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Abstract

Of the many arguments for the Bayesian viewpoint, the conditionality-
Likelihood Principle approach seems most effective in "converting" non-Bayesians.
When combined with a robust Bayesian perspective, the resulting package can be
very convincing to non-Bayesians and answers most of their objections to
Bayesian analysis. It also indicates which frequency based (or other classical)

modes of analysis have a role to play in Bayesian analysis.



1.  Introduction

Bayesian statistics is growing rapidly and vigorously. By now there are
extensive Bayesian methods available for use as alternatives to classical statis-
tical techniques. However, non-Bayesian statistics seems to also be growing
rapidly, and while there seems to be some trend towards the Bayesian position
(c.f. Zellner (1981)), this trend is not yet overpowering. Thus, although the
arguments have been going on for over a century; it remains imperative for Bayesians
to continue to sell their viewpoint effectively and to attempt to improve their

" sales techniques.

e, rot

fo relative newcomers in statistics the Bayesian approach seems natural
and believable. (It is certainly more natural to talk about actual "proba-
bilities" of hypotheses than about error probabilities of various types.)
This article is addressed, not to the problem of convincing such newcomers,
but instead to the far more difficult problem of changing the views of established
non-Bayesians. We will argue that this can best be accomplished by (i) Argu-
ing for the need to think conditionally on the data and follow (as much as
possible) the Likelihood Principle; (ii) Maintaining that, while consideration
of prior distributions is necessary for meaningful conditional thought, there
is no need to presume (and indeed reasons not to presume) that prior distri-
butions can be specified completely or accurately; (iii) Admitting that,
for a variety of reasons, non-Bayesian techniques are (at least for the time

being) of interest to a Bayesian.

The more standard arguments for the Bayesian position are based on
notions of coherency (or rationality or consistency), and on the importance

of using prior information. Although these arguments can be persuasive, we



will argue in section 2 that they are not sufficiently compelling to the
majority of:.statisticians: - Of course, statisticians never really accept
the Bayesian posftion unt?1 they.actually try thinking in & Bayesian
- fashion and.see the c1a?1tyiand'1mproved'reéuTts that are usually obtained.
If is very hérd f& "prove" to a non-Bayesian that Bayesian results are really
better, however (or, more precisely, that in the substantial majority of
problems a Bayesian analysis will give a better answer than a non-Bayesian
analysis based on a similar investment of effort). Thus the "success" of
Bayesian analysis is typically the gradually perceived clinching argument
for the Bayesian viewpoint, rather than the initial argument starting one on
the Bayesian path. Also, the perhaps most important component of the Bayesian
mode of thought is conditional thinking; which provides further justification

for arguing via (i), (ii), and (iii):

There is, of course, nothing new in arguing the Bayesian viewpoint via

steps (i), (ii), and (iii), and indeed there will be nothing really new anywhere

in the paper. Also, serious efforts will not be méde to justify thése threé

steps here; instead the emphasis will be on why this is the best approach to

take. Finally, very few references will be given, since the concepts discussed

have been developed by a large number of people and this is not intended

to be a review paper. Extensive bibliographies concerning‘some of these
issues can be found in Berger (1984 ) and Berger and Wolpert (1984 ). As

a final caveat, although we repeatedly refer to 'non-Bayesians' as a class,
there are, of course, enormous differences in view among non-Bayesians. The
arguments we suggest are particularly aimed at frequentists, whose techniques
form the bulk of existing statistical methodology. In particular, such
theories as fiducial inference (c.f. Wilkinson (1977)), structural inference
(c.f. Fraser (1968 )), and pivotal inference (c.f. Barnard (1980)) will be
ignored, even though they may have major points of disagreement with the

advocated form of Bayesian analysis and aven thought thdv may. - . veos



important contributions to the advocated form of Bayesian analysis. Finally,

lack of space will also preclude discussion of various pseudo-Bayesian posi-

tions. See Berger (1984) and Berger and Wolpert (1984) for some discussion

and references.
The notation that will be used in the paper will be kept simple. It

will be assumed that an experiment
&= (X',{fe: 8€ @ 1)

is performed, where X is the random variable observed (a particular realization
of which will be denoted x), % is the density of X on the samp]e space

Z , and ¢ is the unknown parameter of interest with: ® being the parameter
space. (Since we seek to establish nothing rigorously, mathematical niceties
will be 1gnored and densities will be presumed to exist.) Although 6 will
usually be a parameter in the usual sense,‘we will have occasjon to allow

it to be just a general index, such as when'{fe: pE © ) is tQ be the sét '

of all densities on % (with respect to an appropriate measure): Prior
densities on ®@will be denoted m(6), and =(6]|x) will denote the resulting
posterior density. ATthough some Bayesians view this standard "model-prior"
formulation as misguided fundamentally (c.f. deFinetti (1974,1975), who views
only observables as fundamental), we feel that such a formulation is usually an
operational necessity, and, in any case, the Bayesian viewpoint can best be sold

to non-Bayesians by using their frameowrk in so far as possible.



2. He]pful; but Non-Compelling Bayesian Arguments

Several arguments often used to support the Bayesian position are mentioned
here, along with reasons why they seem not to be compelling to most non-

Bayesians.

2.1 Prior Information Is Important

Examples abound where prior information is a crucial element of any
statistical problem. Indeed, in virtually any realistically complicated
statistical setting, massive subjective choices (model assumptions, etc.)
are made by any statistician. Even in such a supposedly pure non-Bayesian
procedure as a significance test of a single (point) hypothesis, se]ection
of a test statistic requires subjective consideration of the type of alterna-
tives that are of concern. Thus Good (1983) has said

"The people who don't know they are Bayesians are called non-

Bayesians."

Nevertheless, this argument fails to be persuasive to non-Bayesians. They
can argue that the model often does have an "objective" reality due to
theoretical considerations, and in some situations (such as that of simple
Bernoulli trials) this may be the case. We won't pursue this issue, basi-
cally because of the empirically observed fact that arguments concerning the
lack of objectivity of models seem to have Tittle effect on non-Bayesians.

Non-Bayesians can also, at least, argue that their nonparametric analyses
are totally objective, as in the following example (from Efron (1982)) -

which will be of use later.

Example 1. The experiment. € consists of observing X],...,X]5 which are

i.1.d. observations from a completely unknown continuous density f on R].



(Here we identify 6 with the unknown f, so @ is the set of all continuous
densities on R1.) 0f interest is n, the median of the unknown density.
A simple binomial calculation shows that a 96.3% confidence interval for

n is given by [X(3),X(]2)], where the X(i) are the order statistics.

2.2 Coherency

Many axiomatic systems of coherent (or consistent or rational) behavior
(c.f. Ramsey (1926, 1928), deFinetti (1974, 1975), Savage (1954), and Rubin
(1974)) have been created, which show that any coherent method of behavior
corresponds to some form of Bayesian analysis. It was indeed these axiomatic
developments that convinced many of today's Bayesians to become Bayesians,
and they remain a cogent argument.

Those who remain unconvinced by the coherency arguments offer the
fo]]owing‘criticisms:

(i) The axioms themselves are wfong (c.f. LeCam (1977)).
(i1) The axiomatic systems are only theoretically implementable, in the sense
thay they involve infinite numbers of comparisons or, alternatively, involve
anticipation of all possible eventuaTities.» Thus C.A.B. Smith (in Savage et. al.
(1962)) says

| "Such an absolutely consistent person does not, of course, exist."
(ii1) The coherency argument merely states that a coherent method of behavior
corresponds to a Bayesian analysis. It doesn't say that one must explicitly

use a Bayesian approach to be coherent, as the following example shows.

Example 2. Consider an invariant decision theoretic estimation problem,
in which the parameter space @ 1is a compact group (say, the group of

rotations). For any such problem, the mode of behavior "use the best



invariant estimator" is completely coherent (since it happens to correspond
to a Bayesian analysis with the invariant Haar measure on. @ as the

prior distribution),

(iv) A Bayesian approach, even though coherent, need not necessarily be
better than a non-Bayesian approach. Thus C.A.B. Smith (in Savage et.
al. (1962)) says

"Consistency is not necessarily a virtue: one can be consis-

tently obnoxious."

As an example, for parametric problems where ® 1is a compact interval, the
formally coherent Bayesian behavior of always using a prior distribution
concentrated on the lower endpoint of the interval is clearly obnoxious.

A more realistic example is the following.

Example 3. Suppose that X ~ % (8,1) is to be observed, and that a Bayesian
determines that his prior density for 6 is bell shaped with median 0 and
quartiles x1. He then chooses the matching conjugate prior (% (0,2.19))

to do the analysis. If now x = 5 is observed, the posterior mean can be
calculated to be 3.43,

As an estimate of o this can be challenged by a non-Bayesian, since it
is 1.57 (sample) standard deviations from the (MLE and MVUE) classical
estimate 5. Indeed, the non-Bayesian can point out that, if the Bayesian
had fitted his prior information with a Cauchy density instead, then the
Bayes estimate would have been about 4.6. The non-Bayesian concludes that
he could care less about coherency; he just wants to get a good estimate, and

5 Tooks like a pretty good estimate of 6 to him.



Of course, in the above example, a good Bayesian analysis would have
involved a sensitivity study when the surprising (but not impossible) x = 5
was observed. Furthermore, in deciding between use of the normal or Cauchy
prior, a Bayesian would note that the ratio of the predictive (or marginal)
probabilities of x = 5 for the normal and Cauchy priors would be very small,
indicating that the Cauchy prior is more appropriate for use. The fact that
a very careful Bayesian analysis is needed is pre;ise]y the point, however;
the non-Bayesian can argue that a "good" coherent Bayésian ana1ysis
is harder and more fraught with peril than a "good" non-coherent frequentist
analysis. Thus LeCam (1977) says

"To claim that an ideal person could in principle specify such

a relation is to beg the question. To claim that since an ideal

person could do it, a real person should do it, is to introduce

a dogma for which we have little justification."

In principle, a Bayesian might admit the validity of many of the above
objections. On the other hand, it certainly seems desirable to strive
for coherent Behavior, and the axiomatic systems seem to indicate that the
direction in which to strive is the Bayesian direction. Thus the Bayesian
can argue that most of the effort in statistics should be directed towards
extending and sharpening Bayesian tools.

Another extremely valuable consequence of the coherency argument is that
if any "complete" theory of statistics exists, it is the Bayesian theory.

One can either be a Bayesian, or argue for some form of anarchy.

2.3 The Correspondence Between "Good" Classical Procedures and Bayes Procedures

When non-Bayesians attempt to define "good" classes of statistical
procedures, these classes almost invariably end up corresponding to a class
of Bayes procedures (or their limits). Most complete class thoerems in

frequentist decision theory are of this form, the first and simplest being



the correspondence between most powerful tests and Bayesian tests, when testing
between two simple hypotheses.
Although this correspondence could be considered to be a mathematical
coincidence, it is hard to argue that a procedure should be selected from
the "good" class even if it corresponds to an unreasonable prior distribution.
An example of current research interest in frequentist theory is that of
the Stein effect, whereby the usual estimator of a multivariate normal mean
can be improved upon (in terms of frequentist risk) in dimensions three
or more. Unfortunately, the set of better estimators is enormous, and in
choosing an estimator from this set it is impossible to ignore prior infor-
mation, at Teast to the extent of deciding where to shrink towards. (See
Berger (1980a and 1982a) for more discussion.) While these arguments are

certainly telling, they do not seem to be compelling to non-Bayesians.

2.4 Measuring Uncertainty

A very fundamental justification for Bayesian analysis (c.f. Jeffreys
(1961), deFinetti (1974, 1975) and Jaynes (1981) which also contain other
references) is simply that the goal of statistics is to communicate evidence
about uncertainty, and that the correct language to use in measuring uncer-
tainty is probability. Only subjective probability provides a broad enough
framework to encompass the types of uncertainties encountered, and Bayes
theorem tells how to process information in the Tanguage of subjective

probability. Users of statistics want to know the probability (after seeing the

data) that a hypothesis is true, or the probability that & is in a given interval, and
yet classical statistics does not allow one to talk of such things. Instead,
artificial concepts such as error probabilities and coverage probabilities

are introduced as substitutes. It isironical that non-Bayesians often claim

that the Bayesians form a dogmatic unrealistic religion, when instead it
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is the non-Bayesian methods that are often founded on elaborate and artificial
structures. Unfortunately, those who become used to these artificial struc-
tures come to view them as natural, and hence this line of argument tends

to have little effect on the established non-Bayesian.

3. The Conditionality-Likelihood Principle-Robust Bayesian Approach

By far the most troublingaspect of frequentist statistics is its
unconditional nature, and this usually provides the easiest point of attack.

We briefly outline the argument here.

3.1 Conditioning and the Likelihood Principle

Although most frequentists are aware of conditioning problems, the
following two examples, taken from Berger and Wolpert (1984), are simple

and revealing.

Example 4. Suppose X] and X2 are independent and -identically distributed with

P(X; = o+1) ="P(X; =" 6-1) = 1/2. (Here a€ g =R'.) A 75% confidence set of

smallest size for 6 is given: by -

the point %(x X

1 2) if X] a X2

C(X],Xz)

the point X] -1 if X] = X

Notice, however, that when we observe x]#xz, we are 100% certain that
e=%(x]+x2), while if we observe X1=Xo the data leaves us equally uncertain
as to whether o is x]+1 or x]—1. Thus the frequentist 75% confidence arises

from the average of the real 100% confidence when x1#x2 and 50% confidence
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when X =Xg - This example forcefully shows that, at least sometimes, one
must think conditionally on the actual data that occurs, rather than use

frequentist Tong run averages.

Example 5. Suppose that a substance to be analyzed can be sent to either
a laboratory in New York or a laboratory in California. The two labs seem
equally good, so a fair coin is flipped to choose between them. The coin
is flipped and comes up tails, which signifies that the California lab is
to be used. When the experimental results come back and a conclusion is
to be made, should it be taken into account that the coin could have come

up heads with the New York Tab then being used?

The above example is, of course, a variant of the famous Cox (1958)
example, and in symbolic form can be phrased as follows: If with probabilities
1/2 (independent of the unknown quantity 6 of interest) either experiment
i&] or experimentxfé (both pertaining to 6) will be performed, should the
analysis depend only on the experiment actually performed or should the
possibility of having done the other experiment be taken into account? (Note
that we are talking about analysis with the data in hand, after one of the
experiments has been done, and not about design, etc.) Uncompromising frequen-
tist theory would suggest that the other experiment must be taken into account,
since frequentist measures depend on averaging over all possible experimental
outcomes, whether they happen or not. This, of course, strikes almost
everyone as nonsensical, and virtually all statisticians would accept that
only the experiment actually performed should matter. This has been called

(c.f. Basu (1975)) the Weak Conditionality Principle (WCP).

Virtually all frequentists will subscribe to the WCP and admit that
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conditioning must sometimes be done, but will then attempt to Timit the
applicability of conditioning to "t#elevant subsets” or "anci]iary sta- .. -
tistics" or "partitions of the sample space". (Brief descriptibns and
references to such efforts can be found in Berger and Wolpert (71984).)
However, Birnbaum (1962) provided a devastating, yet simple, refutation of
the viability of limiting the scope of conditioning. He showed that the
WCP and the Sufficiency Principle (which states that a sufficient statistic
for e contains all relevant information about 6) together imply the Like-
1ihood Principle, which basically forces conditioning all the way down to
the actual observation x. The Likelihood Principle itself traces back to
jdeas of G. Barnard and R.A. Fisher (see Berger and Wolpert (198%)), and in

its basic form is given as follows.

Likelihood Principle. A1l information or evidence about 6 from an experiment

‘€ 1is contained in the 1ikelihood function for &, namely

zx(e) = fe(x).
(Here x is the actual observation.) Two likelihood functions (for o) are

equivalent if they are proportional to each other.

A statistician seeking to follow the Likelihood Princip]e wou]d_on]y
trust procedures or measures that depend on & solely through the observed
likelihood function. Classical maximum 1ikelihood estimates are’ of this
form (as. are all Bayesian.procedures and measures based on the posterior
distribution), but frequentist measures such as error probabilities,:bias,
coverage' probability, and P-values, Whichvinvo1we,awerage5'oyerfunpbserved

x, are not of this form, and can hence:not be of basic
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interest from the conditional viewpoint.

Frequentists can, and will, raise all sorts of objections to the Likeli-
hood Principle and its implications. However, examples and continual appli-
cation of common sense can be used to counter these objections. (See Basu
(1975) and Berger and Wolpert (1984) for a discussion of many common
objections. The latter work also shows that powerful versions of the Likeli-
hood Principle hold in essentially complete generality, not requiring
densities or even exact knowledge of the model.)

The argument for conditioning leaves one very close to the situation in
section 2.4. It basically supports the argument that only the uncertainty
about e for the data, x, actually observed is of interest. For example,
coverage probability of a confidence procedure C(X) is something of no
intrinsic interest; what is of interest is some measure of how "confident"
we are that 6 is in C(x) for the actual observed x. (See Example 4.)

As Savage succinctly put it in Savage et. al. (1962):

"The only use I know for a confidence interval is to have

confidence in it."

As another example of how artificial frequentist structures can look bad

in the light of conditional common sense, consider the following.

Example 6. Frequentist measures are claimed to have the very desirable property
of guaranteeing "long run" success rates. For instance, it is claimed to

be scientifically desirable to test established theories (the null hypotheses)
with classical tests having Tow probability of Type I error (say o = .01),

since then one can be assured of incorrectly rejecting only 1% of correct

theories. A conditionalist would argue that this is an artificial concept
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that does not really measure what is sought, namely the conditional chance
that one is making a mistake when the null hypothesis is rejected. To see
the difference, suppose that the observation X is either 1 or 2, with

probabilities under fo and f] given by

X
1 2
fo .01 .99
f] .01001 .98999 s

and it is desired to test HO: f= fo versus H]: f = f]. The most powerful
a = .01 level test rejects H0 when X = 1 is observed. From the conditional
viewpoint, however, when x = 1 is actually observed (i.e. rejection of H0

actually occurs) there is very little evidence against H, (because the likelihood

o ¢
ratio is so close to 1), so the chance of being in error is about 1/2
(based on the data alone). Thus o = .01 is providing a very misleading and

false sense of security when rejection actually occurs.

One can present the case for conditioning, as outlined above, without
heavy involvement of subjective prior distributions. As alternatives to
coverage probability, one can present posterior probability of coverage for
"objective" noninformative priors (c.f. Box and Tiao (1973)). As alternatives
to error probabilities in testing, one can argue simply for the use of
likelihood ratios of hypotheses (at least when the hypotheses are simple).
Indeed, fostering the attitude that one can often simply Took at the Tlikelihood
function itself and obtain most things of interest is important.

The point, of coursé, is to avoid introduction
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of subjective prior distributions until the frequentist has already accepted
the conditional viewpoint. Indeed, it can be argued that acceptance of the
conditional vieWpoint is a far more drastic and important step than is the
formal use of Bayesian methodology to implement the viewpoint. Thus
1 .J. Savage said (in the Discussion of Birnbaum (1962))

"I, myself, came to take... Bayesian statistics...seriously

only through recognition of the likelihood principlie."

3.2 Robust Bayesian Analysis

Although there do exist statisticians who adopt a mainly conditional
viewpoint, and yet stop short of being Bayesians, most statisticians find
the step from conditioning to Bayesian analysis to be a small one. The basic
problem for a non=Bayesian conditionalist is that of -interpreting and using the
likelihood function, and cogent arguments can be presented (c.f. Basu
(1975) and Berger and Wolpert (1984)) that in, other than very simple appli-
cations, the likelihood function should be interpreted as a probability
density with respect to a prior distribution m for the unknown 6. (The
coherency arguments can be used as an aid to support the necessity of such
an interpretation.) What prior m to use is a mafter_much debated, even
among Bayeéians. In Jeffreys (1961), Zellner (1971), and Box and Tiae (1973)
it is argued that, for applications in which little prior information is avail-
able or an objective analysis is deemed to be desirable, = should be a noninfor-
mative prior, or its close relative in testing problems, a "reference informative
prior" (c.f. Zellner (1982)). The pure subjectivist argues that a proper sub-
jective prior should virtually always be used. The robust Bayesian (c.f. Berger
(1980b, 1984)) argues that no single prior should be chosen, but that instead one
learns by passing various plausible priors, m, over the Tikelihood function.
While not disputing the value of any of these approaches (the noninformative

prior approach is very good if "objectivity" is demanded or little
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subjective information is available, and the single prior subjective approach rarely
gives bad answers), we would argue for the robust Bayesian approach on pragmatic
and scientific grounds. (We do not mean to imply that most Bayesians are '"non-robust,”

but rather that we are not vocal enough about robustness.)

The pragmatic reasqﬁ for taking a robust Bayesian approach is obvious.
By admitting to non-Bayesians that we cannot determine exactly a completely trust-
worthyrprior distribution; and yet arguing that only by trying various plausible
priors and seeing what happens can true understanding be gained, we in one
stroke overcome the biggest perceived objection to Bayesian analysis.

A concerted effort to justify the robust Bayesian method on scientific
grounds is given in Berger (1984 ), in.which earlier references to the methdd can
also be found. (The method is sometimes called the Doogian approach because of the
long advocacy of robust Bayesian techniques bylin;fGOOd.)\.Example 3 provides a simple
illustration of the need to consider robust Bayesian analysis (or sensitivity
analysis). The philosophical justification for the viewpoint is clear; sub-
jective probabilities can be specified only to a certain: degree of acturacy
by finite minds and, even worse, prior distributions on infinite sets require
the spec{fication bf an infinite number of subjective probabilities. Indeed,
“the resistance of‘man& Séye51ah§ to pub1ft éckﬁdﬁ1ed§ement 6f this éeéhing]y obvious
conclusion that we will always be working, in rea]ity; with prior distributions
that have been arbitrarily chosen (to at least some extent)is somewhat surprising.
(Of course, as mentioned in Example 3, good Bayesian techniques do exist for
helping to select a prior that is likely to work well.)

To obtain a theory suitable for general use in practice, Bayesians must
go beyond even the pure robust'Bayesian position,rwherein before performing
the experiment a class T of plausible prior distributions is envisaged, which
is then employed thkough standard Bayésian updating by the likelihood function.
Among the "sins" which it seems necessary to practice are the following:
(i) Delaying at least some of the prior specification until the 1ikelihood

function (for the observed data) is available (or alternatively
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allowing data-based choice of the prior or class of priors).
The reason for this is simply that, in realistically high dimensional
problems, it will be very difficult to specify believable prior
distributions; Tooking first at the likelihood function can indicate
where prior elicitation efforts need to be concentrated (namely,
where the data provides inconclusive evidence). The viewpoint,
that one is merely passing plausible priors over the 1ikelihoood
function to see what happens, makes this heresy seem more palatable.
(i) Some of the data may be ignored, if its incorporation would involve
considerable extra (and uncertain) prior specification, and if it
seems that the posterior distribution of the quantity of interest
would not be excessively changed by incorporation of this data.
Thus Hi11 (1975) says
"When such a formal analysis simply cannot be made, or even
when it is merely very difficult and of dubious validity, then
there is Tittle choice but to condition on that part of the
data that can be effectively dealt with..."
Further discussion of this point can be found in Pratt (1965), who calls
it use of "insufficient statistics".
(iii) Use of non-Bayesian (even frequentist) measures may be helpful

in certain situations, as will be argued in the next section.

ATl of the above points are discussed at considerable length in Berger
(1984).. When combined with an acknowledgment that, in Bayesian reporting,
one must clearly report the 1ikelihood function and the priors separately
(along with the Bayesian conclusions), virtually any objection to the Bayesian

approach can be dealt with.

3.3 Potential -Uses of Frequency Measures

One of the major objections to Bayesian analysis is that there are many
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problems that seem to be solvable in a non-Bayesian fashion (c.f. Example 1)
and yet have no trustworthy Bayesian solution. Of course, to a Targe extent
this is because far more research has been conducted on frequentist methods
than on Bayesian methods; the existence of such problems is to be expected.
Indeed, there is perhaps doubt that frequentist methods will prove to be
of lasting value; thus L.J. Savage in Savage et. al. (1962) states
"T used to be bowed by critics who said, with apparent technical
Jjustification, that certain popular nonparametric techniques
apply in situations where it seems meaningless even to talk
of a Tikelihood function, but I have learned to expect that
each of these techniques either has a Bayesian validation
or will be found to have only illusory value as a method of
inference."
Nevertheless, at the moment, certain frequentist methods are certainly of

value to a Bayesian. We briefly discuss these here.

A. Design, Prediction, and Sequential Analysis

It is indisputable that many questions in statistics involve "looking
ahead" at the data that can be expected to occur. Frequentist averaging
over the sample space is certainly necessary in such problems, and no Bayesian
would think otherwise. Of course, these problems also have a large Bayesian
component. In design, for instance, one must use subjective guesses for

6 to predict what data will occur and hence what design to use. Also, the
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Bayesian will have the goal of obtaining good conditional performance,

which may lead to a quite different design than a classical design.

B. Procedures for Nonspecialists

It is probably the case that most of the people who will actually be
using statistics will not have been well enough trained to perform a careful
conditional-robust Bayesian analysis. Hence a major portion of theoretical
work should be devoted to providing relatively simple and easy to use Bayesian
procedures with built in robustness. Since these procedures will be used
repeatedly, averages over the sample space become relevant. Consider the

following.

Example 3 (continued). Suppose the simple Bayesian procedure envisioned

consists of eliciting the prior median and quartiles from the user, and
then calculating the posterior mean for the fitted prior. If performance
is measured by the squared error loss in estimation, it is easy to see that
use of GN, the estimate from the conjugate normal prior ﬂN, can result

in an infinite overall expected loss
r(r, V) = E(e - 8V(X))?

(the expectation being taken over both 6 and X), when the true prior is the
Cauchy prior WC. On the other hand, if 6C, the Bayes estimate for the fitted
Cauchy prior, is used, r(wN,ac) is quite small. Indeed, for any reasonable
prior m with median 0 and quartiles =1, r(n,sc) will be very satisfactory;
thus, in repeated use, Cauchy priors should prove more satisfactory (for

this situation) than normal priors. (Even for sensible bounded losses, the

overall performance of 6N can be bad.)
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Another much more sophisticated situation, involving the Stein effect
in estimating a multivariate normal mean, can be found in Berger (1982b).
Here procedures are developed, whose Bayesianz(COHditidnal)pérfdrmanée.isr\
excellent, .yet which are extremely:insensitive to departureslfrom prior”’

assumptions.

C. Frequency Measures Which Imply Good Average Conditional Performance

We will illustrate this notion with the concept of coverage probability.
(See Pratt (]965) for more general development and other applications.)
Thus suppose C(X) is a confidence procedure at level 1-a, so that

Pe(C(X) contains 6) > 1 -a for all e €@,

Then, for any prior distribution = on:@,

E“PG(C(X) contains 6) > 1 - a.

However,

e (81X prge c(x))
E™ (X),

™

E”Pe(C(X) contains 8)

where m is the marginal distribution of X and Aﬂ(x) is clearly the posterior
probability that o is in C(x) (which is the ideal conditional measure).
It follows that

meﬁ(X) >1 - a,

which implies that C(x) has a very good chance of containing 8 (if a is
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small) according to a good conditional measure (and no matter what m is).
For the above reason, many Bayesians would accept the classical answer in
Example 1 as the best approximate estimate of the chance that n is in
[x(3),x(12)] that is currently obtainable. Care should still be taken,
however, to make sure that there are no obvious conditional problems (as in
Example 4). Thus Good (1976) states that

", ..non-Bayesian methods are acceptable provided that they

are not seen to contradict your honest judgements, when combined

with the axioms of rationality."

D. Frequency Measures as an Aid to Robust Bayesian Analysis

When the prior elicitation process has ended, and one is left with a
.c1ass r of possible priors, it is to be hoped that the Bayesian conditional
answer is clearcut (i.e. passing the different priors in r over the likelihood
function results in essentially the same conclusion). When this is not the
case, and an answer must be produced, there is no clearcut way to proceed.

A natural Bayesian possibility is to put some (arbitrary) metaprior on r (i.e.

a prior distribution on the elements of r). This is merely a formal way to

proceed, however, since it is being assumed that no further subjective prior
elicitation is possibie. As a:possible alternative,.one-could.select from.among the
possibilities by frequentist criteria. Discussion of this can be found in

Berger (1980b) and Berger (1984). It should be emphasized that there is no

foundational reason to prefer any particular method here, since further prior

elicitation is not possibie.

The above view is not really a completely practical view, since it will
rarely be the case that a constructed r is impossible to further refine, often
by the data interactive process of looking at the predictive likelihoods

(i.e. m(x)) for the various priors in T and observed x. It may still be the
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case, however, that the best pragmatic way to proceed is to choose among the
possible priors by frequency methods. If, for instance, a prior in I results

in a procedure with good frequency properties, then for reasons indicated in

part C it may be reasonable to just use that prior instead of attempting further
refinement of T. (This is especially true in those situations where T is very
large and Bayesian calculations are very difficult.) This is not to be intef—
preted as an advocacy of the routine use of frequency concepts in such situations
in preference to the more natural Bayesian methods, but instead is another
justification for allowing consideration of frequency measures when a Bayesian

analysis is unclear or difficult.

E. Other Uses of Frequency Concepts in Bayesian Analysis

Classical significance testing of a null hypothesis is of some value,
as a quick and dirty indicator of a situation needing deeper investigation
(i.e. of a situation in which formulation and examination of alternatives,
hopefully by Bayesian measures, is in order). As with all techniques violating
the Likelihood Principle, however, care must be taken in attempting to 1nferpret
P-values literally. (See Berger and Wolpert (1984) for discussion and
other references.) |

Invariance theory in statistics is closely related to the Bayesian
approach with noninformative priors (c.f. Berger (1980b)), and indeed often
suggests appropriate choices for a noninformative prior.

Asymptotics is, of course, frequently relevant, providing often needed
simplifications. Indeed, there is a very substantial Titerature on Bayesian
asymptotics. (See Berger (1984.) for references.)

The study of admissibility, with its close tie-ins with Bayesian theory,
has led to a number of significant Bayesian advances, particularly in Bayesian
robustness (via study of the Stein effect).

This Tist is by no means exhaustive, or even representative. Much of

frequentist statistics has helpful things to say to Bayesians.
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4, Conclusions

The essential features of the approach presented for selling the Bayesian
view are (i) to break the argument up into easily digestible (and defendable)
parts, and (ii) to allow a great deal of flexibility in methods. Arguing
first for the adoption of a conditional viewpoint, and then for the introduction

of priors to implement this viewpoint, reduces the need to deal with the initial

anti-prior bias of many non-Bayesians. It also focuses the issue on the fact
that the goal is to obtain good conditional probabilistic measures of uncer-
tainty.

One can then address the concern of how best to achieve this goal. Here,
the Bayesian salesman does best to avoid being too dogmatic. Adopting a
robust Bayesian position, i.e. admitting uncertainty in the prior, is only
sensible and realistic. (Of course, frequentist models, etc., are every bit as
uncertain;-but~we are not-trying to sell the frequentist viewpoint). Also; admitting
that there are presently many problems where believable Bayesian answers are
not available and reasonable frequentist answers are, is only prudent. It
must be stressed, however, that a frequentist answer is not inherently sensi-
ble; it must have some plausible relationship to a meaningful conditional
measure. It would be very nice to have the arguments and debates come down
to this level; namely, that of which methodology best achieves the conditional
goal,

There are substantial rewards, to the statistician adopting a conditional
viewpoint, that should also be pointed out. First of all, many difficult
problems involving stopping rules and censoring disappear. (See Berger and
Wolpert (1984) for discussion and references.) Also, time need not be wasted
on extremely difficult frequentist problems, such as solution of the Behrens-
Fisher problem; conditional Bayesian solutions (including objective nonin-
formative prior solutions) are readily available. Finally, it can lead the
statistician to avoid frequentist analysis or research which is clearly
ridiculous conditionally, even if the statistician is unwilling to become a

Bayesian.
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It is possible to object to the flexible robust Bayesian position,
advocated above, on the grounds that it will frequently be incoherent, and
indeed it often will be formally incoherent. The word "formally" is stressed,
since the approach does strive for coherency to the extent obtainable. Our
own view is that, as Bayesian methodology expands, there will be less and
Tess need to leave the formal Bayesian paradigm; we will learn what types of
prior distributions are inherently robust and work well for given problems.
There is no need to make such a strict position a part of the Bayesian argu-

ment, however.

Acknowledgment. I am grateful to Prem Goel and Arnold Zellner for suggestions

which substantially improved the manuscript;



25

References

Barnard, G.A. (1980). Pivotal inference and the Bayesian controversy (with
Discussion). In Bayesian Statistics, University Press, Valencia.
Basu, D. (1975). Statistical information and likelihood (with discussion).

Sankhya, Ser. A 37, 1-71.

Berger, J. (1980a). A robust generalized Bayes estimator and confidence
region for a multivariate normal mean. Ann. Statist. 8, 716-761.

Berger, J. (1980b). Statistical Decision Theory: Foundations, Concepts, and
Methods. Springer-Verlag, New York.

Berger, J. (1982a). Selecting a minimax estimator of a multivariate normal
mean. Ann. Statist. 10, 81-92.

Berger, J. (1982b). Bayesian robustness and the Stein effect. J. Amer.
Statist. Assoc. 77, 358-368.

Berger, J. (1984). The robust Bayesian viewpoint. In: Robustness in
Bayesian Statistics, J. Kadane (ed.). North Holland, Amsterdam.

Berger, J. and Wolpert, R. (1984). The Likelihood Principle: a Review
and Generalizations. Monograph Series of the Institute of Mathematical

Statistics.:

Birnbaum, A. (1962). On the foundations of statistical inference (with
discussion). J. Amer. Statist. Assoc. 57, 269-326.

Box, G.E.P. and Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis.
Addison-Wesley, Reading.

Cox, D.R. (1958). Some problems connected with étatistica] inference. Ann.
Math. Statist. 29, 357-372.

DeFinetti, B. (1974, 1975). Theory of Probability, Volumes 1 and 2. Wiley,
New York.

Efron, B. (1982). Why isn't everyone a Bayesian? Presented at the conference
iReflections on Bayesian Approaches in Operations Research, Probability,
and Statistics', Blacksburg, Virginia (1982).

Fishburn, P.C., 1981. Subjective expected uti]ityf a review of normative theories.
Theory and Decision 13, 139-199.

Frasery D.A.S. (1968). The Structure of Inference. Wiley, New York.
Good, I.J. (1950). Probability and the Weighing of Evidence. Griffin, London.

Good, I.J. (1976). The Bayesian influen
s . _ ce, or how to sweep subjectivism und
the carpet. In Foundations of Probability Theory, Statistgca1 Infer:ncgr

and Statistical Theories of Science, Vol. I
(eds.). Reidel, Boston. ) . II, W.L. Harper and C.A. Hooker



26

Good, I.J. (1983). The robustness of a hierarchical model for multinomials
and contingency tables. - In: Scientific Inferenceé, Data Analysis, and
ﬁobugtniss,‘G,EqP.’Box,'T, Leonard, and:C. F. Wu (eds.). Academic Press,

ew\ k or . . V ’

Hi11, B. (1975). A simple general approach to inference about the tail of
a distribution. Ann. Statist. 3, 1163-1174.

Jaynes, E.T. (1981). The intuitive inadequacy of classical statistics.
Presented at the International Convention on Fundamentals of Probability
and Statistics, Luino, Italy.

Jeffreys, H. (1961). Theory of Probability, 3rd Edition. Oxford University
Press, Oxford.

LeCam (1977). A note on metastatistics or 'an essay toward stating a problem
in the doctrine of chances'. Synthese 36, 133-160.

Lindley, D.V. (1971). Bayesian Statistics Review. S.I.A.M., Philadelphia.

Pratt, J. (1965). Bayesian interpretation of standard inference statements
(with Discussion). J. Roy. Statist. Soc. B 27, 169-203.

Ramsey, F.P. (1926, 1928). 'Truth and probability' (1926) and 'Further consid-
erations' (1928), in The Foundations of Mathematics and Other Logical
Essays. Harcourt, Brace, and Co., New York (1931).

Rubin, H. (1974). Axiomatic development of rational behavior. Technical
Report, Department of Statistics, Purdue University.

Savage, L.J. (1954). The Foundations of Statistics. Wiley, New York.

Savage, L.J. (et.al.) (1962). The Foundations of Statistical Inference.
Methuen, London. '

Wilkinson, G.N. (1977). On resolving the controversy in statistical inference
(with Discussion). J. Roy. Statist. Soc. B 39, 119-171.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics.
Wiley, New York.

Zellner, A. (1981). The current state of Bayesian econometrics. Address at
the Canadian Conference on Applied Statistics. Concordia University,
Montreal, April 29 - May 1, 1981.

Zellner, A. (1982). Applications of Bayesian analysis in econometrics. Address
at the Institute of Statisticians International Conference on Practical
Bayesian Statistics, St. John's College, Cambridge, July 21-24, 1982.



