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Abstract

A new approach to ensemble learning is intro-
duced that takes ranking rather than classification
as fundamental, leading to models on the sym-
metric group and its cosets. The approach uses a
generalization of the Mallows model on permuta-
tions to combine multiple input rankings. Appli-
cations include the task of combining the output
of multiple search engines and multiclass or mul-
tilabel classification, where a set of input classi-
fiers is viewed as generating a ranking of class la-
bels. Experiments for both types of applications
are presented.

1. Introduction

Many machine learning problems involve the analysis of
ranked data. As an example, in the information retrieval
fusion problem, one is presented with a ranked list of Web
pages output by various search engines, and the task is to
somehow combine them to obtain a more accurate “meta-
search” engine. The problem is particularly challenging
since typically only the rankings are available, and not
scores on individual items.

A seemingly unrelated problem is to combine classifiers us-
ing what is commonly referred to as an ensemble method.
In an ensemble approach to classification, an input � re-
ceives a score for each candidate label � , according to func-
tions ����� ��� �
	 that are thought of as votes or confidences
for assigning label � to instance � using the � -th classifier.
Ensemble methods such as AdaBoost (Freund & Schapire,
1996) combine the classifiers using linear combinations of
these scores. However, often the input classifiers do not
have scores associated with them, or their scores may not
be comparable or well calibrated. An alternative approach
is to view each input classifier in terms of the ranked list of
labels that it assigns to � . Under this view it is natural to
build probability distributions over rankings of the labels,
leading to models on permutation groups. This is a largely

unexplored approach in machine learning, and the one that
is pursued in this paper.

While there has been little previous work on models for
ranked data in the machine learning literature, there is a sig-
nificant body of work on such models in statistics. Much of
this has focused on simple generative models, estimating a
parametric distribution ���������	 where � is a permutation or
coset, corresponding to a partial ranking. Early work in this
direction includes the Thurstone model (Thurstone, 1927)
and the Babington Smith model (Smith, 1950). Mallows
(1957) proposed a metric-based unimodal distribution that
is a special case of the Babington Smith model. Fligner and
Verducci’s multistage models (Fligner & Verducci, 1986;
Fligner & Verducci, 1988) are a generalization of the Mal-
lows model for multistage rankings. The use of group rep-
resentations as a tool for approaching such problems has
been championed by Diaconis, with emphasis on analysis
of variance methods (Diaconis, 1988; Diaconis, 1989).

This paper explores conditional models on permutations as
a tool for solving problems involving the analysis of ranked
data, such as fusion or multiclass classification. The mod-
els are conditional because they take as input a set of per-
mutations. Our most basic model is an extension of the
Mallows model to the conditional setting. While some at-
tempts have been made in the statistical literature to add
covariates, they rarely take the form of additional rankings;
see (Fligner & Verducci, 1993) for a recent collection of
relevant papers. An interesting feature of the model pro-
posed in this paper, as explained in detail below, is that
because of the invariance properties of the sufficient statis-
tics, the model has a natural Bayesian interpretation with
respect to an underlying generative model. Thus, in con-
trast to many ensemble methods that are purely discrimina-
tive, the approach introduced here has both discriminative
and generative interpretations.

We view this work as forming a bridge between the sta-
tistical literature on models for ranked data and the ma-
chine learning perspective on algorithms and architectures.
The following sections present the new approach, which



we call cranking, together with the results of experiments
that validate it. Section 2 reviews the basic concepts that
are needed from the theory of permutation groups. Sec-
tion 3 presents the model that the approach is based upon,
and various interpretations of this model are described in
Section 3.3. Learning and inference are described in Sec-
tion 4, followed by extensions to the model in Section 5.
Section 6 presents experiments that were carried out on
synthetic data, multiclass problems from the UCI reposi-
tory, and actual meta-search data. The results of the paper
are summarized in Section 7.

2. Metrics, Permutations and Coset Spaces

This section reviews some basic concepts from permutation
theory that will be of use in later sections, adopting the
notation and metrics of Critchlow (1980).

Let
��� ��� ������� � �	� be a set of items to be ranked, iden-

tified with the numbers 
 ������� ��� . A permutation � is a bi-
jection from �
 ������� ����� to itself. We use � � ��	 to denote the
rank given to item � and ��� � ��� 	 to denote the item assigned
to rank � . We will usually write � and ��� � as vectors whose
� -th component is � ��� 	 and ��� � � ��	 , respectively. The col-
lection of all permutations of � -items forms a non-abelian
group under composition, called the symmetric group of or-
der � , and denoted ��� .

We are given a set of training instances that we wish to as-
sign a ranking of items to. For each instance, we have a
collection of rankings that is also given as input. The � -th
ranking for the � -th instance is denoted ��� ���� . For example,
in the case of our ensemble approach to classification, for
each instance � we have a ranking of the labels given by the� -th input classifier, denoted ��� ������ ��� . The permutation

� � ��� � � � will be used to denote the predicted permutation
for the � -th instance. We will denote a sequence of permu-
tations � � as � , using boldface vector notation.

A function  "!#���%$&���('*) is a metric on ��� if it satisfies
the usual axioms:

 ��� � ��	 �,+ � - � � ��� ��� � � 	/. + � - � � � � � � � �/0� � ��� � � 	 �  �1� � ��	 � - � � � � ��� ��� � � 	/23 � � �54 	768 � 4 � � 	 �9- � � � �54 � ���
For  to be a measure of distance between two rankings it
also makes sense to require invariance of  over arbitrary
relabeling of the items. This amounts to the following right
invariance property:

 ��� � � 	 �  ��� 4 � � 4 	 - � � � ��4 � � � � (1)

We list some possible choices for  that fulfill the met-
ric and right invariance properties, and that make sense in

the applications considered in this paper. These are Spear-
man’s footrule : and rank correlation ; , and Kendall’s 4 ,
referred to below as < . These metrics are defined by

; ��� � � 	 � �=
��> � ��� ��� 	�?@� ��� 	 	BA (2)

: ��� � � 	 � �=
��> � � � ��� 	�?@� ��� 	 � (3)

< � � � � 	 � � � �=
��> � = CED �GF ���H� � � � ��	�? �H� � � �1I 	�	 (4)

where F � � 	 � 
 for � . +
and

+
otherwise. The mea-

sure < ��� � � 	 can be interpreted as the minimum number of
adjacent transpositions needed to bring � to � . By an ad-
jacent transposition we mean an operation that flips a pair
of items that have adjacent ranks. Another distance that
is simple to work with, but not as appropriate for the ap-
plications considered here, is the Cayley distance given byJ ��� � � 	 � � ?LK � ��� � � 	 , where K �NM 	 is the number of
cycles in M ; this is equivalent to the minimum number of
non-adjacent transpositions needed to bring � to � (Cayley,
1849). See Fligner and Verducci (1986) for an interpreta-
tion of < and

J
in terms of multistage ranking. The above

three metrics can be transformed to the range O�?P
 � 
�Q by the
mapping  SR',
T?@U	 WV�X , where X �ZY"[#\^]W_ `  � � � � 	 .
Now, let � � �ba denote the subgroup of � � consisting of all
permutations that fix the first c positions:��� �ba �  � � ��� ��� ��� 	 � � �d- � � 
 ������� � c ��� (5)

The right coset� � �ba � � e� ���B� � � � �Ga � (6)

is equivalent to a partial ranking, where we only consider
the c top-ranked items. The set of all partial rankings of c
out of � elements forms the quotient group �7�fVg��� �Ga .
A partition of � is a sequence h � � � ������� ���Hi of positive
integers that sum up to � . Such a partition corresponds to
a partial ranking of � � items in first position, � A items in
second position and so on. A partial ranking of the top c
items is a special case with j � c&6k
 �5� � � ����� � � a �
 �5� aml � � � ?nc . Let o � � �
 ������� ��� � � � o A �  � � 6
 ������� �5� �^6 � A ����p�p�p � o i �  � �q6 p�p�p 6 � i � �q6r
 ������� �5��� .
Then the subgroup ��s � ����tu$ p�p�p $v���xw contains all per-
mutations � � � � for which the set equality � �yo � 	 � o �
holds for each � ; that is, all permutations that only permute
within o � . A partial ranking of type h is equivalent to a
coset ��s�� and the set of such partial rankings forms the
quotient group ���fVg�Hs .

3. A Conditional Ranking Model

This section presents the conditional model that forms the
basis of the new ensemble method.



3.1 Standard models

Our starting point is the Mallows model (Mallows, 1957).
The parameters in this model are a pair ��� � ) � � � �7� 	 ; �
is the location parameter, and � is a dispersion parameter.
The model is given by the following exponential form:

� � � � � � � 	 � ����� � ]W_ ` � � � � � _ ` � (7)

where  � p ��p 	 is a right invariant metric on the symmet-
ric group, and � is the cumulant function, � ��� � � 	 ��	��
� ]�������� \�� ���  ��� � � 	 	 . We denote this model by� � ��� � � 	 . When  is Spearman’s rank correlation or
Kendall’s 4 , then by the right invariance of the metric, the
cumulant function is seen to be only a function of � . That
is, since=]������ � ��� � ] _ ` � � =]������ � ��� � ]x`�� t _ � � � =]�������� � ��� � ] � _ � � (8)

the normalizing constant can be written as � ����	 � � � � � � .
The parameters of the model, � and � , are typically esti-
mated by maximum likelihood. Note that for negative � ,
the model becomes more concentrated around the mode �
as � decreases.

Fligner and Verducci proposed an � ? 
 parameter gen-
eralization of the Mallows model that may be interpreted
as multistage ranking (Fligner & Verducci, 1986). For
Kendall’s 4 distance their model is given by

� � � � � � � 	 � 
� � � � � 	 �"! � � t#%$ t � # !'&%( #*) � ]x`�� t � ��� � ]	`�� t �
C �N�
(9)

where now � � ) � � � . This model reduces to the Mal-
lows model with Kendall’s 4 when all the parameters � �
are identical.

3.2 An extension to multiple input rankings

We propose a generalization of the Mallows model for es-
timating a conditional distribution, which is similar to the
model suggested by Feigin in chapter 5 of (Fligner & Ver-
ducci, 1993). Let � � � ��� be a permutation, and � � � )
for � � 
 ������� c . The distribution

������B� � � 	 � 
� �+� � � 	 � !',-.$ t � - � � ]W_ ` - � (10)

defines a conditional model when there are multiple in-
stances and each instance is associated with a possibly dif-
ferent set of rankings � � ���� . These may represent, for ex-
ample, the ranking of Web pages output from individual
search engines for a particular query, or the ordering of the
class labels output by the classifiers in the ensemble for a
particular instance. The parameters � � can be then thought
of as indicating the “degree of expertise” of the different

rankers. In this setting, only the � � are the free parameters
to be estimated. As an exponential model, the likelihood
function is convex in � and enjoys many nice asymptotic
properties.

When  is Kendall’s 4 , it is obvious how to extend this to
a higher dimensional model in a manner that is analogous
to the Fligner and Verducci model described above. While
this may indeed be a very useful extension, we do not pur-
sue it further in this paper.

3.3 A Bayesian interpretation

Although the above model is naturally viewed as a discrim-
inative model for � , underlying it is a natural Bayesian in-
terpretation. Viewing � as a parameter, now suppose that� �0/ � � ��� � � ��	 ; that is, the � � are independently sampled
from Mallows models with common mode � and disper-
sion parameters � � . Under a prior �����	 , the posterior is

������ � � � 	21 � � ��	 � \��43 � � � �  � � � � � 	65 (11)

since by invariance of  � p ��p 	 , the normalizing constants in
the Mallows models cancel. Thus, under a uniform prior
on � , the distribution (10) is precisely the posterior of a
generative model for the rankings � . See (Fligner & Ver-
ducci, 1990) for a discussion of posterior probabilities for
multistage ranking models.

Both AdaBoost and additive logistic regression have mod-

els of the form 7
��� � � � � 	81 � \��43 � � � � � � � ��� �
	 5 , and

a decision rule that is a linear combination of features� � � � � � � ��� � 	 . While boosting and maximum likelihood
logistic regression are intimately related, as shown in
(Lebanon & Lafferty, 2001), our ranking model is funda-
mentally different, since it is a model over rankings � and
not labels � . Furthermore, in the applications presented be-
low, the features or weak learners are used to generate the
rankings � , rather than to form an additive model. The
above observation shows, however, that the model can be
viewed as both a discriminative and (the posterior of) a gen-
erative model, a fact that may facilitate asymptotic analysis.

4. Learning and Inference

This section describes parameter estimation for the model
presented in the previous section, as well as how it may be
used for inference. These issues are non-standard here be-
cause the model is over rankings while the training and test
data are often only annotated with individual class labels.

4.1 Learning

When supplied with a training set consisting of pairs 9 �: ��� � ��� � � � ��� 	*; , the parameters of the model can be esti-
mated by maximum conditional likelihood or MAP. In



principle, maximum likelihood estimation for this model
is straightforward, and can be carried out using numerical
algorithms such as a conjugate gradient procedure. How-
ever in practice, several obstacles may make training more
challenging.

In many practical situations we do not have data in the
form of full permutations. For example, in classification,
for each training instance � � ��� , one is given the label � � ��� .
In terms of a ranking model, this may be viewed as a partial
permutation that corresponds to the coset �7� � �m� of the top
class. Moreover, the classifiers for an instance � � ��� may be
a full or partial permutation. In the case of search engine
fusion, each ranker may provide a list of, say, the top 
 +
documents, corresponding to a coset � � � � � � . Here the la-
bel will correspond to a coset

J s � � ��� , whose form depends
on the relevance annotations in the data.

By treating the available data as censored and the full rank-
ing � � ��� and � � ���� as the complete data the model (10) can be
learned by maximizing the marginal conditional likelihood.
Suppose that instance � � ��� is given label � � ��� . Suppose that� � ��� are complete rankings, given by the rankings of the
labels on instance � � ��� , and that � � ��� is an arbitrary permu-
tation that ranks � � ��� at the top. Then the log-likelihood
function for the model is given by� ��� 	 � �	��
��

�
=]���� � � t ]�� #�� ���� � � � � � ��� 	 (12)

� =
�

�%��
	�
 � ]���� � � t ] � #�� � ! - � - � � ]W_ ` � #��- �� ]������ � ! - � - � � ]W_ ` � #��- �
� � (13)

More generally, one may observe only a partial ranking for
� corresponding to a coset ��� � � ��� , and the input rankers
themselves may only provide a partial ranking  J s - �7� ���� �
for the labels of � . For example, in the search engine set-
ting, �Hs - �7� ���� is the partial ranking of pages by the � -th

search engine for the � -th query and ��� � � ��� may be obtained
as relevance feedback from the user.

This may again be treated as a censored data problem.
Lacking additional information about the rankers, we as-
sume that conditioned on the coset  J s - � � � , the full rank-
ing � � is uniform. Under this assumption, the marginal
likelihood used to fit the model is given by

� � J � � � ��� � � �  J s - � � ���� � 	 �=]��������B] � #�� 
� ����� J s - � � ���� ���
=� ` �- ����� - ` � #��-�� � � ��� � � � ��� 	 � (14)

While this marginal looks especially unpleasant, the use of
MCMC methods for this model is fairly straightforward, as
explained next.

4.2 Using MCMC

Maximum likelihood estimation using a first order tech-
nique such as conjugate gradient requires the computation
of the log-likelihood derivatives� � �+� 	� � � � =

�
=]������ � t ] � #��  � � � � � ���� 	 ������ � � � � ��� � � � � ��� 	

? =
�
=]���� �  � � � �7� ���� 	 ������ � � � � ��� 	 � (15)

In addition, the line search in conjugate gradient requires
the evaluation of the log-likelihood, given in terms of an
expectation by� �+� 	 � =

�
�%��
 3 � O 
 � � � t ]�� #�� � � � � � ��� Q 5 (16)

For small � , these sums over �"! items can be computed ex-
plicitly. For larger � , Markov chain Monte Carlo methods
may be attractive.

Running an MCMC algorithm such as Metropolis-Hastings
for the generalized Mallows model is relatively straightfor-
ward. A natural proposal distribution 7
�NM ����	 is to move by
random transpositions:

7
�NM ����	 � # 
#V%$ � A�& if
J �yM � ��	 � 
+

otherwise � (17)

where
J �NM � ��	 is the Cayley distance. To sample from

������ � � � � ��� � � � � ��� 	 , we use a proposal distribution that
simply fixes the elements given by � � ��� , and randomly
transposes the remaining elements.

Diaconis and Hanlon (1992) analyze this MCMC algorithm
in the special case of a Mallows model with the Cayley
distance as the metric, showing that it is rapidly mixing.
Unfortunately, the Cayley distance is not as appropriate for
classification and meta-search applications, and no such re-
sult is known with Kendall’s 4 in its place, nor with the gen-
eralization of the Mallows model that is proposed in this
paper. However, we have found MCMC to give reasonable
results when sampling over �7�^Vg��� �ba for the meta-search
experiments with a proposal based on adjacent transposi-
tions.

4.3 Inference

At test time, partial rankings are again of interest. For
example, in classification one may wish to compute the
marginal probability that a given label � has rank one.
In the experiments reported below, the extended Mallows
model is evaluated using the expected rank of the true la-
bel, which is then used to order the items. For a given test



instance � � � ��� � � � ��� 	 , the expected rank is� � � � � � ��� 	�� � � � � ����� � �=
a > � c� � � ��� 	

� c � � � � � ��� 	 (18)

� �=
a > � c =]���� � , ] � #��, ������ � � � � ��� 	

where � � , ��� ���a is the coset of permutations which fix � � ���
in position c . The labels can then be ordered according to
their expected ranks. When used together with probability
of correctness (probability of having rank one), this pro-
vides a more meaningful measure than the standard error
rate since it gives information on “how far off” the model
is on a particular instance. In the search engine setting, one
is interested in presenting a final ranked list to a user. This
list can be formed by ranking the documents according to
the expected ranking of documents.

Working with cosets through censoring offers an appealing
and principled approach to multilabel classification prob-
lems. In multilabel classification, every instance may have
several labels. The output of the features may be any coset.
For example, the feature functions may assign confidence
scores that yield either full or partial ranking of the classes,
or they may be multilabel classifiers that output an arbitrary
coset. The model (10) can then be used to calculate proba-
bilities of cosets, corresponding to multilabel assignments.

5. Extensions

This section briefly discusses possible extensions to the
above model that could lead to significantly more accurate
rankers.

First, the Bayesian interpretation presented in Section 3
could be modified to use a non-uniform prior �����	 . When
viewed in terms of the posterior, this term becomes equiva-
lent to a “carrier” or default density � � � 	 in an exponential
family model � � � 	 � � � � 	 � \�� � ��� � � 	T? � � ��	�	 . Another
straightforward extension involves adding feature interac-
tion terms, analogous to those described in (Friedman et al.,
2000). The resulting model would take the form

� � ��� � � � 	 1� \�� 3 � � � �  ��� � � � 	�6 � a
C
� a
C  � � � � a 	  ��� � �

C
	 5 �
(19)

Additional binary covariates � � � � 	 may be incorporated
into the model as

� ����� � � � ��� 	 �� 
� �.� � � ��� 	 � \�� 3 � � � ��� � � 	 ��� �  ��� � � � 	 5 (20)� 
� �.� � � ��� 	 � \�� $�� � � 	����  � � � � 	 & (21)

where now � is a matrix of parameters. Here � � � can be
interpreted as the expertise of ranker � on instances � for
which � ��� � 	 � 
 . In the search engine setting, � could be
binary features of the query that suggest an area of high
accuracy for one of the engines.

An alternative approach to censoring can be used to train
a model directly with partial permutations. In particular,
the metrics described in Section 2 can be extended to coset
spaces in various ways, and the model could be defined di-
rectly on partial permutations. Critchlow (1980) describes
ways of extending a metric  v!#� � $ � � '*) to a metric  
	
on coset spaces  �	 !#���fVe�Hs $ ���fVe� �T' ) . For such a met-
ric, the conditional model becomes � �N��� ��� ��Hs - � � � � � 	'1� \��43 � � � �  
	 �E� � � � � s - � � 	 5 . The main advantage of such

an extension is computational. Summing over the coset
may be intractable, and the use of an extended metric re-
duces the computational effort significantly. However, the
censored approach seems more motivated and intuitive than
the extended metric approach.

6. Experimental Results

This section reports the results of experiments on four data
sets. The first is a synthetic data set generated from a mix-
ture of Gaussians in three dimensions. The next two are
multiclass datasets from the UC Irvine repository, �����������  and � ���
��� . The last is a meta-search experiment using
a collection of queries and relevance rankings from differ-
ent search engines. The first three are classification datasets
and the meta-search data has ranked lists of retrieved Web
pages.

6.1 Classification experiments

The mixture of Gaussian dataset consists of 500 training
and testing points sampled iid from five Gaussians, under a
uniform class prior. In the ������ ���  dataset four car mod-
els were photographed at different orientations, and from
these images 18 numeric and geometric features were ex-
tracted from their silhouettes. The dataset includes approx-
imately 1000 instances; the task is to predict the vehicle
model from the measurements. The � ������� dataset has 214
instances, each labeled with one of six classes. Each in-
stance has 10 numeric attributes originating from chemical
measurements, with the classes corresponding to different
types of glass.

Because the goal is to combine diverse classifiers, we re-
stricted each classifier to work only on one dimension of
the input space (chosen randomly). In the first experiment
probabilistic decision stumps were used as the weak learn-
ers. A probabilistic decision stump � � _ � ��� � � 	 is defined as

� � _ � � � � � � � 	 � � � ! � V � K � if � � �#" M� $ � V � K � otherwise
(22)



�
train

�
test

�
train

�
test� ���
���

Real AdaBoost.M2 0.53 0.59 1.94 2.15
Discrete AdaBoost.M2 0.56 0.60 2.17 2.32
Discrete AdaBoost.MH 0.55 0.61 2.24 2.46
Discrete Logloss 0.56 0.61 2.19 2.32
Real Logloss 0.53 0.59 1.94 2.16
Cranking 0.54 0.58 2.07 2.28������ ��� 
Real AdaBoost.M2 0.56 0.63 1.97 2.15
Discrete AdaBoost.M2 0.69 0.70 2.37 2.40
Discrete AdaBoost.MH 0.68 0.70 2.34 2.39
Discrete Logloss 0.69 0.70 2.36 2.39
Real Logloss 0.55 0.62 1.96 2.13
Cranking 0.58 0.64 2.06 2.22

Table 1. Error rates and rank rates, comparing various forms of
additive models. Each ensemble method used the same set of
input classifiers, made up of a combination of random stumps,
neural nets, and � -nearest neighbor classifiers.

where K�� 9�� i�� � � is the set of training examples that
satisfy � � " M , ! �  � � K ! � � � 	 � � � � and$ �  � � K ! � � � 	 � � � � .
In the first set of experiments, different methods for com-
bining a set of randomly generated stumps were compared.
Three general types of methods were used, depending on
whether they used the confidence scores of the weak learn-
ers (real AdaBoost and real logistic regression), binary de-
cisions only (discrete AdaBoost and discrete logistic re-
gression), or the ranked list of labels output by the stump
(cranking). When using binary or confidence scores, we
formed a linear combination of the features by minimiz-
ing the exponential loss of AdaBoost.M2 or maximizing
the likelihood in the case of logistic regression; the rela-
tionship between these optimization problems is discussed
at length in (Friedman et al., 2000; Collins et al., 2002;
Lebanon & Lafferty, 2001). When using the ranked data,
the cranking model (10) was fit using a conjugate gradi-
ent algorithm to maximize the marginal likelihood. In each
case, the parameters were fit using an iterative algorithm
that makes multiple passes through the data.

To measure the performance of the ensembles we used the
error rate � and the rank rate � defined as the average of the
ranks assigned to the correct labels. Error and rank rates
over the train and test set for the five methods are plotted in
the graphs in Figure 1. The plots were averaged using 10-
fold cross validation, with the same train/test splits used
for all methods. As expected, the use of confidence scores
in the “real” versions of logistic regression and boosting
yields better performance than the use of binary models.
On the Gaussian mixture data, cranking significantly out-
performs the other methods with respect to both the error

rate � �
	��� and the rank rate � �
	��� . For the ������ ���  dataset,
cranking outperforms the binary models but is worse than
the methods that use confidence scores.

In an additional set of experiments, the same ensemble
methods considered above were used for combining dif-
ferent classifiers; specifically, we combined randomly se-
lected stumps, single layer feed-forward neural networks
(using 1-of- � label encoding), and c -nearest neighbor clas-
sifiers. All three types of classifiers output confidence
scores in the range O + � 
 Q . The results are displayed in Ta-
ble 1.

6.2 Meta-search experiments

The second set of experiments were carried out using the
meta-search dataset described in (Cohen et al., 1999). In
this data, queries with the names of machine learning re-
searchers and universities were first expanded in differ-
ent ways, and then used to retrieve different lists of Web
pages. The queries were designed in such a way that the
correct Web page was known, making it possible to eas-
ily assign relevance judgements to the returned pages. (We
used only the machine learning queries since for the univer-
sity queries a single query expansion method outperforms
the other engines for all queries.) After removing engines
and queries that didn’t have the necessary data, we were
left with 14 rankers and 79 queries.

Recent work on the fusion problem includes RankBoost
(Freund et al., 1998), the use of a linear combination of es-
timated relevance scores (Vogt & Cottrell, 1999), modeling
the scoring process of the different search engines (Man-
matha et al., 2001) and a naı̈ve Bayes approach, referred to
as Bayes Fuse in (Aslam & Montague, 2001). In the case
of RankBoost, the hypothesis class is a linear combination
of the ranks of the individual items assigned by the input
rankers. In all of these approaches, a single ranking is out-
put by the system rather than a distribution over rankings.

In the experiments presented below, we compare crank-
ing with Bayes Fuse (BF). The BF model ranks
documents according to the posterior log-odds score�	��
 � �� rel � j#� ������� � j a 	 V �� irr �Bje� ������� � j a 	�	 where j � is the
rank assigned by engine � to the document in question.
The log-odds were computed using Bayes rule and a naı̈ve
Bayes independence assumption

�%��
�� �� rel �Bje� ������� � j a 	�� irr �Bje� ������� � j a 	�� � �	��
�� � � rel 	 � � ��Nj � � rel 	
� � irr 	 � � ��Nj � � irr 	�� �

(23)

The probabilities ��Nj � � rel 	 and � �Nj � � irr 	 were computed
using MAP estimation for a multinomial distribution with
Laplace smoothing, as well as with a kernel estimate. Both
models were used to rank the pages returned by all of the
search engines.
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Figure 1. Error and rank rates for combining random stumps. Each plot tracks the error or rank rate as the number of features is increased.
The same features are used in all methods. The first two rows are for the Gaussian mixture dataset and the last two rows are for ������ ���  .



Coset
size � ��� � ��
	��� � ��� � ��
	��� � ��� ��� � ��
	��� ���
	�
	�� �

3 1.5 1.7 3.3 2.5
7 3.6 3.5 4.8 3.0

10 3.6 3.1 6.0 2.7

Table 2. Rank rate results for the meta-search data. When consid-
ering the top 7 or 10, the rank rate of cranking is lower than that
of Bayes Fuse.

In each experiment the top I documents were considered
from each engine, for I ��� �� � or 
 + . The total number of
pages � returned by all of the engines is large, however, so
we use a model defined directly on the coset � � Ve� � �

C
, as

described briefly in Section 5. Since there is a single rele-
vant document for each query, fitting this model involves
maximizing the marginal conditional likelihood. To do
this, a gradient ascent algorithm was used, where the gra-
dient and log-likelihood are estimated using a Metropolis-
Hastings algorithm, as described in Section 4.

To evaluate the methods, we compute the average rank of
the correct page in the test set queries, denoted � ��� � �test for
the Bayes Fuse with Laplace smoothing and � ��� � �test for
the Bayes Fuse kernel estimator. � �
� ��� � �test denotes the av-
erage rank rate for the best single ranker. Note that the
best single ranker was found using both the train and test
queries. The average rank for cranking, obtained by order-
ing the pages according to their expected rank with respect
to (10) as described in Section 4.3, is denoted by ���
	�
	�� � .
Note that all methods performed better than the best single
ranker and as the number of documents retrieved by each
ranker grows cranking outperforms Bayes Fuse.

7. Conclusions

This paper introduced a new approach to ensemble learn-
ing that takes ranking, rather than classification, as funda-
mental, leading to models on the symmetric group and its
cosets. In this respect it is to the best of our knowledge
unlike any previous work in the machine learning litera-
ture. An extension of the Mallows model was proposed as
the basis for the new approach, which has both discrim-
inative and generative interpretations due to the right in-
variance of the underlying metric. As a method for com-
bining classifiers, the ranking approach has many attrac-
tive features; for example, it naturally models the assign-
ment of multiple labels to instances. Experiments carried
out on synthetic and UCI datasets for classification, as well
as on meta-search data for ranking, indicate that the new
approach compares well with strong competing methods.
The framework draws on the significant body of research
that has been carried out on ranking models in the statisti-
cal literature, comprising a rich theory that has significant
promise for future development in machine learning.
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