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Abstract

For linear regression models, the coefficient of determination, a.k.a. R2, is well-
defined to measure the proportion of variation in the dependent variable explained
by the predictors included in the model, following the law of total variance. While
it is straightforward to extend such a measure for linear mixed models, the natural
heteroscedasticity of generalized linear models challenges its extension. Following a
variance-function-based measure recently proposed for generalized linear models, we
define proper coefficients of determination for generalized linear mixed models, mea-
suring the proportion of variation in the dependent variable modeled by either fixed
effects or random effects or both. As the original measure defined for generalized
linear models, the definition of our measures only need know the mean and variance
functions, so applicable to more general quasi-models. It is consistent with the clas-
sical measure of uncertainty using variance, and reduces to the classical definition of
the coefficient of determination when linear mixed regression models are considered.
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1 Introduction

For a pair of random variables X and Y , the law of total variance states that var(Y ) =

var(E[Y |X]) +E[var(Y |X)], decomposing the total variance of Y into two parts: the first

part var(E[Y |X]) for the variation in Y explained by X, and the second part E[var(Y |X)]

for the variation in Y unexplained by X. With the ratio

var(E[Y |X])

var(Y )
= 1− E[var(Y |X)]

var(Y )
(1)

measuring the proportion of variation in Y explained by X, the law of total variance

provides the theoretical basis for defining the coefficient of determination for linear models.

When a linear mixed model (McCulloch et al., 2008) is considered for observed response

variable Yij from the j-th individual inside the i-th cluster, we usually model it with both

fixed and random effects, for j = 1, · · · , ni within each i = 1, · · · ,m. For simplicity, we

write the corresponding linear mixed model as,

Yij = ηFij + ηRij + ϵij, ϵij ∼ N(0, σ2), (2)

where ηFij and ηRij respectively summarize all fixed and random effects on the response

variable with ηRij |τ 2ij ∼ N(0, τ 2ij). Following (1), the proportion of variation in Yij modeled

by the fixed effects can be defined as

ρ2F = 1−
E[var(Yij|ηFij , τ 2ij)]

var(Yij)
= 1−

E[(Yij − E[Yij|ηFij , τ 2ij])2]
E[(Yij − E[Yij])2]

. (3)

With ηFij estimated by η̂Fij and E[Yij] estimated by Ȳ··, we have the following estimate

of ρ2F ,

R2
F = 1−

∑
i,j(Yij − η̂Fij)

2∑
i,j(Yij − Ȳ··)2

. (4)

Since E[(Yij − E[Yij|ηFij , τ 2ij])2] = E[E[(Yij − ηFij)
2|τ 2ij]] = E[τ 2ij] + σ2, we may also take

estimated variance components to construct R2
F to estimate ρ2F , see, e.g., Xu (2003); Naka-

gawa and Schielzeth (2013); Nakagawa et al. (2017); Jaeger et al. (2017). As our review of

defining R2 in linear mixed models is to shed light on their extensions to generalized linear

mixed models (McCullagh and Nelder, 1989), we will not pursue this avenue as it cannot

manage the heterogeneity in generalized linear mixed models.
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The proportion of variation in Yij modeled by both fixed and random effects can be

similarly defined as

ρ2M = 1−
E[var(Yij|ηFij , ηRij)]

var(Yij)
= 1−

E[(Yij − E[Yij|ηFij , ηRij ])2]
E[(Yij − E[Yij])2]

. (5)

With var(E[Yij|ηFij , ηRij ]) = σ2, it is tempting to estimate ρ2M on the basis of ρ2M = 1 −

σ2/var(Yij) as in Xu (2003); Nakagawa and Schielzeth (2013); Nakagawa et al. (2017);

Jaeger et al. (2017). However, the total variation in the response variable is described

by SST =
∑

i,j(Yij − Ȳ··)
2, and we thus would rather to calculate the total unexplained

variation by emphasizing individual heterogeneity of τij and the contribution of individual

observation, which will help us extend to generalized linear models.

Note that,

E
[
(Yij − E[Yij|ηFij , ηRij ])2

]
= E

[
E[(Yij − E[Yij|ηFij , ηRij ])2|Yij, η

F
ij , τ

2
ij, σ

2]
]
,

which implies each observation contribute E
[
(Yij − E[Yij|ηFij , ηRij ])2|Yij, η

F
ij , τ

2
ij, σ

2
]
with ob-

served value Yij and estimable parameters in ηFij , τ
2
ij, and σ2. That is, the expectation is on

the random variable ηRij conditional on the observed values and these estimable parameters.

With the conditional distribution

ηRij |Yij, η
F
ij , τ

2
ij, σ

2 ∼ N

(
τ 2ij

σ2 + τ 2ij
(Yij − ηFij),

σ2τ 2ij
σ2 + τ 2ij

)
,

we have

E[(Yij − E[Yij|ηFij , ηRij ])2|Yij, η
F
ij , τ

2
ij, σ

2] =

(
σ2

σ2 + τ 2ij

)2 (
Yij − ηFij

)2
+

σ2τ 2ij
σ2 + τ 2ij

.

Therefore, ρ2M will be estimated by

R2
M = 1−

∑
i,j

σ̂2

σ̂2+τ̂2ij

[
τ̂ 2ij +

σ̂2

σ̂2+τ̂2ij

(
Yij − η̂Fij

)2]∑
i,j(Yij − Ȳ··)2

. (6)

The proportion of variation in Yij modeled by random effects can be simply defined as

ρ2R = ρ2M − ρ2F =
E[(Yij − E[Yij|ηFij , τ 2ij])2]− E[(Yij − E[Yij|ηFij , ηRij ])2]

var(Yij)
, (7)

and can be estimated as

R2
R = R2

M −R2
F . (8)
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While the law of total variance provides a clear path to extend R2 for linear mixed

models, the inherent heteroscedasticity makes it difficult to properly define R2 for gen-

eralized linear mixed models (GLMMs). Indeed, such heteroscedasticity also challenges

the proper definition of R2 for generalized linear models (GLMs; McCullagh and Nelder,

1989). Therefore, many different measures have been proposed to define R2 for GLMs from

different aspects of view (Cameron and Windmeijer, 1997; Cox and Snell, 1989; Maddala,

1983; Magee, 1990; Nagelkerke, 1991; Zhang, 2017). However, it is difficult to extend these

measures to account for random effects included in GLMMs.

A common strategy to define R2 for GLMMs, adopted by Nakagawa and Schielzeth

(2013); Nakagawa et al. (2017), is to recognize the linear function presented by the link

function g(·), i.e.,

g(E[Yij|ηFij , ηRij ]) = ηFij + ηRij , (9)

and instead construct R2 for the linear mixed regression model,

g(Yij) = ηFij + ηRij + ϵij,

where ϵij = g(Yij) − g(E[Yij|ηFij , ηRij ]). However, such measures rely on the specified link

function, and even the approximation method which is used to calculate the error variance

var(ϵij) (Nakagawa et al., 2017). On the other hand, the link function does not necessarily

provide homoscedastic variance on the error term ϵij, which is the primary challenge in

extending classical R2 from linear models to generalized linear models, although it describes

the linear relationship of all effects on g(E[Yij|ηFij , ηRij ]), and presents additive variance

components in g(Yij).

A critical concern of defining R2 based on the approximate linear model for g(Yij) is

that proportions of different variance components in g(Yij) may not represent the genuine

proportions of different variance components in Yij. For example, it is well-known that

the latent linear model of a probit model may present a much higher R2, but the binomial

response still hold a lot of uncertainty, which is well recognized in the study of genetic

heritability, see Dempster and Lerner (1950).

Recently Zhang (2017) showed that quantifying the variation change along the variance

function can measure explained variation of a heteroscedastic response variable and pro-

posed to define a variable-function-based R2. Unlike other likelihood-based measures, such
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a measure neither overstate the proportion of explained variation, nor demand the specifi-

cation of likelihood functions. While it only requires specification of the link function and

variance function, it reduces to classical R2 for general linear models so it is conceptually

consistent with classical R2.

Here we will follow the above extension of R2 from linear models to linear mixed models,

and propose R2 for GLMMs by quantifying the variation change along the variance func-

tion. Although Giorgi (2018) proposed to use the Monte Carlo Markov Chain (MCMC)

algorithm to implement such a R2 to estimate the proportion of the explained total varia-

tion by a GLMM, inherent nonlinearity and heterogeneity in a GLMM still challenges the

extension of R2 to understand the proportions of the total variation explained by either

or both of fixed- and random-effects of the model. In the next section, we introduce our

definition of coefficient of determination, assuming only mean and variance functions are

well-specified. We also propose an adjustment to account for the number of predictors

in the model. Advantages and disadvantages of different definitions are investigated via

simulation studies in Section 3, which also show the robustness of our proposed definition.

We also apply and compare different coefficients of determination to a set of real data in

Section 4, and conclude this paper with Section 5.

2 R2 for Generalized Linear Mixed Models

For the generalized linear mixed model (9), the variance of Yij, given both fixed and random

effects, can be specified via a dispersion parameter ϕ and a known variance function V (·),

i.e.,

var(Yij|ηFij , ηRij) = ϕV (g−1(ηFij + ηRij)).

In general, as long as the mean g−1(ηFij + ηRij) can be modeled well and linked appropriately

to a set of predictors, a generalized linear model with known variance function V (·) can be

investigated for the utility of the involved predictors.

The variance function describes the effect of the mean on the variation of the response

variable besides the dispersion parameter. For a response variable with its mean moving

from a to b, its variation changes accordingly along the variance function from ϕV (a) to
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ϕV (b). Zhang (2017) therefore claimed that the variation change of the response variable

should be measured using, instead of (a− b)2, the squared length of the variance function

V (·) between V (a) to V (b), that is,

dV (a, b) =

{∫ b

a

√
1 + [V ′(t)]2dt

}2

.

Our definition of R2 for GLMMs will proceed by replacing the Euclidean distance by the

above manifold distance along the variance function.

Replacing (a− b)2 with dV (a, b) in (3), we can define the proportion of variation in Yij

modeled by the fixed effects as

ρ2F = 1−
E[dV (Yij, E[Yij|ηFij , τ 2ij])]

E[dV (Yij, E[Yij])]
. (10)

Note that

E[Yij|ηFij , τ 2ij] = E
[
E[Yij|ηFij , ηRij ]|ηFij , τ 2ij

]
= E[g−1(ηFij + ηRij)|ηFij , τ 2ij],

which follows the model (9). We can rewrite

ρ2F = 1−
E
[
dV (Yij, E[g−1(ηFij + ηRij)|ηFij , τ 2ij])

]
E[dV (Yij, E[Yij])]

. (11)

With ηFij estimated by η̂Fij and τ 2ij estimated by τ̂ 2ij, ρ
2
F can be estimated by

R2
F = 1−

∑
i,j dV (Yij, E[g−1(η̂Fij + ηRij)|η̂Fij , τ̂ 2ij])∑

i,j dV (Yij, Ȳ··)
. (12)

The involved expectation is calculated over the random effect ηRij conditional on estimates

of ηFij and τ 2ij. As the random effects are usually assumed to be normally distributed, such

a expectation can be easily evaluated by numerical methods available for one-dimensional

integration, e.g., Piessens et al. (1983).

With (5), we can similarly define the proportion of variation in Yij modeled by both

fixed and random effects as

ρ2M = 1−
E[dV (Yij, E[Yij|ηFij , ηRij ])]

E[dV (Yij, E[Yij])]
= 1−

E[dV (Yij, g
−1(ηFij + ηRij))]

E[dV (Yij, E[Yij])]
. (13)

It is tempting to estimate ηRij , as well as ηFij , to estimate ρ2M . However, estimation of

the parameter τ 2ij should be preferred to that of random effects as the latter is relatively
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unstable. We here estimate both ηFij and τ 2ij for each observation, and together with Yij

from each observation, we have

E[dV (Yij, g
−1(ηFij + ηRij))] = E

[
E[dV (Yij, g

−1(ηFij + ηRij))|Yij, η
F
ij , τ

2
ij]
]
.

Therefore, with estimates η̂Fij and τ̂ 2ij, we can estimate ρ2M by

R2
M = 1−

∑
i,j E[dV (Yij, g

−1(ηFij + ηRij))|Yij, η̂
F
ij , τ̂

2
ij]∑

i,j dV (Yij, Ȳ··)
. (14)

The expectation in the above definition of R2
M is calculated on the random effect ηRij con-

ditional on Yij, and estimates of ηFij and τ 2ij.

Denote f(·|g−1(ηFij + ηRij)) the density function of Yij with mean value g−1(ηFij + ηRij).

Then the expectation involved in (14) can be rewritten as

E[dV (Yij, g
−1(ηFij + ηRij))|Yij, η

F
ij , τ

2
ij]

=
EηRij |τ2ij [dV (Yij, g

−1(ηFij + ηRij))× f(Yij|g−1(ηFij + ηRij))]

EηRij |τ2ij [f(Yij|g−1(ηFij + ηRij))]
,

where EηRij |τ2ij [·] calculates the mean of the underlying term over the random effect ηRij ∼

N(0, τ 2ij), and can be easily evaluated via numerical integration (Piessens et al., 1983). For

quasi-models, the likelihood function f(·) can be replaced by the underlying quasi-likelihood

function (McCullagh, 1983).

The proportion of variation in Yij modeled by random effects can be simply defined as

ρ2R = ρ2M − ρ2F =
E[dV (Yij, E[Yij|ηFij , τ 2ij])]− E[dV (Yij, E[Yij|ηFij , ηRij ])]

var(Yij)
, (15)

and can be estimated by R2
R in (8) using R2

M in (14) and R2
F in (12). Note that we do not

parallel the definition of ρ2R and R2
R to that of ρ2F and R2

F for two reasons: firstly, both

random and fixed effects may share the same predictors and are correlated, so we would

rather evaluate the contribution due to random effects by removing those attributable to

the fixed effects; secondly, defining ρ2R using E[Yij|ηRij ] demands more computation, which

is also difficult. Note that ρ2R defined in (15) may be more appropriate to be named as ρ2R|F ,

accordingly R2
R as R2

R|F which should serve our routine purpose of evaluating the variation

due to random effects.
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Remarks. (i) The above coefficients of determination are well-defined as long as the

mean and variance functions are specified, like the quasi-models. Therefore, η̂Fij , τ̂
2
ij, and

σ̂2 may be derived from quasi-likelihood estimators, other than MLE; (ii) Because V ′(·)

is constant for normal and Poisson distributions, each R2 defined here is consistent with

those defined for linear mixed models following the law of total variance; (iii) The coefficient

of partial determination can also be defined to measure the proportion of variation in the

response variable not explained by a set of predictors that can be explained by an additional

set of predictors, following Zhang (2017); (iv) each of above R2 suffers to increasing numbers

of predictors as the classical R2, and may increase even if irrelevant predictors are added

to the underlying model. As shown in Zhang (2017), we can accordingly define an adjusted

version of each above R2 by accounting for number of predictors involved in calculate the

fixed effect ηFij .

3 Simulation Studies

The R package performance has implemented the R2 proposed by Xu (2003) for linear

mixed models, and the one proposed by Nakagawa et al. (2017) for mixed-effects models.

We will compare the performance of our proposed R2 to them, by simulating a total of 100

data sets for each model under investigation.

3.1 Linear Mixed Models

For linear mixed models, we simulate each data set with a total of 200 random samples,

evenly clustered inside m groups with m = 5 and 50, respectively. A binary covariate X1

is generated for each observation, with half observations within the same group taking 1

and the other half taking -1. A second variable X2 is generated from the standard normal

distribution, independent of X1 and the response variable. The j-th response value inside

the i-th cluster, i.e., yij, is generated by

yij = µi + x1ijβ + ϵij,

where x1ij is the corresponding value of the binary covariate X1, the random effect µi
iid∼

N(0, 1), and ϵij
iid∼ N(0, 1). For each data set, we fit the different models with both

8



maximum likelihood (ML) and restricted maximum likelihood (REML) methods, and then

estimate both ρ2M and ρ2F with different approaches as shown in Figure 1 and Figure 2,

respectively.

The difference between REML and ML methods lies only in the estimated variances of

the random effects, i.e., τ 2ij, and such difference increases when m decreases. So it is not

surprising to observe much wider difference in the case of m = 5 than m = 50 between

estimated ρ2M by Nakagawa et al. (2017) based on the REML and ML methods respectively,

and the ML based estimation of ρ2M is usually larger than the one based on the REML

method. But the method by Xu (2003) is rarely affected by the choice of REML or ML

method. Such difference between REML and ML methods narrows when estimating ρ2F by

Nakagawa et al. (2017), however, there is no difference when R2
F is used. It is interesting

to observe that our proposed methods and the method by Nakagawa et al. (2017) coincide

when the ML method is used.

When m is large, the method by Xu (2003) may significantly overestimate ρ2M as shown

in Figure 1. When m is small, the method by Nakagawa et al. (2017) may slightly under-

estimate ρ2F when the REML method is used.

3.2 Logistic Mixed Models

For logistic models, we simulate each data set with a total of 400 random samples, evenly

clustered inside m groups with m = 10 and 50, respectively. The binary X1 and continuous

X2 are similarly generated as in the previous section. The j-th response value inside the

i-th cluster, i.e., yij, is generated by

E[yij|µi, x1ij] =
1

1 + exp{−µi − x1ijβ}
,

where x1ij is the corresponding value of the binary covariate X1, and the random effect

µi
iid∼ N(0, 1). For each data set, we fit the different models with the maximum likelihood

(ML) method, and then estimate both ρ2M and ρ2F with our approach and the method by

Nakagawa et al. (2017) as shown in Figure 3 and Figure 4, respectively.

Overall, either the estimated ρ2M or ρ2F by our methods and the one by Nakagawa et

al. (2017) demonstrate similar patterns in each regression model. Specifically, a regression
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model including the true predictor X1, i.e., when regressing Y vs. X1 or regressing Y vs.

(X1, X2), both estimated ρ2M or ρ2F increase when β increases, and estimated ρ2F nears zero

when β = 0. However, estimated ρ2M implies the explained variation due to the random

effects when β = 0.

For small β, we observe higher estimated values of both ρ2M or ρ2F by Nakagawa et al.

(2017) than our approach. However, for large β, the method by Nakagawa et al. (2017)

tends to underestimate ρ2F in either case of m = 10 and m = 50, and underestimate ρ2M

in the case of m = 10. However, the estimated ρ2M by Nakagawa et al. (2017) and our

approach eventually converge for very large β when m = 50 or the true predictor X1 is

not included in the model (see Figures 3.e and 3.f). In summary, R2
M and R2

F capture well

the increasing proportion of explained variation in a binary response variable, and perform

better than the method by Nakagawa et al. (2017).

When regressing Y vs. X2, ρ2M measures only the variation in Y explained by the

random effects and ρ2F should be zero as X2 is not related to Y . The close to zero values in

Figures 4.e and 4.f imply good measurement by our method and the method by Nakagawa

et al. (2017), although the method by Nakagawa et al. (2017) slightly overestimates in

comparison to our method. The estimated ρ2M shows decreasing patterns in both Figures 3.e

and 3.f because of constant τ 2 in comparison to the increasing variation in Y caused by

increasing β. We also observe that the method by Nakagawa et al. (2017) may claim much

higher proportion of explained variation due to the random effects, in comparison to our

approach.

4 Real Data Analysis

4.1 Analysis of the Sleep Study Data via Linear Mixed Models

Eighteen subjects have been followed on their reaction times for nine days in a sleep depriva-

tion study (Belenky et al., 2003). As shown in Figure 5, individual trajectory demonstrated

the linear trend in increasing reaction times, but the heterogeneity between trajectories pro-

vides strong evidence in favor of random effects of both intercepts and slopes. Here we will

investigate explained variation of the reaction time under different variance structures.
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There are two sets of variance structures, i.e., the correlation between the random

intercept and slope within the same participant, and the correlation between the error

terms within the same participant. For either set, we will model both independence and

dependence, and the dependence between error terms will be modeled by a first-order

autoregression, i.e., AR(1).

As shown in Table 1, R2
F stably estimated ρ2F , the proportion of variation explained

by factors with fixed-effects, across different variance structures whether REML or ML

method was used. However, the method by Nakagawa et al. (2017) provided the estimates

ranging from .2771 to .3018, relying on not only the variance structures but also whether

REML or ML method was used. In general, When the ML method was used, the method

by Nakagawa et al. (2017) provided larger estimates.

Table 1: Analysis of the Sleep Study Data

Independent Errors AR(1) Errors

Ind. RE Dep. RE Ind. RE Dep. RE

REML ML REML ML REML ML REML ML

ρ2F R2
F .2865 .2865 .2865 .2865 .2863 .2863 .2862 .2863

Nakagawa .2830 .2927 .2786 .2876 .2928 .3018 .2771 .2861

ρ2M R2
M .7998 .7973 .8004 .7981 .7316 .7303 .7194 .7206

Nakagawa .7965 .7897 .7992 .7928 .7185 .7137 .7134 .7103

Ind. RE – Independent Random Effects; Dep. RE – Dependent Random Effects; Nakagawa – Nakagawa et al. (2017).

As for ρ2M , i.e., the proportion of variation explained by the model in total, estimates

by both R2
M and the method by Nakagawa et al. (2017) vary across different variance

structures, especially between the models with independent errors and the ones with AR(1)

errors. R2
M provides slightly larger estimates than the method by Nakagawa et al. (2017)

in all models, and it also performs slightly more stable across REML and ML.
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4.2 Analysis of the Balance Study Data via Logistic Mixed Mod-

els

Steele (1998) conducted an experiment to study the effects of surface and vision on balance.

Each of a total of twenty males and twenty females was tested twice in each combination of

two different surfaces and three vision conditions. We consider logistic models to investigate

how the factors, such as sex, height, surface, and vision, affect a subject’s balance. We will

consider different models to include subject as a factor with random, fixed, and no effects,

respectively, see Table 2. For GLMs, R2
F reduces to R2 proposed by Zhang (2017), and

we also calculated R2 prposed by Cameron and Windmeijer (1997) and Nagelkerke (1991)

respectively.

Table 2: Analysis of the Balance Study Data

effects of ρ2M ρ2F others

subject R2
M Nakagawa R2

F Nakagawa Cameron Nagelkerke

random .7278 .9128 .4527 .6693 – –

fixed – – .7832 – .7694 .8557

none – – .4542 – .4270 .5614

Cameron – Cameron and Windmeijer (1997); Nagelkerke – Nagelkerke (1991).

For the model with random effects of subject, the method by Nakagawa et al. (2017)

provided much larger estimates, i.e., .9128 and .6693 respectively, of both ρ2M and ρ2F than

our approach. On the other hand, by including the fixed effects of subject, the proportion

of variation explained by all factors is only .7832 as measured by Zhang (2017), and .7694

as measured by Cameron and Windmeijer (1997), which are close to .7278 estimated by

R2
M in the mixed model. Furthermore, the model excluding subject provides a measure of

the portion of variation explained on the factors with fixed effects, and has R2 at .4542 by

Zhang (2017), which is very close to .4527 estimated by R2
F in the mixed model. As noted

by Zhang (2017), the method by Nagelkerke (1991) tends to overestimate R2 in GLMs,

which is evidenced by the value of .8557 for the model including subject with fixed effects,

and the value of .5614 for the model excluding subject. Nonetheless, the estimated ρ2M by
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Nakagawa et al. (2017) is even higher than the R2 estimated by Nagelkerke (1991) for the

model including subject with fixed effects, and the estimated ρ2F by Nakagawa et al. (2017)

is much higher than the R2 estimated by Nagelkerke (1991) for the model excluding subject.

We conclude the more appropriateness of our proposed R2
M to account for the proportion of

variation explained by the model in total, and R2
F to account for the proportion of variation

explained by the fixed effects.

5 Conclusion

Unlike p-values which signal the variable significance but rely on the sample size, the

coefficient of determination, a.k.a. R2, measures the proportion of the variation in the

response variable explained by a set of predictors. R2 is a key statistic, and plays an

important role in molecular biology to measure the heritability of different traits (Visscher et

al., 2008). The popularly used mixed-effects models in genomic studies demand appropriate

extension of R2 which is well defined in linear regression models. We have followed the law

of total variance to extend R2 to LMM, i.e., R2
M , to properly account for the proportion

of the variation explained by all predictors in the model, including those with fixed effects

and random effects. We also define R2
F in LMM to account for the proportion of the

variation explained by predictors only with fixed effects, and R2
R in LMM to account for

the proportion of the variation explained by predictors only with random effects. These

extensions are undertaken in a way which allows to similarly define R2
M , R2

F , and R2
R for

GLMMs by following Zhang (2017).

Nakagawa et al. (2017) proposed R2 for GLMMs by assuming an underlying model with

additive variance components due to fixed-effects predictors, random-effects predictors, and

the model itself. Such an additive model is defined by approximating an transformed re-

sponse variable with the transformation attached to the link function. However, besides the

approximation error, the link function does not necessarily provide homoscedastic variance

on the assumed error term, which is the primary challenge in extending R2 to GLM. Indeed,

well demonstrated in the study of genetic heritability, R2 defined for transformed response

variable may not represent well the genuine proportions of different variance components in

the original response variable (Dempster and Lerner, 1950). Our simulation study and real
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data analysis both evidence such concern. Instead, our properly defined R2
M and R2

F for

GLMMs match well with those defined in GLMs. Furthermore, they are also well defined

for any, even quasi, GLMMs, as long as they have well defined mean and variance functions.
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a. Regressing Y vs. X1 when m = 5 b. Regressing Y vs. X1 when m = 50
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c. Regressing Y vs. (X1, X2) when m = 5 d. Regressing Y vs. (X1, X2) when m = 50
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e. Regressing Y vs. X2 when m = 5 f. Regressing Y vs. X2 when m = 50
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Figure 1: Estimation of ρ2M in linear mixed models. Shown in the plot are R2
M based on

REML (black solid) and ML (black long-dashed), the method by Nakagawa et al. (2017)

based on REML (red dashed) and ML (red dotted), and the method by Xu (2003) based

on REML (green two-dashed) and ML (green dotted-dashed).
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a. Regressing Y vs. X1 when m = 5 b. Regressing Y vs. X1 when m = 50
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c. Regressing Y vs. (X1, X2) when m = 5 d. Regressing Y vs. (X1, X2) when m = 50
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e. Regressing Y vs. X2 when m = 5 f. Regressing Y vs. X2 when m = 50
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Figure 2: Estimation of ρ2F in linear mixed models. Shown in the plot are R2
F based on

REML (black solid) and ML (black long-dashed), and the method by Nakagawa et al.

(2017) based on REML (red dashed) and ML (red dotted).
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a. Regressing Y vs. X1 when m = 10 b. Regressing Y vs. X1 when m = 50
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c. Regressing Y vs. (X1, X2) when m = 10 d. Regressing Y vs. (X1, X2) when m = 50
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e. Regressing Y vs. X2 when m = 10 f. Regressing Y vs. X2 when m = 50
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Figure 3: Estimation of ρ2M in logistic mixed models. Shown in the plot are R2
M (black

long-dashed), and the method by Nakagawa et al. (2017) (red dotted).
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a. Regressing Y vs. X1 when m = 10 b. Regressing Y vs. X1 when m = 50
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c. Regressing Y vs. (X1, X2) when m = 10 d. Regressing Y vs. (X1, X2) when m = 50
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e. Regressing Y vs. X2 when m = 10 f. Regressing Y vs. X2 when m = 50
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Figure 4: Estimation of ρ2F in logistic mixed models. Shown in the plot are R2
F (black

long-dashed), and the method by Nakagawa et al. (2017) (red dotted).
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Figure 5: Reaction time (in milliseconds) trajectories of eighteen participants involved in

the sleep deprivation study.
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