Moderate Improvement","Marked Improvement"), 
                  Degree=(c("High","Low"))) 



 
y 

##                       Degree 
## clinic                 High Low 
##   Worse                   1  11 
##   Stationary             13  53 
##   Slight Improvement     16  42 
##   Moderate Improvement   15  27 
##   Marked Improvement      7  11 

 
Performing the Chi-squared test: 

chi.test<-chisq.test(y) 

## Warning in chisq.test(y): Chi-squared approximation may be incorrect 

chi.test 

##  
##  Pearson's Chi-squared test 
##  
## data:  y 
## X-squared = 6.8807, df = 4, p-value = 0.1423 
 
 
To see the other data produced by chisq.test: 

names(chi.test) 

## [1] "statistic" "parameter" "p.value"   "method"    "data.name" "obs
erved"  
## [7] "expected"  "residuals" "stdres" 
 

To get the expected values, for example: 

chi.test$expected 

##                       Degree 
## clinic                      High       Low 
##   Worse                 3.183673  8.816327 
##   Stationary           17.510204 48.489796 
##   Slight Improvement   15.387755 42.612245 
##   Moderate Improvement 11.142857 30.857143 
##   Marked Improvement    4.775510 13.224490 
 
 



Correlation 
By default, the correlation function in R is as follows: 

cor(x, y = NULL, use = "everything", 
    method = c("pearson", "kendall", "spearman")) 
#by default it uses Pearson method 

#cor(variable1,variable2) 
cor(cars$mpg,cars$engine) 

## [1] -0.812826 

cor(cars$mpg,cars$engine,method="spearman") 

## [1] -0.8729739 

Correlation Significance Test 
#cor.test(variable1,variable2) 
cor.test(cars$mpg,cars$engine) 

##  
##  Pearson's product-moment correlation 
##  
## data:  cars$mpg and cars$engine 
## t = -27.094, df = 377, p-value < 2.2e-16 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  -0.8444198 -0.7755971 
## sample estimates: 
##       cor  
## -0.812826 

cor.test(cars$mpg,cars$engine,method="spearman") 

## Warning in cor.test.default(cars$mpg, cars$engine, method = "spearma
n"): 
## Cannot compute exact p-value with ties 

##  
##  Spearman's rank correlation rho 
##  
## data:  cars$mpg and cars$engine 
## S = 16994000, p-value < 2.2e-16 
## alternative hypothesis: true rho is not equal to 0 
## sample estimates: 
##        rho  
## -0.8729739 



Plotting a Scatterplot 
plot(cars$mpg,cars$engine,xlab="Miles Per Gallon", ylab="Engine Displac
ement",  
     main="Scatterplot between Miles Per Gallon & Engine Displacement") 

 

Hypothesis testing (t-tests done previously) 

One-Way ANOVA 
We will introduce how to do One-Way ANOVA (analysis of variance) in R based on 
the dataset Cars.csv. The response variable is mpg. The factor is origin. The One-
Way ANOVA can be carried out by using the R function aov() 
We read in the dataset and name it as cars and change the class of the variable origin 
to be a factor. There are three levels of origin as 1, 2 and 3. 

cars <- read.csv("Cars.csv") 

#Use read.csv to import a csv file 

cars$origin <- as.factor(cars$origin) 
levels(cars$origin) 

## [1] "1" "2" "3" 

The first step in our analysis is to graphically compare mpgs among three 
distributions with different origins.  

plot(mpg ~ origin, data=cars) 



 

From the boxplot it appears that the median of mpg for origin 1 is lower than for 
origin 2 and 3. 

Next, the R function aov() can be used for fitting ANOVA models. 

results = aov(mpg ~ origin, data=cars) 
summary(results) 
##              Df Sum Sq Mean Sq F value Pr(>F)     
## origin        2   7985    3992   97.97 <2e-16 *** 
## Residuals   394  16056      41                    
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 9 observations deleted due to missingness 

From the output of summary(), The F value is 97.97 with a p-value smaller than 
0.05. We clearly reject the null hypothesis of equal means of mpg for all three origin. 

The model is significant, then we would like to carry out the multiple comparisons 
to get information how mpg differs in three different origin by using R function 
pairwise.t.test(). This function pairwise.t.test computes the pair-wise comparisons 
between group means with corrections for multiple testing. 

pairwise.t.test(cars$mpg, cars$origin, p.adjust="bonferroni") 

##  
##  Pairwise comparisons using t tests with pooled SD  
##  
## data:  cars$mpg and cars$origin  
##  



##   1      2     
## 2 <2e-16 -     
## 3 <2e-16 0.045 
##  
## P value adjustment method: bonferroni 

This result states that the means of these three origins are all significantly different. 

Another multiple comparisons procedure is Tukey's method by using R function 
TukeyHSD(). This function creates a set of confidence intervals on the differences 
between means. 

results = aov(mpg ~ origin, data=cars) 
TukeyHSD(results,conf.level=0.95) 

##   Tukey multiple comparisons of means 
##     95% family-wise confidence level 
##  
## Fit: aov(formula = mpg ~ origin, data = cars) 
##  
## $origin 
##          diff        lwr       upr     p adj 
## 2-1  7.763203 5.73054715  9.795858 0.0000000 
## 3-1 10.322407 8.38214860 12.262666 0.0000000 
## 3-2  2.559204 0.09398439  5.024424 0.0397888 

The results show that all the three differences are significant. 

Then we want to carry out the diagnostic of the model assumption, and we can use 
the plot function to plot the model: 
plot(results) 

 

The redline connects the medians across different groups. 



 

The points are mostly close to the straight line, however, we can observe a small 
pattern in the beginning and in the end, which suggests the distribution of residuals 
is a little skewed.  



 

 
 



Regression 
 
As before, we remove the missing values first: 

cars<-cars[-which(is.na(cars),arr.ind=T),] 

To get the names of variables in the dataset, we can use the basic function "names": 
names(cars) 

##  [1] "mpg"      "engine"   "horse"    "weight"   "accel"    "year"   
##  [7] "origin"   "cylinder" "filter_." "mpg1" 
 
Linear Regression Models 
To fit a linear regression model with all variables in the dataset without interaction: 
mod.reg<-lm(mpg~.,data=cars) 
summary(mod.reg) 

##  
## Call: 
## lm(formula = mpg ~ ., data = cars) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -3.3196 -0.6958  0.0189  0.6254  3.0243  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.5673545  1.5809687  -0.359  0.71990     
## engine       0.0025929  0.0024279   1.068  0.28622     
## horse        0.0004493  0.0046635   0.096  0.92330     
## weight      -0.0006067  0.0002320  -2.615  0.00930 **  
## accel        0.0159285  0.0316724   0.503  0.61533     
## year         0.0662729  0.0200110   3.312  0.00102 **  
## origin       0.0964715  0.0902488   1.069  0.28579     
## cylinder    -0.2033509  0.1193718  -1.704  0.08931 .   
## filter_.    -0.4577229  0.2929970  -1.562  0.11910     
## mpg1         0.9102985  0.0167311  54.407  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.023 on 369 degrees of freedom 
## Multiple R-squared:  0.9829, Adjusted R-squared:  0.9825  
## F-statistic:  2362 on 9 and 369 DF,  p-value: < 2.2e-16 

To fit a linear regression model with several variables in the dataset: 
mod1<-lm(mpg~engine+horse+weight,data=cars) 
summary(mod1) 
##  
## Call: 



## lm(formula = mpg ~ engine + horse + weight, data = cars) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -9.4431 -2.7307 -0.3825  2.2516 16.1406  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 44.7774973  1.2369586  36.200  < 2e-16 *** 
## engine      -0.0098511  0.0069098  -1.426   0.1548     
## horse       -0.0278049  0.0133328  -2.085   0.0377 *   
## weight      -0.0055278  0.0007289  -7.584 2.67e-13 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.169 on 375 degrees of freedom 
## Multiple R-squared:  0.7121, Adjusted R-squared:  0.7098  
## F-statistic: 309.1 on 3 and 375 DF,  p-value: < 2.2e-16 

To fit a linear regression model with interaction: 

mod2<-lm(mpg~engine*horse+weight,data=cars) 

#engine*horse means the main effects of engine and horse as well as the
ir interaction effect. 

 
summary(mod2) 

##  
## Call: 
## lm(formula = mpg ~ engine * horse + weight, data = cars) 
##  
## Residuals: 
##    Min     1Q Median     3Q    Max  
## -9.936 -2.216 -0.238  1.871 16.781  
##  
## Coefficients: 
##                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   5.373e+01  1.568e+00  34.278  < 2e-16 *** 
## engine       -7.268e-02  9.879e-03  -7.357 1.20e-12 *** 
## horse        -1.796e-01  2.201e-02  -8.161 5.11e-15 *** 
## weight       -2.895e-03  7.417e-04  -3.903 0.000113 *** 
## engine:horse  4.724e-04  5.686e-05   8.308 1.81e-15 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.835 on 374 degrees of freedom 
## Multiple R-squared:  0.7569, Adjusted R-squared:  0.7543  
## F-statistic: 291.2 on 4 and 374 DF,  p-value: < 2.2e-16 



To fit a linear regression model with higher order interaction: 

mod3<-lm(mpg~(engine+horse+weight)^3,data=cars) 
summary(mod3) 

##  
## Call: 
## lm(formula = mpg ~ (engine + horse + weight)^3, data = cars) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -9.5411 -2.2346 -0.4175  1.7745 17.3233  
##  
## Coefficients: 
##                       Estimate Std. Error t value Pr(>|t|)     
## (Intercept)          6.163e+01  5.560e+00  11.085  < 2e-16 *** 
## engine              -1.208e-01  3.819e-02  -3.163  0.00169 **  
## horse               -1.871e-01  7.713e-02  -2.426  0.01573 *   
## weight              -6.913e-03  2.398e-03  -2.883  0.00417 **  
## engine:horse         5.980e-04  2.627e-04   2.277  0.02338 *   
## engine:weight        1.982e-05  9.870e-06   2.008  0.04541 *   
## horse:weight         1.461e-05  2.680e-05   0.545  0.58582     
## engine:horse:weight -7.848e-08  6.647e-08  -1.181  0.23848     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.817 on 371 degrees of freedom 
## Multiple R-squared:  0.7612, Adjusted R-squared:  0.7567  
## F-statistic:   169 on 7 and 371 DF,  p-value: < 2.2e-16 

To view the contents of model summary: 

sum=summary(mod.reg) 
names(sum) 

##  [1] "call"          "terms"         "residuals"     "coefficients"  
##  [5] "aliased"       "sigma"         "df"            "r.squared"     
##  [9] "adj.r.squared" "fstatistic"    "cov.unscaled" 

To get model coefficients: 
sum$coefficients 

##                  Estimate  Std. Error     t value      Pr(>|t|) 
## (Intercept) -0.5673545304 1.580968723 -0.35886512  7.199012e-01 
## engine       0.0025929429 0.002427858  1.06799595  2.862205e-01 
## horse        0.0004492931 0.004663497  0.09634253  9.233008e-01 
## weight      -0.0006066500 0.000232019 -2.61465725  9.297769e-03 
## accel        0.0159284879 0.031672447  0.50291308  6.153254e-01 
## year         0.0662728753 0.020011017  3.31181941  1.018461e-03 
## origin       0.0964715379 0.090248782  1.06895114  2.857905e-01 
## cylinder    -0.2033509048 0.119371772 -1.70350915  8.931478e-02 



## filter_.    -0.4577229299 0.292996952 -1.56221055  1.190956e-01 
## mpg1         0.9102985190 0.016731122 54.40749836 2.447556e-178 

To get specific values in the model coefficients, for example p-values: 
sum$coefficients[,4] 

##   (Intercept)        engine         horse        weight         acce
l  
##  7.199012e-01  2.862205e-01  9.233008e-01  9.297769e-03  6.153254e-0
1  
##          year        origin      cylinder      filter_.          mpg
1  
##  1.018461e-03  2.857905e-01  8.931478e-02  1.190956e-01 2.447556e-17
8 

Logistic regression 
For the logistic regression case, suppose we are interested in how variables, such as 
GRE (Graduate Record Exam scores), GPA (grade point average) and prestige of the 
undergraduate institution, effect admission into graduate school. The response 
variable, admit/don't admit, is a binary variable. 

Let's first read in the dataset online. 
admission <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") 
head(admission) 

##   admit gre  gpa rank 
## 1     0 380 3.61    3 
## 2     1 660 3.67    3 
## 3     1 800 4.00    1 
## 4     1 640 3.19    4 
## 5     0 520 2.93    4 
## 6     1 760 3.00    2 

This dataset has a binary response (outcome, dependent) variable called admit. 
There are three predictor variables: gre, gpa and rank. We will treat the variables 
gre and gpa as continuous. The variable rank takes on the values 1 through 4. 
Institutions with a rank of 1 have the highest prestige, while those with a rank of 4 
have the lowest. We can get basic descriptives for the entire data set by using 
summary function. 

summary(admission) 

##      admit             gre             gpa             rank       
##  Min.   :0.0000   Min.   :220.0   Min.   :2.260   Min.   :1.000   
##  1st Qu.:0.0000   1st Qu.:520.0   1st Qu.:3.130   1st Qu.:2.000   
##  Median :0.0000   Median :580.0   Median :3.395   Median :2.000   
##  Mean   :0.3175   Mean   :587.7   Mean   :3.390   Mean   :2.485   
##  3rd Qu.:1.0000   3rd Qu.:660.0   3rd Qu.:3.670   3rd Qu.:3.000   
##  Max.   :1.0000   Max.   :800.0   Max.   :4.000   Max.   :4.000 



First, we convert rank to a factor to indicate that rank should be treated as a 
categorical variable. 

admission$rank <- factor(admission$rank) 
levels(admission$rank) 

## [1] "1" "2" "3" "4" 

Then we fit a logistic regression model using the glm function and use summary 
function to get the estimate of the model. 

results <- glm(admit ~ gre + gpa + rank, data = admission, family = "bi
nomial") 
summary(results) 

##  
## Call: 
## glm(formula = admit ~ gre + gpa + rank, family = "binomial",  
##     data = admission) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.6268  -0.8662  -0.6388   1.1490   2.0790   
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -3.989979   1.139951  -3.500 0.000465 *** 
## gre          0.002264   0.001094   2.070 0.038465 *   
## gpa          0.804038   0.331819   2.423 0.015388 *   
## rank2       -0.675443   0.316490  -2.134 0.032829 *   
## rank3       -1.340204   0.345306  -3.881 0.000104 *** 
## rank4       -1.551464   0.417832  -3.713 0.000205 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 499.98  on 399  degrees of freedom 
## Residual deviance: 458.52  on 394  degrees of freedom 
## AIC: 470.52 
##  
## Number of Fisher Scoring iterations: 4 

The outputs from summary can show us a lot of useful information. In the 
'Coefficients' section of the output, we can check whether the predictor variables are 
significant or not by checking the p-value. As we can see from the output, both gre 
and gpa are statistically significant, as are the three terms for rank. The logistic 
regression coefficients give the change in the log odds of the outcome for a one unit 
increase in the predictor variable. 

 



You can also calculate odds ratio. 
exp(coef(results)) 

## (Intercept)         gre      gpa       rank2       rank3       rank4
  
##   0.0185001   1.0022670   2.2345448  0.5089310  0.2617923  0.2119375 

Power calculation 
We now take a look at how to conduct power analysis for a simple t test, a paired t 
test and a One-way ANOVA. 

The power of a test is the probability of detecting an effect given that the effect 
exists. In statistical jargon, it is the probability of rejecting the null hypothesis when 
the alternative hypothesis of interest is true. 

Conducting a power analysis is generally done for two of the following reasons: 

1) To determine the number of subjects (sample size) needed in order to 
detect a given effect size at a specified power. 

2) To determine the power of the test given an effect size and the sample 
size available for the study. 

In the first case, the power analysis is done before the data collection stage. In the 
second case, the power analysis is often used when there is a limit to the number of 
subjects the researcher can use in the study. The power analysis is therefore run in 
this case in order to determine how likely the study conducted using the limited 
sample size at hand is to detect an effect. A low power, would be a good reason to 
rethink whether to proceed with the study. 

In order to conduct a power analysis, three out of four of the following values need 
to be specified: (i.e. given three of the quantities below the fourth one can be 
computed using the power analysis) 

• Sample size 
• Effect size 
• Significance level ( Type I error: the probability of finding an effect when the 

effect is present) 
• Power ( 1- Type II error: The probability of failing to detect an effect when the 

effect is present) 
 

Important: There is no golden rule for the minimum power required for a study. 
However, it is important to remember that a larger power is more desirable as it 
reduces the risk of a Type II error. Scientists often follow the rule proposed by 
Cohen (1988) in his book  “Statistical Power Analysis for the Behavioral Sciences “ 
which states that studies should be designed to allow for a power of at least 0.8. For 



more information on power and how to determine the minimum effect size of a test 
please refer to Cohen’s book mentioned above.   

The R package "pwr" allows us to run power analysis for a wide variety of models. 
The R code below makes the "pwr" package available in the R library. 

library(pwr) 
 
 
Power analysis: One sample t-test. 

In the case of the one sample t-test, the null hypothesis is that the mean of the data 
of interest is equal to a constant and the alternative could be one of the three 
options: 

1. The mean is greater than the constant (right-tailed hypothesis), 

2. The mean is less than the constant (left-tailed hypothesis) 

3. The mean is not equal to the constant (two-tailed hypothesis).  

The R function for carrying the one sample t-test is provided below where "n" is the 
total sample size, "d" is the effect size, "sig.level" is the significance level, "power" is 
the power of the test and "type" is set to be "one.sample". 

Specifying any three of the four values will generate the value of the non-specified 
parameter. 

#pwr.t.test(n = , d = , sig.level = , power = , type = "one.sample")  

In the example below, we compute the sample size required for a two-tailed One 
Sample t-test at a 0.05 significance level and a power of 80%. We make an educated 
guess based on previous studies that the minimum effect size we would like to 
detect is 0.40. 

pwr.t.test(n = , d =0.40 , sig.level =0.05 , power = 0.8, type =  "one.
sample",  alternative = "two.sided")  

##  
##      One-sample t test power calculation  
##  
##               n = 51.00945 
##               d = 0.4 
##       sig.level = 0.05 
##           power = 0.8 
##     alternative = two.sided 

The results show that a total sample size of 51 subjects is required to achieve 80% 
power at the specified significance level. 



In the second example below, we compute the power of a One-sample t-test with a 
two-tailed alternative hypothesis at a 0.05 significance level, with a sample size of 
30 and a minimum effect size of 0.40. 

pwr.t.test(n = 30 , d =0.40 , sig.level =0.05 , power = , type =  "one.
sample", alternative = "two.sided")  

##  
##      One-sample t test power calculation  
##  
##               n = 30 
##               d = 0.4 
##       sig.level = 0.05 
##           power = 0.5628136 
##     alternative = two.sided 

The results show that with a sample size of 30 the power of the test will 
approximately 56%.   

 

Power Analysis: Two sample t-test. 

A two sample t-test tests whether the means of two different groups are equal or 
not. A two sample t-test is only valid if the data between the two groups are not 
correlated. In the example below, we determine the total sample size required for 
detecting an effect size of 0.6 given that we want to achieve a 90% power with a 
0.05 significance level. 

pwr.t.test(n = , d =0.6 , sig.level =0.05 , power = 0.9 , type =  "two.
sample",alternative = "two.sided")   

##  
##      Two-sample t test power calculation  
##  
##               n = 59.35155 
##               d = 0.6 
##       sig.level = 0.05 
##           power = 0.9 
##     alternative = two.sided 
##  
## NOTE: n is number in *each* group 

The results show that we need a total sample size of about 60. Which means that the 
two groups will have a sample size of 30 each. We can use the same function in 
order to find the power of a two sample t-test with balanced samples given the total 
sample size by leaving the "power" option empty. 



If the samples are unbalanced, that is if the data is such that one of the groups has 
more samples than the other group then we can use the R function'pwr.t2n.test' in 
order to find the power of the two sample t-test as illustrated below. 

pwr.t2n.test(n1 = 40 , n2=57 , d =0.6 , sig.level = 0.05, power = ,alte
rnative = "two.sided")  

##  
##      t test power calculation  
##  
##              n1 = 40 
##              n2 = 57 
##               d = 0.6 
##       sig.level = 0.05 
##           power = 0.821067 
##     alternative = two.sided 

The power in this case is about 82%. 

 
Power analysis: Paired t-test. 

A paired t-test is used to compare the means of two groups when we believe the 
data between the groups are correlated. For example, the paired t-test can be used 
to compare the mean responses of an outcome of interest before and after an 
intervention is operated on the subjects. The following R code shows how to get the 
sample size for a paired t-test in order to achieve a power of 0.9 at a significance 
level of 0.05 with an estimated minimum effect size of 0.8. 

pwr.t.test(n = , d =0.8 , sig.level =0.05 , power = 0.9 , type =  "pair
ed",alternative= "two.sided")  

##  
##      Paired t test power calculation  
##  
##               n = 18.44623 
##               d = 0.8 
##       sig.level = 0.05 
##           power = 0.9 
##     alternative = two.sided 
##  
## NOTE: n is the number of *pairs*. 

The results show that we need a sample size of about 18 pairs for the paired t-test 
with a 90% power. 
 
Power analysis: One-way ANOVA 

Power analysis for a one-way ANOVA model with “k” number of levels can be 
carried using the "pwr.anova.test" function in R. In the example below we determine 



the sample size for carrying a one-way ANOVA with 4 levels, an 80% power and an 
effect size of 0.4 at a 0.05 significance level. Here "n" represents the number of 
sample per level and “f” is the effect size. 

pwr.anova.test(k = 4 , n = , f = 0.4 , sig.level = 0.05 , power = 0.8)  

##  
##      Balanced one-way analysis of variance power calculation  
##  
##               k = 4 
##               n = 18.04262 
##               f = 0.4 
##       sig.level = 0.05 
##           power = 0.8 
##  
## NOTE: n is the number of samples in each group. 

The results show that in order to detect a treatment effect size of 0.4 or greater if 
one exists with an 80% power each of the four treatments groups should have a 
sample size of 18. Hence the total sample size for the study would be 18*4= 72.  The 
power for the ANOVA can be computed if the sample size for each level is known, by 
leaving the power option in the function call empty. Note that in such a case the 
group sample size should be equal. 
 

 
Power curves 

A power curve is often a better option for representing how the power of the test 
varies with different values of the sample size and effect size. Below is a code that 
the user can change in order to generate a power curve for any type of test. In the 
specific example below, the power curve for a one-way ANOVA is generated using 
different effect sizes and sample size at a 0.05 significance level.  

Note: The user is advised to read the comments (sentences that come after the “#” 
symbols, in order to determine how to modify the code for the type of power curve 
they want to generate.) 

# This code generates a power curve for a One-Way ANOVA model with 4 le
vels of equal sample size. 
 

#Step1: Load pwr package in R working library. 
 library(pwr) 
 
#Step2: Define the range of effect size for building the power curve us
ing the R function “seq”. In this case we generate an effect size which
 ranges from 0.1 to 0.6 with intervals of 0.01.  

f <- seq(.1,.6,.01) 
 nf <- length(f) 



 
 #Step 3: Define the range of power acceptable for the study. The code 
below generated power which ranges from 0.4 to 0.95 with intervals of 0
.1.  
 p <- seq(.4,.95,.1) 
 np <- length(p) 
 
 # obtain sample sizes.      
 samsize <- array(numeric(nf*np), dim=c(nf,np)) 
 for (i in 1:np){ 
   for (j in 1:nf){ 
      
     # you can specify the specific type of power analysis to run here 
by replacing the pwr.anova.test() function with the power function suit
ed for your analysis Example: pwr.t.test() for one-sample t-test for or
 pwr.t2n.test() for a two-sample t-test. 
     result <- pwr.anova.test(k= 4, n = , f =  f[j], sig.level = .05, p
ower = p[i]) 
      
      
     samsize[j,i] <- ceiling(result$n) 
   } 
 } 
 
 # set up graph 
 xrange <- range(f) 
 yrange <- round(range(samsize)) 
 colors <- rainbow(length(p)) 
 plot(xrange, yrange, type="n", 
   xlab="Effect size", 
   ylab="Sample Size (n)" ) 
 
 # add power curves 
 for (i in 1:np){ 
   lines(f, samsize[,i], type="l", lwd=2, col=colors[i]) 
 } 
 
 # add annotation (grid lines, title, legend)  
 abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89") 
 abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2, 
    col="grey89") 

# Add title for the curve 
 title(" Power curve for a One-way Anova, Sig=0.05")  legend("topright"
, title="Power", as.character(p), 
    fill=colors) 



 

Linear Mixed Models 
When analyzing some experimental data, one or more of the factors in the study 
may be treated as random factors. That is, their levels can be thought of as being 
randomly sampled from a larger population of levels. When one or more random 
factors exist in a linear model, we call it a Linear Mixed Model (LMM) to highlight 
the fact that independent variables are a mixture of fixed factors and random 
factors. 

LMM in R 
In R we use the lme4 package to build and fit LMM, and use the car package to do 
significance test. 

Building LMM in R is very similar to building a linear regression via lm(), except 
that we need to declare which variables are random. 

We use the car data set to illustrate how to fit LMM in R. First we read in the data: 

dat = read.csv("Cars.csv") 
head(dat, 10) 

##    mpg engine horse weight accel year origin cylinder filter  mpg1 
## 1    9      4    93    732   8.5    0     NA       NA     NA  9.98 
## 2   10    360   215   4615  14.0   70      1        8      0 10.87 
## 3   10    307   200   4376  15.0   70      1        8      0  9.63 
## 4   11    318   210   4382  13.5   70      1        8      0 12.12 
## 5   11    429   208   4633  11.0   72      1        8      0 10.63 
## 6   11    400   150   4997  14.0   73      1        8      0 10.79 
## 7   11    350   180   3664  11.0   73      1        8      0 12.22 
## 8   12    383   180   4955  11.5   71      1        8      0 12.11 
## 9   12    350   160   4456  13.5   72      1        8      0 12.66 
## 10  12    429   198   4952  11.5   73      1        8      0 11.68 



We will treat origin, cylinder and filter as categorical variables, so we convert 
them to factors: 

dat$origin = as.factor(dat$origin) 
dat$cylinder = as.factor(dat$cylinder) 
dat$filter = as.factor(dat$filter) 

Assume that we want to build a model taking mpg1 as response, origin as fixed 
factor, and cylinder as random factor, then we can build the model as follows: 

library(lme4) 

## Loading required package: Matrix 
model = lmer(mpg1 ~ origin + (1 | cylinder), data = dat, REML = FALSE) 

The REML parameter controls whether to use the maximum likelihood (ML) or the 
restricted maximum likelihood (REML) to fit the model. In this example, we choose 
REML = FALSE to use the ML approach. 

After building the model we can use the summary() method to print the estimates of 
model parameters. 

summary(model) 

## Linear mixed model fit by maximum likelihood  ['lmerMod'] 
## Formula: mpg1 ~ origin + (1 | cylinder) 
##    Data: dat 
##  
##      AIC      BIC   logLik deviance df.resid  
##   2373.4   2393.3  -1181.7   2363.4      392  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.4654 -0.6018 -0.1019  0.4598  3.9633  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  cylinder (Intercept) 24.22    4.921    
##  Residual             21.54    4.642    
## Number of obs: 397, groups:  cylinder, 5 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept)  20.8890     2.3251   8.984 
## origin2       0.7503     0.7459   1.006 
## origin3       3.9086     0.7173   5.449 
##  
## Correlation of Fixed Effects: 
##         (Intr) orign2 
## origin2 -0.115        
## origin3 -0.117  0.437 



In the "Random effects" section, we can see that the estimated standard deviation of 
the random factor cylinder is 4.921, and the estimated standard deviation of 
residual is 4.642. 

In the "Fixed effects" section, the table gives the estimated fixed effects of different 
levels of origin, where origin = 1 is taken to be the reference level. 

 
Significance Test 
The lme4 package itself does not provide functions to calculate p-values of fixed 
effects. Instead, the car package has a function called Anova() to do the work. 

library(car) 
Anova(model) 

## Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: mpg1 
##         Chisq Df Pr(>Chisq)     
## origin 32.038  2  1.104e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The Wald test result shows that origin has a significant effect on mpg1. 

Nested Factors 
If we wish to specify a random factor g2 nested in a fixed factor g1, the formula can 
be written as g1 + (1 | g1:g2). Similarly, if g1 is also random, the formula is (1 | 
g1) + (1 | g1:g2), which can be simplified to be (1 | g1/g2). 

For example, if we treat filter as a fixed factor, and cylinder is nested in filter, 
the model can be coded as 

model2 = lmer(mpg1 ~ origin + filter + (1 | filter:cylinder), 
              data = dat, REML = FALSE) 
summary(model2) 

## Linear mixed model fit by maximum likelihood  ['lmerMod'] 
## Formula: mpg1 ~ origin + filter + (1 | filter:cylinder) 
##    Data: dat 
##  
##      AIC      BIC   logLik deviance df.resid  
##   2326.5   2350.3  -1157.3   2314.5      384  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.4593 -0.5981 -0.1003  0.4635  3.9561  
##  



## Random effects: 
##  Groups          Name        Variance Std.Dev. 
##  filter:cylinder (Intercept) 10.80    3.287    
##  Residual                    21.44    4.630    
## Number of obs: 390, groups:  filter:cylinder, 3 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept)  14.8941     3.3184   4.488 
## origin2       0.7022     0.7473   0.940 
## origin3       3.9518     0.7184   5.501 
## filter1       8.7999     4.0693   2.163 
##  
## Correlation of Fixed Effects: 
##         (Intr) orign2 orign3 
## origin2  0.000               
## origin3  0.000  0.436        
## filter1 -0.815 -0.049 -0.051 

Anova(model2) 

## Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: mpg1 
##          Chisq Df Pr(>Chisq)     
## origin 32.8924  2  7.203e-08 *** 
## filter  4.6764  1    0.03058 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Graphics 
Create a plot. 

set.seed(1) 
 hist(rnorm(100)) 
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