
 R tutorial

 Updated by

Hilda Ibriga, Jincheng Bai and Qi Wang

 July 2016

Originally created by

Hilda Ibriga, Linna Henry, Patricia Wahyu Haumahu, Qi Wang, Yixuan Qiu and
Yuying Song

March 2016

 Statistical Consulting Service

Purdue University

Getting and installing R
R is a free and open source statistical software. You can download R from the
following website: https://cran.r-project.org/. R is available for Linux, OS X and
Windows, just click download R according your operating system. For now we just
need base distribution and you can choose base and click ‘Download R x.x.x for …’ to
get it.

Install packages
The R package comes with numerous basic functions, like mean() and median(),
and procedures, such as lm for linear regression. More advanced functions and
procedures will be in packages. In this example, we will be installing the ggplot2
package, which can be used to create advanced graphics.

The first step is to enter the following command in the R console window

install.packages("ggplot2")

You should see information appear in the R console window as it is installed. If
there are no errors, the package is installed. To load the package for use, enter the
following in the R console window

library(ggplot2)

Warning: package 'ggplot2' was built under R version 3.1.3

You will often see these warning messages but there is rarely a compatibility issue.
To use the functions and procedures in the package, you will need to load the
package each time you open R, although you only need to install the package once.
‘##’ is a prompt that indicates the message from the R console.

Basic data structure

Vector
A vector is a contiguous collection of objects of the same type. Common types of
vectors include logical, integer, double, and character. Here are some examples of
vectors

x <- c(3,2,5,6,55)
x

[1] 3 2 5 6 55

y <- c("a", "d", "e", "hi")
y

[1] "a" "d" "e" "hi"

https://cran.r-project.org/

Here x is a vector of integers and y is a vector of characters. You can use the function
c() to create a vector. The letter c stands for concatenate. You must separate the
values using a comma. You can put as many items as you want inside a vector.
Typing the name of a vector as a command prints the vector elements in order.
To access one element of the vector, you can use the following code

x[3]

[1] 5

This command asks for the third element of the vector x.

It is also possible to have a vector of length one (i.e., a named constant).

cool <- 4
cool

[1] 4

Here cool is a vector with length one that contains the value 4.

List
A list is another data structure in R. It is similar to a vector, however it differs in that
you can put objects of different types into a list. Here is an example:

person <- list("black hair", "brown eyes", 22, TRUE)
person

[[1]]
[1] "black hair"

[[2]]
[1] "brown eyes"

[[3]]
[1] 22

[[4]]
[1] TRUE

Here the person variable is a list with 4 objects. You can access elements in a list the
same way you access elements in a vector. For example,

person[2]

[[1]]
[1] "brown eyes"

This will show us the second element in person.

Matrix
A matrix is a two dimensional data structure in R. Similar to a vector, matrices must
contain objects of the same type.

mat <- matrix(NA, nrow = 4, ncol = 5)
mat

[,1] [,2] [,3] [,4] [,5]
[1,] NA NA NA NA NA
[2,] NA NA NA NA NA
[3,] NA NA NA NA NA
[4,] NA NA NA NA NA

In the preceding example, mat is a matrix with 4 rows and 5 columns. The values
inside mat are all set to NA. This is essentially an empty (or missing) matrix.
You can access a row of a matrix by the following command.

mat[row.number,]

Where row.number is the row you want to look at. You must include a comma after
the row number since the matrix is two dimensional. You can access a column of a
matrix by having the comma first

mat[,col.number]

We can fill the matrix with whatever objects we like, provided all the objects are of
the same type. In the following example, we fill in the rows of the matrix mat one at
a time. Each row is basically a vector so we can use the same commands we can use
to specify a vector.

mat[1,] <- c(2,3,7,5,8)
mat[2,] <- rep(4, 5)
mat[3,] <- 33:37
mat[4,] <- seq(23, 31, 2)
mat

[,1] [,2] [,3] [,4] [,5]
[1,] 2 3 7 5 8
[2,] 4 4 4 4 4
[3,] 33 34 35 36 37
[4,] 23 25 27 29 31

For the second row we used the rep() function, which stands for repeat. This
function takes two numbers; the first number is the number you want to repeat and
the second number is how many times you want this number to be repeated. For the
third row, we used the : function. This function takes two numbers, the first number
before the colon indicates the start and the second number after the colon indicates
the end of a numeric sequence. The function, by default, will create a vector that
increases by one from the start to the end. For the last row, we used the seq()
function, which stands for sequence. This function takes 3 arguments. The first

argument is the start value, the second argument is the ending value, and the last
argument is how much you want to increment by. The seq()function will create a
vector that starts at the start, ends at the end, and increases by the increment value.
You will notice that all four rows are assigned vectors of length 5. This is because we
have 5 columns.

You can set the column and row names of a matrix using the functions colnames()
and rownames() respectively. Here is an example:

rownames(mat) <- c("r1", "r2", "r3", "r4")
rownames(mat)

[1] "r1" "r2" "r3" "r4"

To look at the contents of one row of a matrix, we state the row number followed by
a comma:

mat[2,]

[1] 4 4 4 4 4

This shows us the second row. We can also look at a column putting the comma first

mat[,3]

[1] 7 4 35 27

This shows us the third column. You can access one element of a matrix by
specifying the element’s row and column number
mat[4,5]

[1] 31

This will show us the element in the fourth row and the fifth column.

Dataframe
A dataframe is another two-dimensional data structure in R. Much like a list, a
dataframe can contain objects of different types. However objects within one
column must be the same. Here is an example of a data frame
df <- data.frame(haircolor = c("red", "black", "blonde"), eyecolor = c(
"green", "brown", "blue"), age = c(22, 23, 25), phd = c(T, T, F))
df

haircolor eyecolor age phd
1 red green 22 TRUE
2 black brown 23 TRUE
3 blonde blue 25 FALSE

This dataframe has three rows and 4 columns. The 4 columns represent different
variables. You can access one column of the dataframe by the following

df$age

[1] 22 23 25

where df is the name of the dataframe and age is the column you want to look at.
You can also use the matrix operators to access rows, columns, and elements of a
data frame. Here is an example:

df[3,]

haircolor eyecolor age phd
3 blonde blue 25 FALSE

df[,2]

[1] green brown blue
Levels: blue brown green

df[3,3]

[1] 25

Array
An array is a data structure in R that has 2 or more dimensions. Here is an example
of an array

my_arr <- array(1:8, c(2,2,2))
my_arr

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

Here we have created an array called my_arr using the function array(). The first
argument in array() is a vector of the numeric values we want in the array. The
second argument are the dimensions of my array presented as a vector. You can see
in the output, the array is filled with the values 1 to 8, and there are two 2x2
matrices. The first 2 specifies the number of rows, the second 2 specifies the number
of columns, and the third 2 specifies the number of matrices . You can access
elements of the array with the following code:

my_arr[,,1]

[,1] [,2]
[1,] 1 3
[2,] 2 4

This returns the first 2x2 matrix.

my_arr[1,,1]

[1] 1 3

This returns the first row in the first matrix.

my_arr[,1,1]

[1] 1 2

This returns the first column in the first matrix.

Reading and Exporting data

1. Reading in free formatted data using the built-in module in R
Studio
R Studio is a popular IDE for R. It is free and available at https://www.rstudio.com/
for both Windows and OS X. Probably the easiest way to import data is using the
built-in module in R Studio. It can take care of all the details for you. If you are new
to R, it is highly recommended to do that. In this example, we will import a dataset
with the name ‘Cars.csv’. The dataset is available on our website
(http://www.stat.purdue.edu/scs/help/Intro_stat_software.html) and you can
download it and put it at your working directory.

1. Click Import Dataset in environment panel. It can either be from text file or from
web URL, depends on whether you can try to import a local file.

https://www.rstudio.com/%20forP
http://www.stat.purdue.edu/scs/help/Intro_stat_software.html

2. Locate the file and a pop-up window will appear

3. Specify the name of the data frame of the file imported in the box under 'Name',
the default setting is the file name without its extended name. Click to choose
whether there is a headings row in the data file or not. The content of the data
frame will show up in the right lower part of the window. Be careful when it
looks like this:

This suggests there was a header row but the ‘Yes’ was not selected.

Change the Heading to be 'Yes', the file will load properly. Also it will take care of the
missing values which are coded as ‘NA’ in this document.

2. Reading in free formatted data from an ASCII file using the
read.table function

The read.table() function can read in any type of delimited ASCII file. It works
pretty much the same as import dataset procedures in R studio. Actually, what this R
module does is translate your specifications into function calls. So, read.table is
doing that directly.

Here is an example for reading in the Car.csv file we just loaded by using 'Import
Dataset' module.

cars <- read.table(file = "Cars.csv", header = TRUE, sep = ",")

The data will be stored as a data frame and be assigned to the variable ‘cars’ on the
left hand side of ‘<-“. Three most important argument of read.table are:

• file: Specify the file location, if no specific path is specified, it will look for files
in current working directory. So we can either specify the full path or just the
file name if it is in the working directory.

• header: Whether the file's first row is a header row or not, default value is
FALSE

• sep: Specifies the separator, default value is ‘ ‘.

For more detail, read the help document by using the ‘help()’ function. You can also
learn similar functions which are developed for a certain type of files there. For
example, the following command will give you the help document for read.table
function.

help("read.table")

3.Exporting files using write.table function

The write.table function outputs data frame. Suppose we made some changes on
‘cars’ that we just read in and would like to save somewhere then write.table
function can be used . The arguments it takes are similar to read.table. Here is an
example:

write.table(cars, file = "Cars2.csv", sep = "\t", row.names = FALSE,
 col.names = TRUE)

• The first argument is to specify which data frame to be exported.

• file: the path of file to be created.

• sep: separator, the default separator is a blank space but any separator can be
specified in the sep option. In the example we used a Tab separator.

• row.names and col.names: whether those names will appear in the output file.
The default values are both TRUE.

Basic Statistics

The following commands are commonly used to explore and describe a data set.

Here is a print out the data set for reference:

Cars

mpg engine horse weight accel year origin cylinder filter_. mpg1
1 9.0 4.0 93 732 8.5 0 NA NA NA 9.98
2 10.0 360.0 215 4615 14.0 70 1 8 0 10.87
3 10.0 307.0 200 4376 15.0 70 1 8 0 9.63
4 11.0 318.0 210 4382 13.5 70 1 8 0 12.12
5 11.0 429.0 208 4633 11.0 72 1 8 0 10.63

.
.
.
398 46.6 86.0 65 2110 17.9 80 3 4 1 47.93
399 NA 133.0 115 3090 17.5 70 2 4 1 NA
400 NA 350.0 165 4142 11.5 70 1 8 0 NA
401 NA 351.0 153 4034 11.0 70 1 8 0 NA
402 NA 383.0 175 4166 10.5 70 1 8 0 NA
403 NA 360.0 175 3850 11.0 70 1 8 0 NA
404 NA 302.0 140 3353 8.0 70 1 8 0 NA
405 NA 97.0 48 1978 20.0 71 2 4 1 NA
406 NA 121.0 110 2800 15.4 81 2 4 1 NA

There are some missing values, so we need to remove these missing values first.

Removing missing values:

cars=cars[-which(is.na(cars),arr.ind=T),]

Summary of Statistics
#summary(dataset/variable)
summary(cars)

mpg engine horse weight
Min. :10.00 Min. : 68.0 Min. : 46.0 Min. :1613
1st Qu.:17.50 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2220
Median :23.00 Median :151.0 Median : 92.0 Median :2790
Mean :23.64 Mean :193.6 Mean :103.4 Mean :2958
3rd Qu.:29.00 3rd Qu.:261.0 3rd Qu.:123.5 3rd Qu.:3590
Max. :46.60 Max. :455.0 Max. :230.0 Max. :5140
accel year origin cylinder
Min. : 8.00 Min. :70.00 Min. :1.000 Min. :4.000
1st Qu.:14.00 1st Qu.:73.00 1st Qu.:1.000 1st Qu.:4.000
Median :15.50 Median :76.00 Median :1.000 Median :4.000
Mean :15.57 Mean :76.03 Mean :1.567 Mean :5.462
3rd Qu.:17.05 3rd Qu.:79.00 3rd Qu.:2.000 3rd Qu.:8.000
Max. :24.80 Max. :82.00 Max. :3.000 Max. :8.000
filter_. mpg1
Min. :0.0000 Min. :10.63
1st Qu.:0.0000 1st Qu.:17.16
Median :1.0000 Median :22.71
Mean :0.7441 Mean :23.58
3rd Qu.:1.0000 3rd Qu.:29.34
Max. :1.0000 Max. :47.93

Data Structure
#str(dataset/variable)
str(cars)

'data.frame': 379 obs. of 10 variables:
$ mpg : num 10 11 11 11 12 12 12 13 13 13 ...
$ engine : num 360 318 429 400 455 400 350 400 400 350 ...
$ horse : int 215 210 208 150 225 167 180 170 175 165 ...
$ weight : int 4615 4382 4633 4997 4951 4906 4499 4746 5140 ...
$ accel : num 14 13.5 11 14 11 12.5 12.5 12 12 12 ...
$ year : int 70 70 72 73 73 73 73 71 71 72 ...
$ origin : int 1 1 1 1 1 1 1 1 1 1 ...
$ cylinder: int 8 8 8 8 8 8 8 8 8 8 ...
$ filter_.: int 0 0 0 0 0 0 0 0 0 0 ...
$ mpg1 : num 10.9 12.1 10.6 10.8 12.3 ...

Mean and Variance
#mean(variable,na.rm(removing NA)=True)
mean(cars$mpg)

[1] 23.64248

#var(variable)
var(cars$mpg)

[1] 59.8734

Number of Observation in the Variable
#length(variable)
length(cars$mpg)

[1] 379

Median
#median(variable,na.rm=T)
median(cars$mpg)

[1] 23

Quantile
#quantile(variable,level,na.rm=T), the argument na.rm==T means any NA a
nd NaN's are removed from x before the quantiles are computed.
quantile(cars$mpg,0.25)

25%
17.5

These commands are used for basic statistical inference

T-test
The default options of t-test in R are “x”, ”y”, “alternative”, “mu”, “paired”, “var.equal”
and “conf.level”, and their default values are as follows:

t.test(x, y = NULL,
 alternative = c("two.sided", "less", "greater"),
 mu = 0, paired = FALSE, var.equal = FALSE,
 conf.level = 0.95, ...)

One Sample t-test
#t.test(variable, mean under null hypothesis)
t.test(cars$mpg,mu=25)

One Sample t-test

data: cars$mpg
t = -3.4155, df = 378, p-value = 0.0007058
alternative hypothesis: true mean is not equal to 25
95 percent confidence interval:
22.86096 24.42400
sample estimates:
mean of x
23.64248

Independent Sample t-test (Unequal Variance)
#t.test(variable1,variable2)
t.test(cars$mpg,cars$mpg1)

Welch Two Sample t-test

data: cars$mpg and cars$mpg1
t = 0.10196, df = 755.88, p-value = 0.9188
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.052830 1.168186
sample estimates:
mean of x mean of y
23.64248 23.58480

Independent Sample t-test (Equal Variance)
#t.test(variable1,variable2,var.equal=True)
t.test(cars$mpg,cars$mpg1,var.equal=T)

Two Sample t-test

data: cars$mpg and cars$mpg1
t = 0.10196, df = 756, p-value = 0.9188
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.052830 1.168186
sample estimates:
mean of x mean of y
23.64248 23.58480

Paired t-test
#t.test(variable1,variable2,paired=T)
t.test(cars$mpg,cars$mpg1,paired=T)

Paired t-test

data: cars$mpg and cars$mpg1
t = 1.0662, df = 378, p-value = 0.287
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.0486872 0.1640434
sample estimates:
mean of the differences
0.0576781

Chi-Squared Tests
We are going to use a made-up a data set in the following example as Cars.csv does
not lend itself to a Chi-Squared test. The data set will be a two-way contingency
table, where the two factors are Degree (levels are High and Low) and clinic (5
levels from Worse to Marked Improvement), and the response variable is y.

Data input:
y1<-c(1,13,16,15,7)
y2<-c(11,53,42,27,11)

y<-cbind(y1,y2)
dimnames(y)<-list(clinic=c("Worse","Stationary","Slight Improvement",
 "Moderate Improvement","Marked Improvement"),
 Degree=(c("High","Low")))

y

Degree
clinic High Low
Worse 1 11
Stationary 13 53
Slight Improvement 16 42
Moderate Improvement 15 27
Marked Improvement 7 11

Performing the Chi-squared test:

chi.test<-chisq.test(y)

Warning in chisq.test(y): Chi-squared approximation may be incorrect

chi.test

Pearson's Chi-squared test

data: y
X-squared = 6.8807, df = 4, p-value = 0.1423

To see the other data produced by chisq.test:

names(chi.test)

[1] "statistic" "parameter" "p.value" "method" "data.name" "obs
erved"
[7] "expected" "residuals" "stdres"

To get the expected values, for example:

chi.test$expected

Degree
clinic High Low
Worse 3.183673 8.816327
Stationary 17.510204 48.489796
Slight Improvement 15.387755 42.612245
Moderate Improvement 11.142857 30.857143
Marked Improvement 4.775510 13.224490

Correlation
By default, the correlation function in R is as follows:

cor(x, y = NULL, use = "everything",
 method = c("pearson", "kendall", "spearman"))
#by default it uses Pearson method

#cor(variable1,variable2)
cor(cars$mpg,cars$engine)

[1] -0.812826

cor(cars$mpg,cars$engine,method="spearman")

[1] -0.8729739

Correlation Significance Test
#cor.test(variable1,variable2)
cor.test(cars$mpg,cars$engine)

Pearson's product-moment correlation

data: cars$mpg and cars$engine
t = -27.094, df = 377, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.8444198 -0.7755971
sample estimates:
cor
-0.812826

cor.test(cars$mpg,cars$engine,method="spearman")

Warning in cor.test.default(cars$mpg, cars$engine, method = "spearma
n"):
Cannot compute exact p-value with ties

Spearman's rank correlation rho

data: cars$mpg and cars$engine
S = 16994000, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.8729739

Plotting a Scatterplot
plot(cars$mpg,cars$engine,xlab="Miles Per Gallon", ylab="Engine Displac
ement",
 main="Scatterplot between Miles Per Gallon & Engine Displacement")

Hypothesis testing (t-tests done previously)

One-Way ANOVA
We will introduce how to do One-Way ANOVA (analysis of variance) in R based on
the dataset Cars.csv. The response variable is mpg. The factor is origin. The One-
Way ANOVA can be carried out by using the R function aov()
We read in the dataset and name it as cars and change the class of the variable origin
to be a factor. There are three levels of origin as 1, 2 and 3.

cars <- read.csv("Cars.csv")

#Use read.csv to import a csv file

cars$origin <- as.factor(cars$origin)
levels(cars$origin)

[1] "1" "2" "3"

The first step in our analysis is to graphically compare mpgs among three
distributions with different origins.

plot(mpg ~ origin, data=cars)

From the boxplot it appears that the median of mpg for origin 1 is lower than for
origin 2 and 3.

Next, the R function aov() can be used for fitting ANOVA models.

results = aov(mpg ~ origin, data=cars)
summary(results)
Df Sum Sq Mean Sq F value Pr(>F)
origin 2 7985 3992 97.97 <2e-16 ***
Residuals 394 16056 41

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
9 observations deleted due to missingness

From the output of summary(), The F value is 97.97 with a p-value smaller than
0.05. We clearly reject the null hypothesis of equal means of mpg for all three origin.

The model is significant, then we would like to carry out the multiple comparisons
to get information how mpg differs in three different origin by using R function
pairwise.t.test(). This function pairwise.t.test computes the pair-wise comparisons
between group means with corrections for multiple testing.

pairwise.t.test(cars$mpg, cars$origin, p.adjust="bonferroni")

Pairwise comparisons using t tests with pooled SD

data: cars$mpg and cars$origin

1 2
2 <2e-16 -
3 <2e-16 0.045

P value adjustment method: bonferroni

This result states that the means of these three origins are all significantly different.

Another multiple comparisons procedure is Tukey's method by using R function
TukeyHSD(). This function creates a set of confidence intervals on the differences
between means.

results = aov(mpg ~ origin, data=cars)
TukeyHSD(results,conf.level=0.95)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = mpg ~ origin, data = cars)

$origin
diff lwr upr p adj
2-1 7.763203 5.73054715 9.795858 0.0000000
3-1 10.322407 8.38214860 12.262666 0.0000000
3-2 2.559204 0.09398439 5.024424 0.0397888

The results show that all the three differences are significant.

Then we want to carry out the diagnostic of the model assumption, and we can use
the plot function to plot the model:
plot(results)

The redline connects the medians across different groups.

The points are mostly close to the straight line, however, we can observe a small
pattern in the beginning and in the end, which suggests the distribution of residuals
is a little skewed.

Regression

As before, we remove the missing values first:

cars<-cars[-which(is.na(cars),arr.ind=T),]

To get the names of variables in the dataset, we can use the basic function "names":
names(cars)

[1] "mpg" "engine" "horse" "weight" "accel" "year"
[7] "origin" "cylinder" "filter_." "mpg1"

Linear Regression Models
To fit a linear regression model with all variables in the dataset without interaction:
mod.reg<-lm(mpg~.,data=cars)
summary(mod.reg)

Call:
lm(formula = mpg ~ ., data = cars)

Residuals:
Min 1Q Median 3Q Max
-3.3196 -0.6958 0.0189 0.6254 3.0243

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5673545 1.5809687 -0.359 0.71990
engine 0.0025929 0.0024279 1.068 0.28622
horse 0.0004493 0.0046635 0.096 0.92330
weight -0.0006067 0.0002320 -2.615 0.00930 **
accel 0.0159285 0.0316724 0.503 0.61533
year 0.0662729 0.0200110 3.312 0.00102 **
origin 0.0964715 0.0902488 1.069 0.28579
cylinder -0.2033509 0.1193718 -1.704 0.08931 .
filter_. -0.4577229 0.2929970 -1.562 0.11910
mpg1 0.9102985 0.0167311 54.407 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.023 on 369 degrees of freedom
Multiple R-squared: 0.9829, Adjusted R-squared: 0.9825
F-statistic: 2362 on 9 and 369 DF, p-value: < 2.2e-16

To fit a linear regression model with several variables in the dataset:
mod1<-lm(mpg~engine+horse+weight,data=cars)
summary(mod1)

Call:

lm(formula = mpg ~ engine + horse + weight, data = cars)

Residuals:
Min 1Q Median 3Q Max
-9.4431 -2.7307 -0.3825 2.2516 16.1406

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.7774973 1.2369586 36.200 < 2e-16 ***
engine -0.0098511 0.0069098 -1.426 0.1548
horse -0.0278049 0.0133328 -2.085 0.0377 *
weight -0.0055278 0.0007289 -7.584 2.67e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.169 on 375 degrees of freedom
Multiple R-squared: 0.7121, Adjusted R-squared: 0.7098
F-statistic: 309.1 on 3 and 375 DF, p-value: < 2.2e-16

To fit a linear regression model with interaction:

mod2<-lm(mpg~engine*horse+weight,data=cars)

#engine*horse means the main effects of engine and horse as well as the
ir interaction effect.

summary(mod2)

Call:
lm(formula = mpg ~ engine * horse + weight, data = cars)

Residuals:
Min 1Q Median 3Q Max
-9.936 -2.216 -0.238 1.871 16.781

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.373e+01 1.568e+00 34.278 < 2e-16 ***
engine -7.268e-02 9.879e-03 -7.357 1.20e-12 ***
horse -1.796e-01 2.201e-02 -8.161 5.11e-15 ***
weight -2.895e-03 7.417e-04 -3.903 0.000113 ***
engine:horse 4.724e-04 5.686e-05 8.308 1.81e-15 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.835 on 374 degrees of freedom
Multiple R-squared: 0.7569, Adjusted R-squared: 0.7543
F-statistic: 291.2 on 4 and 374 DF, p-value: < 2.2e-16

To fit a linear regression model with higher order interaction:

mod3<-lm(mpg~(engine+horse+weight)^3,data=cars)
summary(mod3)

Call:
lm(formula = mpg ~ (engine + horse + weight)^3, data = cars)

Residuals:
Min 1Q Median 3Q Max
-9.5411 -2.2346 -0.4175 1.7745 17.3233

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.163e+01 5.560e+00 11.085 < 2e-16 ***
engine -1.208e-01 3.819e-02 -3.163 0.00169 **
horse -1.871e-01 7.713e-02 -2.426 0.01573 *
weight -6.913e-03 2.398e-03 -2.883 0.00417 **
engine:horse 5.980e-04 2.627e-04 2.277 0.02338 *
engine:weight 1.982e-05 9.870e-06 2.008 0.04541 *
horse:weight 1.461e-05 2.680e-05 0.545 0.58582
engine:horse:weight -7.848e-08 6.647e-08 -1.181 0.23848

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.817 on 371 degrees of freedom
Multiple R-squared: 0.7612, Adjusted R-squared: 0.7567
F-statistic: 169 on 7 and 371 DF, p-value: < 2.2e-16

To view the contents of model summary:

sum=summary(mod.reg)
names(sum)

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

To get model coefficients:
sum$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5673545304 1.580968723 -0.35886512 7.199012e-01
engine 0.0025929429 0.002427858 1.06799595 2.862205e-01
horse 0.0004492931 0.004663497 0.09634253 9.233008e-01
weight -0.0006066500 0.000232019 -2.61465725 9.297769e-03
accel 0.0159284879 0.031672447 0.50291308 6.153254e-01
year 0.0662728753 0.020011017 3.31181941 1.018461e-03
origin 0.0964715379 0.090248782 1.06895114 2.857905e-01
cylinder -0.2033509048 0.119371772 -1.70350915 8.931478e-02

filter_. -0.4577229299 0.292996952 -1.56221055 1.190956e-01
mpg1 0.9102985190 0.016731122 54.40749836 2.447556e-178

To get specific values in the model coefficients, for example p-values:
sum$coefficients[,4]

(Intercept) engine horse weight acce
l
7.199012e-01 2.862205e-01 9.233008e-01 9.297769e-03 6.153254e-0
1
year origin cylinder filter_. mpg
1
1.018461e-03 2.857905e-01 8.931478e-02 1.190956e-01 2.447556e-17
8

Logistic regression
For the logistic regression case, suppose we are interested in how variables, such as
GRE (Graduate Record Exam scores), GPA (grade point average) and prestige of the
undergraduate institution, effect admission into graduate school. The response
variable, admit/don't admit, is a binary variable.

Let's first read in the dataset online.
admission <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
head(admission)

admit gre gpa rank
1 0 380 3.61 3
2 1 660 3.67 3
3 1 800 4.00 1
4 1 640 3.19 4
5 0 520 2.93 4
6 1 760 3.00 2

This dataset has a binary response (outcome, dependent) variable called admit.
There are three predictor variables: gre, gpa and rank. We will treat the variables
gre and gpa as continuous. The variable rank takes on the values 1 through 4.
Institutions with a rank of 1 have the highest prestige, while those with a rank of 4
have the lowest. We can get basic descriptives for the entire data set by using
summary function.

summary(admission)

admit gre gpa rank
Min. :0.0000 Min. :220.0 Min. :2.260 Min. :1.000
1st Qu.:0.0000 1st Qu.:520.0 1st Qu.:3.130 1st Qu.:2.000
Median :0.0000 Median :580.0 Median :3.395 Median :2.000
Mean :0.3175 Mean :587.7 Mean :3.390 Mean :2.485
3rd Qu.:1.0000 3rd Qu.:660.0 3rd Qu.:3.670 3rd Qu.:3.000
Max. :1.0000 Max. :800.0 Max. :4.000 Max. :4.000

First, we convert rank to a factor to indicate that rank should be treated as a
categorical variable.

admission$rank <- factor(admission$rank)
levels(admission$rank)

[1] "1" "2" "3" "4"

Then we fit a logistic regression model using the glm function and use summary
function to get the estimate of the model.

results <- glm(admit ~ gre + gpa + rank, data = admission, family = "bi
nomial")
summary(results)

Call:
glm(formula = admit ~ gre + gpa + rank, family = "binomial",
data = admission)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6268 -0.8662 -0.6388 1.1490 2.0790

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.989979 1.139951 -3.500 0.000465 ***
gre 0.002264 0.001094 2.070 0.038465 *
gpa 0.804038 0.331819 2.423 0.015388 *
rank2 -0.675443 0.316490 -2.134 0.032829 *
rank3 -1.340204 0.345306 -3.881 0.000104 ***
rank4 -1.551464 0.417832 -3.713 0.000205 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom
Residual deviance: 458.52 on 394 degrees of freedom
AIC: 470.52

Number of Fisher Scoring iterations: 4

The outputs from summary can show us a lot of useful information. In the
'Coefficients' section of the output, we can check whether the predictor variables are
significant or not by checking the p-value. As we can see from the output, both gre
and gpa are statistically significant, as are the three terms for rank. The logistic
regression coefficients give the change in the log odds of the outcome for a one unit
increase in the predictor variable.

You can also calculate odds ratio.
exp(coef(results))

(Intercept) gre gpa rank2 rank3 rank4

0.0185001 1.0022670 2.2345448 0.5089310 0.2617923 0.2119375

Power calculation
We now take a look at how to conduct power analysis for a simple t test, a paired t
test and a One-way ANOVA.

The power of a test is the probability of detecting an effect given that the effect
exists. In statistical jargon, it is the probability of rejecting the null hypothesis when
the alternative hypothesis of interest is true.

Conducting a power analysis is generally done for two of the following reasons:

1) To determine the number of subjects (sample size) needed in order to
detect a given effect size at a specified power.

2) To determine the power of the test given an effect size and the sample
size available for the study.

In the first case, the power analysis is done before the data collection stage. In the
second case, the power analysis is often used when there is a limit to the number of
subjects the researcher can use in the study. The power analysis is therefore run in
this case in order to determine how likely the study conducted using the limited
sample size at hand is to detect an effect. A low power, would be a good reason to
rethink whether to proceed with the study.

In order to conduct a power analysis, three out of four of the following values need
to be specified: (i.e. given three of the quantities below the fourth one can be
computed using the power analysis)

• Sample size
• Effect size
• Significance level (Type I error: the probability of finding an effect when the

effect is present)
• Power (1- Type II error: The probability of failing to detect an effect when the

effect is present)

Important: There is no golden rule for the minimum power required for a study.
However, it is important to remember that a larger power is more desirable as it
reduces the risk of a Type II error. Scientists often follow the rule proposed by
Cohen (1988) in his book “Statistical Power Analysis for the Behavioral Sciences “
which states that studies should be designed to allow for a power of at least 0.8. For

more information on power and how to determine the minimum effect size of a test
please refer to Cohen’s book mentioned above.

The R package "pwr" allows us to run power analysis for a wide variety of models.
The R code below makes the "pwr" package available in the R library.

library(pwr)

Power analysis: One sample t-test.

In the case of the one sample t-test, the null hypothesis is that the mean of the data
of interest is equal to a constant and the alternative could be one of the three
options:

1. The mean is greater than the constant (right-tailed hypothesis),

2. The mean is less than the constant (left-tailed hypothesis)

3. The mean is not equal to the constant (two-tailed hypothesis).

The R function for carrying the one sample t-test is provided below where "n" is the
total sample size, "d" is the effect size, "sig.level" is the significance level, "power" is
the power of the test and "type" is set to be "one.sample".

Specifying any three of the four values will generate the value of the non-specified
parameter.

#pwr.t.test(n = , d = , sig.level = , power = , type = "one.sample")

In the example below, we compute the sample size required for a two-tailed One
Sample t-test at a 0.05 significance level and a power of 80%. We make an educated
guess based on previous studies that the minimum effect size we would like to
detect is 0.40.

pwr.t.test(n = , d =0.40 , sig.level =0.05 , power = 0.8, type = "one.
sample", alternative = "two.sided")

One-sample t test power calculation

n = 51.00945
d = 0.4
sig.level = 0.05
power = 0.8
alternative = two.sided

The results show that a total sample size of 51 subjects is required to achieve 80%
power at the specified significance level.

In the second example below, we compute the power of a One-sample t-test with a
two-tailed alternative hypothesis at a 0.05 significance level, with a sample size of
30 and a minimum effect size of 0.40.

pwr.t.test(n = 30 , d =0.40 , sig.level =0.05 , power = , type = "one.
sample", alternative = "two.sided")

One-sample t test power calculation

n = 30
d = 0.4
sig.level = 0.05
power = 0.5628136
alternative = two.sided

The results show that with a sample size of 30 the power of the test will
approximately 56%.

Power Analysis: Two sample t-test.

A two sample t-test tests whether the means of two different groups are equal or
not. A two sample t-test is only valid if the data between the two groups are not
correlated. In the example below, we determine the total sample size required for
detecting an effect size of 0.6 given that we want to achieve a 90% power with a
0.05 significance level.

pwr.t.test(n = , d =0.6 , sig.level =0.05 , power = 0.9 , type = "two.
sample",alternative = "two.sided")

Two-sample t test power calculation

n = 59.35155
d = 0.6
sig.level = 0.05
power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

The results show that we need a total sample size of about 60. Which means that the
two groups will have a sample size of 30 each. We can use the same function in
order to find the power of a two sample t-test with balanced samples given the total
sample size by leaving the "power" option empty.

If the samples are unbalanced, that is if the data is such that one of the groups has
more samples than the other group then we can use the R function'pwr.t2n.test' in
order to find the power of the two sample t-test as illustrated below.

pwr.t2n.test(n1 = 40 , n2=57 , d =0.6 , sig.level = 0.05, power = ,alte
rnative = "two.sided")

t test power calculation

n1 = 40
n2 = 57
d = 0.6
sig.level = 0.05
power = 0.821067
alternative = two.sided

The power in this case is about 82%.

Power analysis: Paired t-test.

A paired t-test is used to compare the means of two groups when we believe the
data between the groups are correlated. For example, the paired t-test can be used
to compare the mean responses of an outcome of interest before and after an
intervention is operated on the subjects. The following R code shows how to get the
sample size for a paired t-test in order to achieve a power of 0.9 at a significance
level of 0.05 with an estimated minimum effect size of 0.8.

pwr.t.test(n = , d =0.8 , sig.level =0.05 , power = 0.9 , type = "pair
ed",alternative= "two.sided")

Paired t test power calculation

n = 18.44623
d = 0.8
sig.level = 0.05
power = 0.9
alternative = two.sided

NOTE: n is the number of *pairs*.

The results show that we need a sample size of about 18 pairs for the paired t-test
with a 90% power.

Power analysis: One-way ANOVA

Power analysis for a one-way ANOVA model with “k” number of levels can be
carried using the "pwr.anova.test" function in R. In the example below we determine

the sample size for carrying a one-way ANOVA with 4 levels, an 80% power and an
effect size of 0.4 at a 0.05 significance level. Here "n" represents the number of
sample per level and “f” is the effect size.

pwr.anova.test(k = 4 , n = , f = 0.4 , sig.level = 0.05 , power = 0.8)

Balanced one-way analysis of variance power calculation

k = 4
n = 18.04262
f = 0.4
sig.level = 0.05
power = 0.8

NOTE: n is the number of samples in each group.

The results show that in order to detect a treatment effect size of 0.4 or greater if
one exists with an 80% power each of the four treatments groups should have a
sample size of 18. Hence the total sample size for the study would be 18*4= 72. The
power for the ANOVA can be computed if the sample size for each level is known, by
leaving the power option in the function call empty. Note that in such a case the
group sample size should be equal.

Power curves

A power curve is often a better option for representing how the power of the test
varies with different values of the sample size and effect size. Below is a code that
the user can change in order to generate a power curve for any type of test. In the
specific example below, the power curve for a one-way ANOVA is generated using
different effect sizes and sample size at a 0.05 significance level.

Note: The user is advised to read the comments (sentences that come after the “#”
symbols, in order to determine how to modify the code for the type of power curve
they want to generate.)

This code generates a power curve for a One-Way ANOVA model with 4 le
vels of equal sample size.

#Step1: Load pwr package in R working library.
 library(pwr)

#Step2: Define the range of effect size for building the power curve us
ing the R function “seq”. In this case we generate an effect size which
 ranges from 0.1 to 0.6 with intervals of 0.01.

f <- seq(.1,.6,.01)
 nf <- length(f)

 #Step 3: Define the range of power acceptable for the study. The code
below generated power which ranges from 0.4 to 0.95 with intervals of 0
.1.
 p <- seq(.4,.95,.1)
 np <- length(p)

 # obtain sample sizes.
 samsize <- array(numeric(nf*np), dim=c(nf,np))
 for (i in 1:np){
 for (j in 1:nf){

 # you can specify the specific type of power analysis to run here
by replacing the pwr.anova.test() function with the power function suit
ed for your analysis Example: pwr.t.test() for one-sample t-test for or
 pwr.t2n.test() for a two-sample t-test.
 result <- pwr.anova.test(k= 4, n = , f = f[j], sig.level = .05, p
ower = p[i])

 samsize[j,i] <- ceiling(result$n)
 }
 }

 # set up graph
 xrange <- range(f)
 yrange <- round(range(samsize))
 colors <- rainbow(length(p))
 plot(xrange, yrange, type="n",
 xlab="Effect size",
 ylab="Sample Size (n)")

 # add power curves
 for (i in 1:np){
 lines(f, samsize[,i], type="l", lwd=2, col=colors[i])
 }

 # add annotation (grid lines, title, legend)
 abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89")
 abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2,
 col="grey89")

Add title for the curve
 title(" Power curve for a One-way Anova, Sig=0.05") legend("topright"
, title="Power", as.character(p),
 fill=colors)

Linear Mixed Models
When analyzing some experimental data, one or more of the factors in the study
may be treated as random factors. That is, their levels can be thought of as being
randomly sampled from a larger population of levels. When one or more random
factors exist in a linear model, we call it a Linear Mixed Model (LMM) to highlight
the fact that independent variables are a mixture of fixed factors and random
factors.

LMM in R
In R we use the lme4 package to build and fit LMM, and use the car package to do
significance test.

Building LMM in R is very similar to building a linear regression via lm(), except
that we need to declare which variables are random.

We use the car data set to illustrate how to fit LMM in R. First we read in the data:

dat = read.csv("Cars.csv")
head(dat, 10)

mpg engine horse weight accel year origin cylinder filter mpg1
1 9 4 93 732 8.5 0 NA NA NA 9.98
2 10 360 215 4615 14.0 70 1 8 0 10.87
3 10 307 200 4376 15.0 70 1 8 0 9.63
4 11 318 210 4382 13.5 70 1 8 0 12.12
5 11 429 208 4633 11.0 72 1 8 0 10.63
6 11 400 150 4997 14.0 73 1 8 0 10.79
7 11 350 180 3664 11.0 73 1 8 0 12.22
8 12 383 180 4955 11.5 71 1 8 0 12.11
9 12 350 160 4456 13.5 72 1 8 0 12.66
10 12 429 198 4952 11.5 73 1 8 0 11.68

We will treat origin, cylinder and filter as categorical variables, so we convert
them to factors:

dat$origin = as.factor(dat$origin)
dat$cylinder = as.factor(dat$cylinder)
dat$filter = as.factor(dat$filter)

Assume that we want to build a model taking mpg1 as response, origin as fixed
factor, and cylinder as random factor, then we can build the model as follows:

library(lme4)

Loading required package: Matrix
model = lmer(mpg1 ~ origin + (1 | cylinder), data = dat, REML = FALSE)

The REML parameter controls whether to use the maximum likelihood (ML) or the
restricted maximum likelihood (REML) to fit the model. In this example, we choose
REML = FALSE to use the ML approach.

After building the model we can use the summary() method to print the estimates of
model parameters.

summary(model)

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: mpg1 ~ origin + (1 | cylinder)
Data: dat

AIC BIC logLik deviance df.resid
2373.4 2393.3 -1181.7 2363.4 392

Scaled residuals:
Min 1Q Median 3Q Max
-2.4654 -0.6018 -0.1019 0.4598 3.9633

Random effects:
Groups Name Variance Std.Dev.
cylinder (Intercept) 24.22 4.921
Residual 21.54 4.642
Number of obs: 397, groups: cylinder, 5

Fixed effects:
Estimate Std. Error t value
(Intercept) 20.8890 2.3251 8.984
origin2 0.7503 0.7459 1.006
origin3 3.9086 0.7173 5.449

Correlation of Fixed Effects:
(Intr) orign2
origin2 -0.115
origin3 -0.117 0.437

In the "Random effects" section, we can see that the estimated standard deviation of
the random factor cylinder is 4.921, and the estimated standard deviation of
residual is 4.642.

In the "Fixed effects" section, the table gives the estimated fixed effects of different
levels of origin, where origin = 1 is taken to be the reference level.

Significance Test
The lme4 package itself does not provide functions to calculate p-values of fixed
effects. Instead, the car package has a function called Anova() to do the work.

library(car)
Anova(model)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: mpg1
Chisq Df Pr(>Chisq)
origin 32.038 2 1.104e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The Wald test result shows that origin has a significant effect on mpg1.

Nested Factors
If we wish to specify a random factor g2 nested in a fixed factor g1, the formula can
be written as g1 + (1 | g1:g2). Similarly, if g1 is also random, the formula is (1 |
g1) + (1 | g1:g2), which can be simplified to be (1 | g1/g2).

For example, if we treat filter as a fixed factor, and cylinder is nested in filter,
the model can be coded as

model2 = lmer(mpg1 ~ origin + filter + (1 | filter:cylinder),
 data = dat, REML = FALSE)
summary(model2)

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: mpg1 ~ origin + filter + (1 | filter:cylinder)
Data: dat

AIC BIC logLik deviance df.resid
2326.5 2350.3 -1157.3 2314.5 384

Scaled residuals:
Min 1Q Median 3Q Max
-2.4593 -0.5981 -0.1003 0.4635 3.9561

Random effects:
Groups Name Variance Std.Dev.
filter:cylinder (Intercept) 10.80 3.287
Residual 21.44 4.630
Number of obs: 390, groups: filter:cylinder, 3

Fixed effects:
Estimate Std. Error t value
(Intercept) 14.8941 3.3184 4.488
origin2 0.7022 0.7473 0.940
origin3 3.9518 0.7184 5.501
filter1 8.7999 4.0693 2.163

Correlation of Fixed Effects:
(Intr) orign2 orign3
origin2 0.000
origin3 0.000 0.436
filter1 -0.815 -0.049 -0.051

Anova(model2)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: mpg1
Chisq Df Pr(>Chisq)
origin 32.8924 2 7.203e-08 ***
filter 4.6764 1 0.03058 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Graphics
Create a plot.

set.seed(1)
 hist(rnorm(100))

	R tutorial
	Getting and installing R
	Install packages

	Basic data structure
	Vector
	List
	Matrix
	Dataframe
	Array

	Reading and Exporting data
	1. Reading in free formatted data using the built-in module in R Studio
	2. Reading in free formatted data from an ASCII file using the read.table function
	3.Exporting files using write.table function

	Basic Statistics
	Summary of Statistics
	Data Structure
	Mean and Variance
	Number of Observation in the Variable
	Median
	Quantile

	These commands are used for basic statistical inference
	T-test
	One Sample t-test
	Independent Sample t-test (Unequal Variance)
	Independent Sample t-test (Equal Variance)
	Paired t-test

	Chi-Squared Tests
	Correlation
	Correlation Significance Test
	Plotting a Scatterplot
	Hypothesis testing (t-tests done previously)
	One-Way ANOVA

	Regression
	Linear Regression Models
	Logistic regression

	Power calculation
	Power analysis: One sample t-test.
	Power Analysis: Two sample t-test.
	Power analysis: Paired t-test.
	Power analysis: One-way ANOVA
	Power curves

	Linear Mixed Models
	LMM in R
	Significance Test
	Nested Factors

	Graphics

