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Abstract

Volatility modeling has been an important area of research in nonlinear time series and
financial econometrics in the last two decades, generating enormous interest from statisticians,
econometricians and financial practitioners alike. The limited reach of the more traditional
parametric volatility models became clear relatively early and a number of more data-driven
nonparametric models had been proposed. Such models are properly classified as nonlinear
time series models and, as usual, the question of model selection becomes very important. This
usually involves testing joint statistical significance of a subset of the functional components of
such a model.

Levine and Li (2007) suggested a flexible nonlinear ARCH model that has linear and inter-
active components in both conditional mean and variance (volatility) functions and provided
a convenient estimation scheme for the functional components of this mode. This model was
introduced to provide a more flexible and data-driven alternative to the so-called generalized
nonlinear ARCH (GANARCH) model of Kim and Linton (2004). However, the question of
whether the inclusion of interactive components is always beneficial had been left out. Here, the
authors suggest a large-sample testing scheme that tests the joint significance of all of the inter-
active components based on the data. Based on the test results, the interactive components are
either included in the model or are left out, thus using the more traditional GAM (generalized
additive model) to explain the data behavior. The performance of the test in finite samples is
studied using simulation. It is shown that the test has high power for samples of the size com-

monly encountered in empirical finance applications. The testing procedure depends on several
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"tuning” parameters whose selection is also discussed and data-driven selection procedures for
them is suggested. Finally, the procedure is also applied to the volatility model of the currency

exchange rate data using the real dataset.

1 Introduction

Volatility modeling has been a very active research area in financial econometrics and empirical
finance in the last two decades; it arose from the need to model and predict the volatility (conditional
variance) of financial data, such as stock returns, currency exchange rates and others. As a first
step, parametric volatility models were considered, beginning with the famous ARCH/GARCH
framework (see Engle (1982) and Bollerslev {1986)). The common problem of all parametric models
is misspecification, since in practice the choice of this or that functional form is, to a great extent,
subjective.

A possible alternative consists of using nonparametric volatility models that assume very little
known information about the volatility structure. Effectively, these models allow the data ” to
speak for themselves.” One of the most general nonparametric models that can be considered is

the nonparametric ARCH model

Yt = M(Yee1, o2, Yimd) + 02 Yoty Yemny -+ s Ys—a)Et (1)

where d > 0 and e; are independent identically distributed random variables with mean zero
and variance 1. Without imposing some additional functional structure on this model the famous
problem of the” curse of dimensionality” limits its usefulness rather severely. Also, it is quite difficult
to visualize and interpret any multidimensional surface with the number of dimensions more than
2.

The classical approach to handling the curse of dimensionality problem is to consider the so-
called GAMs (generalized additive models) which were the subject of the defining monograph by
Hastie and Tibshirani (1990). The classical form of GAM assumes that

d
(Y1, Yt~2, 1 Yt—d) = Cm + Z Ma(Yt-a)

a=1

while the conditional variance function is constant. It is also quite natural to impose a similar




structure on the conditional variance function by assuming that

d
V(Ye-1, %2, " 1 Yt-a) = Cy + Z Va(Yt-a)-

a=1
In this paper we assume that the number of lags involved is the same for conditional mean and
variance functions for the sake of simplicity. The component estimation method proposed will,
however, also work when the number of lags is different as well. The attractiveness of generalized
additive models stems in part from the fact that (see Stone (1985, 1986)) the optimal rate of con-
vergence of the functional component estimators is the same as in one-dimensional nonparametric
regression. Nevertheless, GAM structure is often not very flexible. A number of ways to generalize
it has been considered in the literature; some of the examples in volatility modeling context are
the multiplicative model of Yang, Hérdle and Nielsen (1998) and the generalized additive nonlinear
ARCH (GANARCH) model of Kim and Linton (2004). A conceptually very simple generalization
was proposed in Levine and Li (2007) where, in addition to "main effects” mq and vq, 1 < a < d,

the ”interactive components” mqg and v,g are also included. Thus, the model becomes
Y = m(yt—la Yt—2, ayt—-d) + vl/z(yt—l, Yt—2y° " 7yt——d)8t (2)

d
where m(ye-1,%-2,"* 1 Y1-a) = Cm + Y_Ma(¥e-a) + D Moap(Yt-ar Yeup)
a=1 1<a<p<d

d
V(1,92 %-a) = Co+ ) _Va(Ua) ¥ D Vap(Yi-a) Yi—p)-
a=1 1<a<f<d

Thus, both conditional mean and conditional variance functions are allowed to have both additive
and two-way interactive components. The model is very much data-driven since the number of
interactive components to be included in the model can be determined from the data; if, for
example, the asymptotic distribution of the interactive component estimators is known, it is easy
to construct the large-sample test that would check statistical significance of these components and
allow us to decide whether a particular component should or should not be included in the model
(2).

Because of high multicollinearity between the lagged values of y, it is of little interest to test

the significance of an individual interactive component. Instead, multiple hypothesis testing should




be of main interest here. More precisely, the goal should be to test

H' imep=0, foralll<a<pg<d 3)

H" : mgop, # 0, for at least one 1 <ag < fp <d
and the analogous multiple hypotheses for components of the conditional variance function

Hf:vag=0, foralll<a<pg<d (4)

HY :vgop, # 0, for at least one 1 < ap < fp < d

in the model (2).

Testing of interactive components in the nonlinear regression models has been a research topic
for some time, particularly in econometrics; as an example, one can mention Sperlich, Tjéstheim
and Yang (2002) and references therein. To the best of our knowledge, there has been no work
regarding the joint testing of the nonlinear autoregression components. The current research aims

to begin filling this void.

2 A Conditional Mean Test

This section is dedicated to developing the linearity test for the conditional mean function in the
model (2). Such a test is aimed at testing the joint significance of the non-additive components of
the function m(y—1,...,%—4). Note that the model (2) is the nonlinear autoregression. If the inter-
active components are found to be jointly insignificant, the data can be successfully modeled using
the classical GAM model using well-known methods such as backfitting or marginal integration.
Significance testing for the interactive components of the function m(y-1,...,y—4) is an im-
portant problem in the context of model selection. Individual testing of pairwise interaction compo-
nents had been a subject of interest earlier, mostly in the setting that assumes that the explanatory
variable vector X = (X3,... ,Xd)' represents a sequence of independent and identically distributed
vectors of explanatory variables. Such a setting will be called an iid setting for short. The iid
setting was considered earlier in Sperlich, Tjéstheim and Yang (2002); a similar problem in the
nonparametric regression on the lattice had been considered by Derbort, Dette and Munk (2002).

Hjellvik, Yao and Tjostheim (1998) considered the linearity testing in a very general context that




includes the nonlinear autoregressive processes of the type (2); however, their approach allows only
for the individual pairwise interaction testing only. They note that ”...Following a suggestion by the
referee, in principle, the joint limit distribution of the statistics...can be derived” but the idea is not
pursued any further. The individual testing for each pairwise interaction may be of rather limited
importance in the time series context since the explanatory variables y;—1,...,¥:—q are obviously
strongly correlated. It is entirely possible that individual pairwise components m;(y;—s, y:—;) are
not statistically significant but their joint effect is significant.

Our goal is to construct an F-type test that would perform the multiple hypotheses testing for

all of the components my;(:, -). For simplicity, the model of order two

Yo = m(Ye-1, Ye-2) + V2 (Y1, Ye—2)et (5)

is used to illustrate the idea. It is assumed that ¢; is a series of iid random variables with mean zero
and variance 1 while m(-,-) and v(-,) are smooth bivariate functions. The goal is to test whether
the conditional mean function m(:, ) can be represented as mi(y1) + ma(y2) or if it also has an

interactive component. Thus, the null hypothesis is

Ho: 4 = cm + ma (Y1) + maye—2) + 02 (Yim1, ve—2)et

while the alternative is

Hy iy = e +ma(ye—1) + ma(ye—2) + mia(ye—1, yt—2) + 'Ul/z(yt—l,yt—z)Et

Chen, Liu and Tsay (1995) discussed a similar problem earlier; they assumed, however, that the
conditional variance function v = 1. This assumption does not always hold in practically important
nonparametric models.

The procedure suggested here can be viewed as the two-way unbalanced analysis of variance
(ANOVA) with unequal variances. In the traditional ANOVA setting, coping with unequal variances
is rather difficult. It has been established in the past (see, e.g. Bishop (1976)) that a classical
F-test is not robust to violation of equal variance assumption, especially when the design itself
is unbalanced. A two-stage testing procedure for such a setting was proposed by Bishop and
Dudewicz (1978). That procedure requires additional sampling at the second stage. Chen and

Chen (1998) made an improvement by proposing a single stage sampling procedure that tests the




null hypotheses in ANOVA models under heteroscedasticity. This procedure is computationally
much more effective than the earlier procedure by Bishop and Dudewicz (1978) and it does not
require additional sampling of the data. This last requirement is particularly important in the
time series setting where, unlike when dealing with experimental data, it is impossible to obtain
replicates.

Our procedure is based on the one by Chen and Chen (1998). It can be described as follows.

e Choose a shrinking factor 0 < § < 1 and a positive integer m. Partition the shrunken data
range 0(Ymaz — Ymin) into m equal intervals (a;—1,a;), 1 = 1,...,m. The points a; are defined
as @i = Ymin + (1 — 6)(Ymaz — Ymin)/2 + 16(Ymaz — Ymin)/m for i = 0,--- ,m. The data
range has to be shrunk to avoid the boundary bias problem common to many nonparametric

smoothing procedures.

e The overall number of observations is denoted N. For t = 3,--., N, the observation y; is
classified in the (4,7)-th cell if 5, € (a;—1,0;) and 32 € (@j-1,a;). The ANOVA-style
notation X;;; = y can be used where the third subscript k is used to distinguish different
observations in the same cell. If y;1 or 4;_2 are outside the shrunken range, y; is dropped
from further consideration. As a result, the number of observations used in the eventual
ANOVA scheme is n < N. The number of observations in the (4, 7) th cell is denoted ny;.

Clearly, 3% _; nij = n.
e The model (5) can be viewed as
Xijk = 1+ 05 + B + ofyy + ek (6)

where ¢ = 1,--- ,m, j =1,--- ,m, k =1,2,-+ ,ny, €% are independent random variables

with mean zero and variance aizj, 0< orfj < oo and unknown. Since the number of possible
"treatments” in this scheme is not predetermined, the model can be viewed as the two-way
random effect model. Then, the two-way analysis of variance procedure is carried out to
obtain an F statistic for testing the null hypothesis Hp : a8;; = 0 for all 4 and j in the model

(6)

The above procedure is based on the idea that, when functions ms(-), ma(-) and mys(-,-) are

sufficiently smooth, the observations in the same cell have roughly the same mean and conditional




variance values. This argument is used asymptotically when the length of the interval goes to zero
as m — oco. Additionally, under the strong mixing condition, the observations in a cell behave like
independent observations. Therefore, testing the null hypothesis Hj is, indeed, analogous to the
two-way unbalanced design ANOVA with unequal variances. Such a procedure is performed in the

following way.

e Within each cell, the first n;; — 1 observations are used to compute the regular sample mean

and variance:

nij—1
'ij 1 Z Xz]k
nzj—l
2
z] — 2 z]k:

¢ The weights of the observations in cell (¢,7) are computed as

1 1 1 S2
Uij = — 4 —, | mza:c -1
ng o ngg\[nig — 1\ S

11 52
Vij=— —— (nij—1)<'?m;f£—1>
i

’l’Lij nz-j

2 2 2
where S2,,, = max{S%, 5%, -+ ,S%,.}-

For each cell (4, 7), the weighted sample mean is defined as

TNij
Xij = WijeXijk (7)
k=1

where
Uij fOI'].SkSTLﬁ*].
Wik =
V;;j for k = Mg
Note that thus defined weights are indeed properly normalized; it is easy to verify that

Sokdy Wik = (nij = 1)U +Vig = Land 3307, Wiy = (ny; — 1)UL+ Vi = —im‘% Next, partial
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are computed, using the weighted sample mean (7).

e The F-type test statistic is defined as

2
Fm—ZZ< “ _):m;\jferX > ®)

=1 j=1

It can be shown that for large sample sizes, as N — oo, ny; — oo for all 4,5 and the number of
intervals m — oo as well, the distribution of F,,, under the null hypothesis Hy behaves approximately

as X?m—1)2' The more precise statement is as follows.

Proposition 2.1 Consider the additive-interactive model (5) where the process y; has a stationary
density p(-) and m(ys—1,Yt—2) = m1(Ye—1) + ma(yt—2). For simplicity, we assume that the process y;
is defined on the compact support. Assume that g; are independent normal random variables with
mean zero and variance 1. Suppose my(-) and mo(-) are continuous differentiable functions with
bounded first derivatives while the conditional variance function v(-,-) is bounded. Suppose that the
number of intervals used in the test is m = O(NY/3+%) for some small § > 0. Then, as N — oo,
the test statistic Fy, follows asymptotically the X?m—1)2 distribution.

An immediate consequence is that, at a confidence level of 100(1 — &)%, we can approximately

reject Hy if F,, exceeds the upper o quantile of x%m_1)2.

Proof See Appendix.

Remarks.

1. The Chi-Square distribution of the test statistic under the null hypothesis Hy is true in the
asymptotic sense, i.e. as the sample size V and all of n;;’s in ANOVA approach infinity. It

may not be a very good approximation when the initial sample size IV is small. The simulation




study in this paper shows that for a sample size N = 5000 the proposed test procedure works

quite well.

. The shrinking factor ¢ plays an important and interesting role in the testing approach. It
seems rather intuitive, at first sight, that with larger § comes larger effective sample size and
the higher power of the test. However, it is not as straightforward as it may seem. The
problem is that numbers of observations in different cells do not always grow in sync but
rather proportionally to the marginal density of the stationary process y;, earlier denoted
2(yt). Because of that, in particular, the number of observations in the boundary cells of the
m X m layout that are near extremes ymax and ynin can decrease with the increase in 4. This,
in turn, means that the power of the test may not grow monotonically as J§ increases. The

simulation study in the next chapter illustrates this point in greater detail.

. The issue of choosing the number of partition intervals m is quite complicated. It is clear
from the proof of the Proposition that choosing larger m results in the more precise x2
approximation of the true distribution of the test statistic (8) under the null hypothesis.
However, large m has its own downside - the power of the test maybe much less than desired.
Thus, the choice of m should reflect this trade-off. In the next section, a data-driven parameter

selection procedure for m and ¢ will be suggested.

. It is easy to show that the statement of the Proposition remains true if the process ¢; is not
iid but rather constitutes a martingale difference sequence. Note that the model (5) can be
rewritten as

(ye — m(yt—l,yt—z))2 = U(Ye-1, Yt—2) + U(Z/t—l,yt—z)(ﬁt2 -1) 9

and it can be verified in a straightforward way that v(ys—1,ys—2)(€? — 1) is a martingale
difference sequence. This suggests a simple procedure for testing the joint significance of the
interactive components of the conditional variance function v(-). As a first step, a consistent
estimator of the mean function #1(-) should be selected. That can be, for instance, the
local instrumental variable estimator described earlier. Then, the ANOVA type algorithm

N
described earlier should be applied to squared residuals {(yt — (Ye-1,Ve-2))* }t_3 .




3 A Simulation Study

This section is dedicated to how the proposed test works with simulated data. The data that is

considered is generated by the process

¥t = 0.55in(0.5y¢—1) — 0.551n(0.5y;.0) — 0.5atan(0.5y:—1)atan(0.5y:—2) (10)

+ /1.5 4+ 0.55in(0.5y;—1) — 0.55in(0.5y;—2) — 0.5atan(0.5y;—1 )atan(0.5y;_s)e;

where e; ~ N(0,1). The choice of conditional mean and variance functions is meant to ensure
the strict stationarity of the process; the exact conditions are stated in Lu and Jiang (2001) and
referred to in Levine and Li (2007). The sample sizes N=500, 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000 and 10000 are used. As an illustration, Table (1) shows the number of observations
in the shrunken range N(6) and the number of observations that end up being used in ANOVA
approximation n when § = 0.5 for each of the choices of N. Both N(§) and n are showed as absolute
numbers and percentages of the initial sample size N. The number of intervals chosen is m = 3.
Clearly, n < N{8) < N for any 0 < 6 < 1. Note that the eventual loss of data due to the selection
procedure employed is not very large. In the worst case scenario, for a relatively low sample size of
N =500, 75% of the data are eventually retained for the ANOVA analysis. For all of the sample
sizes that are larger than 500, the loss does not fall below 80%. Typical distributions of observations
among the ANOVA cells for m = 3, § = 0.5 and initial sample sizes N = 500, 5000 and 10000,
respectively, are shown in Tables (2), (3) and (4). Note that the choice of m = 3 implies the 3 x 3
design. It is instructive to estimate the type I error. It is done here for sample sizes ranging
from N = 500 to N = 1000, assuming that m = 3 and ¢ = 0.5. In order to do this, a sequence
of observations is generated by the process (10) under the null hypothesis Hy. In other words, the

observations are now generated by the process

y = 0.58in(0.5y:—1) — 0.55in(0.5y;—2)

+ \/1.5 + 0.55in(0.5y;—1) — 0.58in(0.5y~2) — 0.5atan(0.5y;—1)atan(0.5y;—2)e;
with ; ~ N(0,1).
Table (5) shows the percentage of rejections of Hy with 500 replications for each sample size.
Note that the type I error assumes the specified level once sample size reaches the value of 5000.

10
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N Ny |% |n |&

500 | 436 | (87%) | 376 | (75%)
1000 | 939 | (94%) | 879 | (88%)
2000 | 1856 | (93%) | 1722 | (86%)
3000 | 2767 | (92%) | 2555 | (85%)
4000 | 3707 | (93%) | 3433 | (86%)
5000 | 4686 | (94%) | 4390 | (88%)
6000 | 5611 | (94%) | 5240 | (87%)
7000 | 6460 | (92%) | 5968 | (85%)
8000 | 7506 | (94%) | 7046 | (88%)
9000 | 8327 | (93%) | 7702 | (86%)
10000 | 9366 | (94%) | 9077 | (91%)

Table 1: Number of Observations

To see whether this value is a possible "threshold” , it is useful to study also the power of the test.
The power of the proposed test is evaluated using observations generated by the process (10) under
different values of 6. As a reminder, the null hypothesis is the one of no interactive components in

the conditional mean:
Ho N m(yt_l,yt_z) = 0.5sin(0.5yt_1) - O.5S’in(0,5yt_2)

The important issue is how the choice of § influences the power of the test. For a fixed value
of m and changing values of §, the Table (6) shows the evolution of the power of the test. The
sample sizes considered are from N = 1000 to N = 7000 with the step of 1000. The shrunken range
is split into m = 3 intervals and the number of replications is 1000. For each of the sample sizes
considered, all of § =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 options are examined.

Note that the power of the test seems to grow fairly quickly with the sample size as long as ¢
is reasonably large. For sample sizes greater than 5000 and § > 0.5, the power exceeds 0.9 which
is often good enough for practical purposes. The growth of the power of the test with the sample
size when § = 0.5 and m = 3 is illustrated in the Figure (1). This sample size magnitude is

very reasonable in many applications, for example, in those stemming from the empirical finance
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Table 2: Distribution of Observations among the ANOVA Cells of a typical realization for m = 3.

The initial sample size is N=500

112 |3

1149 51|24
25581136
31214217

Table 3: Distribution of Observations among the ANOVA Cells of a typical realization for m = 3.

The initial sample size is N=5000

1 2 3

11405 (581 | 239
2 (661 | 1082 | 435
3| 195 | 526 | 266

Table 4: Distribution of Observations among the ANOVA Cells of a typical realization for m = 3.
The initial sample size is N = 10000

11722 | 1242 | 365
2| 1379 | 2668 | 911
31290 | 1029 | 471

Table 5: Type I error in 500 Realizations Under Hy
Sample Size | 500 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000

Type I Error | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 {0.056 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05
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Table 6: The relationship between the power and the shrinking factor §
§ | N=1000 | N=2000| N =3000| N =4000| N =5000| N =6000| N =7000

0.1 | 0.2136 0.0619 0.0341 0.0410 0.0400 0.0600 0.0900
0.2 | 0.0644 0.0370 0.0440 0.0510 0.0560 0.0800 0.1000
0.3 | 0.0592 0.0701 0.1340 0.1620 0.2400 0.2900 0.3900
0.4 0.1116 0.20704 0.3430 0.4640 0.6380 0.7800 0.8100
0.5 | 0.1635 0.3574 0.5916 0.7518 0.8669 0.9500 0.9800
0.6 | 0.2584 0.5050 0.6901 0.8516 0.9288 0.9900 1.0000
0.7 | 0.3447 0.5563 0.7185 0.8541 0.9276 0.9495 0.9800
0.8 | 0.4189 0.5941 0.7427 0.8496 0.9109 0.9400 0.9694
0.9 | 0.4917 0.6222 0.7479 0.8402 0.8760 0.9175 0.9588

problems. Thus, the test seems to exhibit good performance in practice.

It is easy to see that the power does not increase monotonically with §. More specifically, for
small sample sizes there seems to be a jump in the power of the test when the ¢ is small; for example,
if N = 1000, the power is only 0.0644 for 6 = 0.2 but reaches 0.2136 for § = 0.1. The combination
of the small § and small initial sample size means that, for any stationary distribution that is
not very skewed, a large part of all observations is being preserved after shrinking operation and
becoming ”trapped” in a short interval of length d(yYmax — Ymin). Because the interval is short, the
stationary density of the process y; can be expected to be relatively constant; therefore, numbers
of observations in m = 3 equal intervals can be expected to be close to each other, thus making the
power of the test rise.

This effect does not work for larger sample sizes where the loss of observations due to lower
& seems to predominate. However, for larger values of IV, the growth in § does not always mean
automatic increase of the test power. The problem is that the growth of the number of observations
available for ANOVA analysis does not occur monotonically across all of the cells. In the Table
(6), this tapering-off of the power of the test is clearly seen when § > 0.6. It is reasonable to
expect that this phenomenon should depend on the stationary distribution of the process y;: the

more symmetric this distribution is, the less pronounced it should be. On the contrary, with the

14




strongly skewed stationary distribution, the number of boundary observations that are removed
from consideration when § is small can be quite large. The natural outcome of this is that cells
that cover the center of the range may have relatively few observations in them. The logical
outcome, thus, would be the decreasing power of the test which is clearly seen for large § and
sample sizes that are greater than 4000.

As mentioned earlier, m should be chosen small enough to keep the power of the test high and
large enough for the x2-approximation of the test statistic to be appropriate. It can be said that,
as is the case with the choice of §, there exists a trade-off between these two goals which should be
reflected in the choice of m. The following ad-hoc procedure for selection of m is suggested.

If § is chosen, for each integer m, there are m? cells considered. Let us denote the number of
observations falling in the (4, j)th cell n;;. Then, in order to achieve the necessary trade-off between
the local power of the test and the necessary degree of x? approximation for the test statistic, it
seems sensible to choose the value of m that maximizes the product m?2 rrilin nj over a grid in m.
The first term in the product m?2 nznjn n¢; product favors larger m while the,Jsecond favors a smaller

one. To make it more precise, the optimal value of m for a fixed value of § = §p can be defined as
Mept = GTIMATm {m2 min(n;;|6 = 50)} , 2<m< NY2 (11)

Note that there is no need to search over any m that is larger than N'/2 since it automatically
leads to at least one cell having no observations at all and thus min(ny;|{6 = o) = 0, regardless of
the choice of §p.

The performance of the method is illustrated by using the model (5) to generate data with
sample sizes N = 5000, N = 10000 and N = 20000, respectively. For each sample size, 100
realizations are generated and it is assumed that § = 0.5. The optimal m is computed using the
ad-hoc procedure described in (11) as the average of 100 possible choices of m that correspond to
100 simulations conducted for each sample size. The resulting optimal choices of m are 4, 5 and
7 for sample sizes of 5000, 10000 and 20000, respectively. In order to illustrate the choice made,
the power and the type I error of the test are calculated for several different values of m for each
choice of the sample size and shown in Tables (7)-(9).

Overall, the procedure seems to perform reasonably well; more specifically, it is clear that it
works better for larger sample sizes N = 10000 and especially N = 20000 than for a smaller sample
size N = 5000. Analogous calculations for other sample sizes that lie between 5000 and 10000 as

15




Table 7: Simulated power and type I error: N=5000

m | power | type I error
2 1093 {0.06
3 1086 |0.05
4 1080 |0.06
5 1064 |0.05

Table 8: Simulated power and type I error: N=10000

m | power | type I error
211 0.08
311 0.05
4 |1 0.04
5 1095 |0.05
6 |0.90 |[0.05
7 1066 | 0.04

Table 9: Simulated power and type I error: N=20000

m | power | type I error
2 |1 0.15
3 |1 0.12
4 |1 0.11
5 |1 0.10
6 |1 0.08
7 (099 |0.04
8 |0.93 0.05
9 10.85 0.05
10 |1 0.79 0.05
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well as between 10000 and 20000 were also performed; all of them support this conclusion. They

are not given here for reasons of brevity but are available upon request.

4 A Real Data Example

In this section the proposed testing method is applied to the data set of the deutschmark/US
dollar exchange rates from January 2, 1980 to May 23 1986. The data set contains the total of
1603 observations. The same data was analyzed in Yang, Hérdle and Nielsen (1999) where the
nonparametric autoregressive model with multiplicative volatility and additive mean was fit to it.
The data are plotted in Figure (2).

As a first step, the generalized additive-interactive volatility model of order 3 is fit to the data
set described. The detailed description of the local instrumental variable (LIVE) method used to fit
the model as well as the fitting procedure itself can be found in Levine and Li (2007) and, therefore,
only the general outline is given here. One-dimensional Gaussian and product Gaussian kernels are
used to estimate univariate and multivariate density functions, respectively. Local linear regressions
are used to estimate the additive and interactive components of the mean and volatility functions.
Optimal bandwidths are selected using the cross-validation method. Levine and Li (2007) showed
that the estimated additive components of the mean functions seem to be close to zero which is
not the case with the additive volatility components. The latter finding showed the asymmetric
influence of the past values of the exchange rate on its current volatility.

The analysis of Levine and Li (2007) also showed that the volatility function also contains what
looks like rather substantial interactive components with interesting interpretation. To confirm or
reject the presence of interactive components in both mean and variance functionas, the formal
testing is performed.

In this case, it is not advisable to select large values of § since the squared residuals from the
mean fit are much smaller in absolute value compared to the original data points ;. Because of
that, choosing larger values of § results in the loss of a very substantial percentage of ” observations”
(i.e., squared residuals). To illustrate this point, it is instructive to compute the percentages of
squared residuals remaining to be used in the ANOVA scheme for several values of § and a fixed ms,

say m = 3. For the overall sample size V = 1603, § = 0.5 results in 641 remaining squared residuals
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Figure 2: Plot of the daily return of deutschmark/US dollar, from Jan. 2 1980 to May 23 1986
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available for ANOVA analysis (40% of the original number), § = 0.6 results in 585 remaining which
makes up 36% of the original number and for § = 0.7 it is 510 - 32% of the original number.
This suggests that choosing values of § larger than 0.5 may not be advisable. For the purpose of
this analysis, the value 6 = 0.5 is chosen; this value is used for testing both mean and variance
function components. The entire data range is split into m = 2 intervals; the choice of small m is
due to the relatively small initial sample size N = 1063. The shrunken range contains n = 1556
observations that constitute 97.1% of the original observations. Two tests are performed using
both the original observations from the shrunken range (to test for the presence of interactive mean
components) and the squared residuals from the mean function fit (to test for the presence of
interactive variance components). The P-values for the tests on mean and volatility functions are
0.322 and 0.021, respectively. This suggests that at a 95% confidence level and even after Bonferroni
adjustment, the interactive components in the mean functions are not significant while those in
the volatility functions are. Note that this is not the trivial result: the presence of interactive
volatility components makes it possible to draw specific conclusions about the influence of past lags
of the currency exchange rate on the current volatility which is impossible to do using methods of
Yang, Hardle and Nielsen (1999); see Levine and Li (2007) for detailed discussion of significance
of interactive components. Also, unlike Yang, Hardle and Nielsen (1999), local linear regression
estimators are used instead of local constant estimators, thus providing automatic boundary bias

correction.

5 Discussion and Conclusions

The approach to testing the joint significance of the interaction components proposed here is con-
venient in practice and is conceptually rather simple. It can be viewed in the framework of the
random effect model ANOVA with the resulting x? test performing very well for reasonably large
samples. It is particularly important that the test can accommodate the joint testing of interactive
components in mean under the assumption of heteroskedasticity - this is new and, to the best of
our knowledge, has not been done before. As mentioned earlier, the proposed test can also be easily
generalized to testing the presence of interactive components in the conditional variance (volatility)

function as well.
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The power of the test is higher for small values of the number of intervals m used; however, the
procedure as discussed here does not take into account the true stationary density of the process
y¢. A rather obvious way to improve the power of the test is to partition the shrunken range into
unequal size intervals in accordance with the estimated stationary density of the process y;. Such a
procedure would be particularly useful for relatively small sample sizes where, as can be seen from
the Table (6), there is some room for improvement.

The entire exposition in this paper was restricted to the case of d = 2 for the sake of simplicity.
The generalization to the case where there are nonparametric interactive components of order d > 2
is conceptually straightforward; it requires the generalization of the testing framework of Chen and
Chen (1998) to the case of k-way ANOVA under heteroskedasticity when & > 2. Note that this will

result in highly computationally intensive procedure.
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6 Appendix

Proof: Denote c;; the small square with vertices (a;_1,a;-1), (as,a5-1), (ai-1,a;) and {a;,a;);
also, let ¢; = (as—1,a;) and ¢; = (@j-1,05). This square will play the role of the ANOVA cell in
the following analysis. The model (5) can be represented as Xyjx = fiji + €i5x if (Ys—1, Yt—2) € cij
where X;;;, = 4 and the index k is used to distinguish the observations falling in the same cell

c;j; the number of observations falling in c¢;; is denoted n;;. Under the null hypothesis, fijrx =
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¢+ ma(ys—1) + ma(yt—2). Note that X;;; can be decomposed as
Xiji = {feji — fii.} + {fij. +€iji}
= {fijk — fis.} + Tijk (12)

where fj; = E [Iqj {c+ mi(Yi-1) + ma(Yi—2)}] is the true cell mean, and ;5% = fij. + €45

Following the decomposition (12), we obtain easily the following:

i n4j g
XKij =) WigXije = >_ Wisezige + Y Wik (fisk — fi) = Z4. + [,
k=1 k=1 k=1
. 1 1 «— 1 & ; .
Xi. = po ZX'L']'. = Zf?zg +— Zfij. =% + fi.
]:1 ]=1 J=1
. L 1 & 1« <
Xj=o D K=o Ba+ -3 fu=8i+F
i=1 i=1 i=1
" 1 m m - 1 m m 1 m m - "
I S I I 9 DR 9 WAELRY,
=1 j=1 i=1 j=1 i=1 j=1
It is easy to verify that the sample variance of each cell can be expressed as
1 ni—1 ~ )
S% = 5 Z (Xiji — Xi5)
M4 o
1 n,-j——l

(@i — Ti5)°

The F-type statistic Fy,, first introduced in (8), can then be split into three parts:

~ ~ ~ ~ 2
Foe 3o (FuzfeXs +X,..)
i Smaa:/\/nij ]

5,j=1
O T T TR A
"2 (™) (13)
7 7 5 N\ 2
o~ [ fyg. = Fi.—fi+ 1.
+z’§=:1 < J Smaz/\/;Tj ) (14)
m Zyj — Ty — T3+ ﬁ_ﬁ_f+f
+ijz=1< : Smaz/\/T—iE > ( : Smar/\/’;«_ij ) (15)

Note that (13) is approximately X?’m—l)2 distributed when all of n;; — co— this follows immediately
from Chen and Chen (1998). Thus, in order to prove the statement, it is necessary to show that

both (14) and (15) are negligible as ny; — oo and m — co.
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Let us denote I, the indicator function of the set ¢ and let L; = sup,{|m}(z)|}. Denote py =
sup p(z) where S is the (compact) support of the stationary density p(-). Since y, y:—1 and yi—o
S

all have the same marginal stationary distribution p(-),

vii(F) = var [Ie,;{c+ m1(Yie1) + ma(Yiz2)}]
< mazs ; [var{mi (Vi) I, } + var{my(¥;) I, }]

< 2po(L% + LE)/m®

where variance is taken with respect to the stationary density p(-). Hence, under Hy, we have

S Uk~ s’ = Ol ()} = Opl1/m) 16)

W k=1

By using Cauchy-Schwarz Inequality, it is easy to show that

zjk) ( (fijk - fzg)2>
k=1
(n2]> <Z(f’tjk - fz] ) )

nij 2
fij (Z Wzgk fz_yk fz] ))
=0

consequently,

\-n—lﬂ fis 2 n
& \Smax/m) % (i)

Similar algebra shows that the other three squared terms as well as the cross-product terms in (14)

(17)

are all Op (Z). Thus, (14) is negligible as n — 00 and m = O(n*/3 + §) for any small § > 0. This
suggests that m must be large enough for x? approximation to be precise.

This conclusion is further confirmed by analyzing the cross-product term (15). Note that
this term is a sum of approximately independent components; the latter is due to the fact that

observations across cells are approximately independent if the strict stationarity of y; is assumed.

Choosing as an example the first cross-product term Z?S.:l ( Smaii/jm Smai 2/]\/7373) , It is easy to

show that its order is O, (( )l/ 2) and the same is true for the rest of the crossproduct terms. As
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a consequence, it is possible to say that, based on (13)-(15), the test statistic Fy, is distributed as
X? 'n—1)2 UP to the term of the order O, ((Hng)l/ 2) . thus, the larger m is, the more precise the x?
approximation of the test statistic F,,, is. Formally, F,, = X%m—l)z + 0, ((H"g)l/ 2) .
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