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Abstract

In this article we consider a new separable nonparametric volatility model related

to the GANARCH model of Kim and Linton (2004) [24]. Unlike the GANARCH

model, it does not assume the known link function but includes second-order inter-

action terms in both mean and variance functions instead. The assumption of the

known link function implies knowing the distribution of the data. The exact data

distribution is often not so easy to verify, especially in the multivariate case; thus,

it can be said that our model imposes fewer difficult to verify assumptions. Moti-

vated by the local instrumental variable estimation method introduced by Kim and

Linton (2004)[24], we propose an instrumental variable-based estimation method of

both additive and interactive mean and variance component functions for this model.

This method is computationally more effective than most other nonparametric esti-

mation methods that can potentially be used to estimate components of such a model.

Asymptotic behavior of the resulting estimators is investigated and their asymptotic

normality is established. Explicit expressions for asymptotic means and variances of

these estimators are also obtained. Simulation experiments provide strong evidence

that these estimators are well-behaved in finite samples as well.

1 Introduction

Volatility modeling has been one of the most active research areas in empirical finance and

time series econometrics in the past two decades. In practice, most empirical finance data

reveal relatively little correlation in mean but a lot of correlation in conditional variance;
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thus, modeling of the conditional variance (volatility) function is rather important. Pricing

of financial derivatives, such as options, is dependent on the estimation of the underlying

asset volatility (note that the classical Black-Scholes pricing formula assumes constant

volatility of the underlying asset, which is usually untenable in practice); in order to

assess measures of risks of traded assets, such as value at risk, a good volatility model is

also needed. The most common pattern volatilities of financial assets exhibit is that of

phases of relative tranquility followed by periods of high volatility (volatility clustering).

Being able to model this feature has long been an important benchmark of a successful

volatility model.

Numerous parametric volatility models were proposed following the seminal work of

Engle (1982)[12] that introduced the classical ARCH model. Bollerslev (1986)[7] provided

the first generalization of ARCH by introducing GARCH (generalized ARCH) modeling

framework that made more parsimonious volatility modeling possible. Since models that

fall into the (G)ARCH framework suffer from their inherent symmetry with respect to

the sign of the process and thus are incapable of incorporating such an important phe-

nomenon as the leverage effect (Black (1976)[6]), additional models had to be introduced

explicitly for that purpose. Two classical examples are exponential GARCH (EGARCH)

(Nelson, 1991[33]) and threshold GARCH (TGARCH) (Glosten, Jagannathan and Runkle

(1993)[16] and Zakoian (1994)[49]). Numerous other models have also been introduced

over the years. Two classical review articles that provide thorough catalogues of numer-

ous volatility models are Bollerslev, Chou and Kroner (1992)[8] and Shephard (1996)[40];

the survey would also be incomplete without mentioning a recent review of multivariate

GARCH-type models by Bauwens, Laurent and Rombouts (2006)[5] and the more specific

survey of ARCH(∞) models in Giraitis, Leipus and Surgailis (2007)[11]. All of the mod-

els mentioned so far are parametric: values of stochastic volatility function are explicit

nonlinear functions of the past values of asset price and/or past values of the volatility

function itself. As such, all of them tend to suffer from the common problem of all para-

metric models - misspecification, especially when there is no theoretical reason to prefer

one over another.

This suggests switching to nonparametric modeling as a possible alternative. Let us

first consider the model

yt = m(yt−1) + v1/2(yt−1)εt (1)

where the error process εt is either iid or a martingale difference sequence with the unit

scale, that is, E[εt|Ft] = 0, E[ε2t |Ft] = 1 and Ft is the σ-algebra of events generated
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by {yk}t
k=−∞. Both m(·) and v(·) belong in some functional smoothness class but are

otherwise unknown and yt ∈ R. This model is commonly known as CHARN (conditionally

heteroscedastic autoregressive model). The kernel estimation of the mean function m(·)
in (1) has been studied by Robinson (1983)[39], Auestad and Tjostheim (1990)[3] and

Härdle and Vieu (1992)[17]. The model with zero mean where the main interest lies in

estimating the volatility function had been considered in Pagan and Schwert (1990)[36]

and Pagan and Hong (1991)[37]; they also studied the multi-lag version od (1) where, in

particular, v ≡ v(yt−1, yt−2, · · · , yt−d) for some d > 0. For the same model (1), Masry and

Tjostheim (1995)[30] estimated the mean and variance function m(·) and v(·) jointly using

the Nadaraya-Watson Kernel estimator while Härdle and Tsybakov (1997)[19] applied

local linear fit to estimate the same model; they also derived the asymptotic properties of

the joint estimator. Härdle, Tsybakov and Yang (1996)[18] gave the multivariate extension

of the above problem. Fan and Yao (1998)[14] and Ziegelmann (2002)[50] proposed local

linear least square estimators for the volatility function while Avramidis (2002)[4] gave

an extension based on the local linear maximum likelihood function.

Flexibility of a nonparametric volatility model in comparison with the parametric one

comes at a cost. In practice it is often necessary to include many lagged variables to obtain

a good fit. The resulting problem of nonparametric multivariate function estimation

suffers from the well-known “curse of dimensionality” whereby the rate of convergence

quickly decreases as the number of dimensions increases. This problem has been first

clearly elucidated in Silverman(1986)[41]. It is also hard to describe and interpret the

multidimensional surface of dimensionality more than 2.

Generalized additive models (GAM) offer an intermediate position between the com-

plete generality of nonparametric models and the restrictiveness of parametric ones. The

classical GAM model assumes that the conditional variance function v(·) ≡ const and

considers

m(yt−1, . . . , yt−d) = Cm +
d∑

j=1

mj(yt−j).

The best achievable rate of convergence for an estimate of mα, α = 1, . . . , d is the same

as in one-dimensional nonparametric regression. [See Stone (1985[43],1986[44])]; as an

example, any twice continuously differentiable mean function mα(·) can be estimated at

the rate of n−2/5, regardless of d. The defining monograph on the generalized additive

models data is Hastie and Tibshirani (1990)[21]. It is entirely natural to make the next

step and introduce the generalized additive structure in the variance function as well,
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assuming that

v(yt−1, . . . , yt−d) = Cv +
d∑

j=1

vj(yt−j).

It is also known that the best achievable rate of convergence for components of v is the

same as the one for the variance function in the one-dimensional model (1). (again, see

Stone (1985[43],1986[44])). Yang, Härdle and Nielsen (1999)[48] introduced the nonpara-

metric volatility model with additive mean structure but multiplicative volatility; they

argued that this is rather natural since volatility function must be presumed to be non-

negative. Kim and Linton (2004)[24] provided further generalization by introducing the

generalized additive nonlinear ARCH model (GANARCH)

yt = m(yt−1, yt−2, · · · , yt−d) + ut (2)

ut = v1/2(yt−1, yt−2, · · · , yt−d)εt

where

m(yt−1, yt−2, · · · , yt−d) = Fm(Cm +
d∑

α=1

mα(yt−α)) (3)

v(yt−1, yt−2, · · · , yt−d) = Fv(Cv +
d∑

α=1

vα(yt−α))

where mα(·) and vα(·) are any smooth but unknown functions, while Fm(·) and Fv(·)
are known monotone transformations. It is quite clear that the model of Yang, Härdle

and Nielsen (1999)[48] is the special case of (2) when Fm is an identity function and Fv

is an exponent. The GANARCH model, although quite interesting from the theoretical

viewpoint, limits somewhat our horizon because of the known link function assumption

which implies that some information about the distribution of data is available. It is often

hard to tell which functional transformation is right for the given data, particularly so in

multidimensional settings. Horowitz (2001)[22] considered a model similar to (2)-(3) with

unknown link functions but only in cross-sectional context. Later, Horowitz and Mammen

(2006)[23] considered an even more general model that contains the generalized additive

model with unknown link function as a special case and is also a natural generalization

of the neural-network models; however, it is also meant for cross-sectional setting only.

Direct generalization to the time-series case seems to be rather difficult and this point

was noticed in Kim and Linton (2004)[24].

In this paper, we propose a different way to generalize the GAM framework by con-

sidering nonparametric ”interactions” mαβ(·, ·), vαβ(·, ·) for any pair of lagged variables
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(yα, yβ), 1 ≤ α < β ≤ d in both mean and variance functions. Such a model is related

to the model of Yang, Härdle and Nielsen (1999) [48] but utilizes the additive, instead of

multiplicative, structure for its volatility function; it also provides a reasonable amount

of flexibility while retaining relative simplicity of interpretation. It does not require us

to guess the unknown link function but rather presents a more data-driven approach; if

the asymptotic distribution of the interaction estimators is known, a large-sample test

can be easily constructed that would allow us to select as many interaction terms as the

data itself dictates. Of course, conceptually it is entirely feasible to consider three-way

nonparametric “interactions” and so on; note, however, that the “curse of dimensional-

ity” and difficulty of interpretation gradually return as we increase the dimensionality of

“interaction terms”.

The rest of the paper is organized as follows. In section 2 we introduce our model

formally. Section 3 describes the main estimation idea and defines the local instrumental

variable(LIVE) estimators. In section 4 we show the main results, including the asymp-

totic normality of our LIVE estimators. Section 5 presents results of the Monte-Carlo

simulations with both uniformly and normally distributed innovations. The article ends

with the mathematical appendix that contains proofs of all main results.

2 The Model

In this section, our model and some basic assumptions are introduced. We consider the

following additive-interactive nonlinear ARCH model:

yt = m(yt−1, yt−2, · · · , yt−d) + v1/2(yt−1, yt−2, · · · , yt−d)εt (4)

m(yt−1, yt−2, · · · , yt−d) = Cm +
d∑

α=1

mα(yt−α)

+
∑

1≤α<β≤d

mαβ(yt−α, yt−β)

v(yt−1, yt−2, · · · , yt−d) = Cv +
d∑

α=1

vα(yt−α)

+
∑

1≤α<β≤d

vαβ(yt−α, yt−β)

where mα(·) and vα(·) are smooth but unknown univariate functions while mαβ(·) and

vαβ(·) are also smooth but unknown bivariate functions. The error process εt is assumed

to be a martingale difference sequence with unit scale. Such a model can be viewed as a

nonlinear autoregressive time series model.
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Under some weak assumptions, the general nonlinear autoregressive time series model

can be shown to be stationary and strongly mixing with mixing coefficients decaying ex-

ponentially fast. Auestad and Tjostheim (1990)[3] used α-mixing or geometric ergodicity

to identify the nonlinear time series model. Ango Nze (1992)[1] studied the L1 geometric

ergodicity of the multivariate generalization of the model (4)

Xt = f(Xt−1, . . . , Xt−p) + H(Xt−1, . . . , Xt−q)εt (5)

where Xt and εt are two sequences of m-dimensional random variables defined on a com-

mon probability space and εt is an m-dimensional white noise process. Ango Nze (1992)[1]

gave, probably, the first in the literature sufficient condition that ensures L1 geometric

ergodicity of the general model (5). Lu and Jiang (2001)[28] derived another sufficient

condition that also ensures L1 geometric ergodicity of the model (5) but that is much

less restrictive. In this paper we impose constraints from Lu and Jiang (2001)[28] and, in

doing so, assume that the conditions for strict stationarity and strong mixing property of

the process {yt}n
t=1 in (4) are met.

The issue of identifiability arises naturally. First, note that one can add a constant

to any of the components mα(·), vα(·), mαβ(·) or vαβ(·) and subtract the constant from

another component without changing the model. It is also possible to add an arbitrary

function f(·) to the additive component (mα(·) or vα(·)) and then subtract it from the

interactive component (mαβ(·) or vαβ(·)). Of course, this presents identification problems

when trying to estimate the model components. To prevent ambiguity, the following

identifiability conditions are imposed:

E[mα(Yt−α)] = 0 , α = 1, · · · , d (6)

E[vα(Yt−α)] = 0 , α = 1, · · · , d (7)

and

E[mαβ(Yt−α, Yt−β)|Yt−α = yα] = E[mαβ(Yt−α, Yt−β)|Yt−β = yβ ] = 0 (8)

E[vαβ(Yt−α, Yt−β)|Yt−α = yα] = E[vαβ(Yt−α, Yt−β)|Yt−β = yβ] = 0 (9)

where 1 ≤ α < β ≤ d.

Remark: Similar conditions were imposed in Sperlich, Tjöstheim and Yang (2002)

for the model that considers only the interactions in the mean function. As is the case

in their paper, if our representation as given in (4) doesn’t satisfy conditions (6) and (8),

one can easily change it to ensure that it does. To achieve this goal, one can:
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1. Replace all {mαβ(yα, yβ)}1≤α<β≤d by {mαβ(yα, yβ)−mα,αβ(yα)−mβ,αβ(yβ)+C0,αβ}1≤α<β≤d

where

mα,αβ(yα) =
∫

mαβ(yα, v)pβ(v)dv,

mβ,αβ(yβ) =
∫

mαβ(u, yα)pα(u)du,

C0,αβ =
∫

mαβ(u, v)pαβ(u, v)dudv

with pα(·), pβ(·) the marginal densities of Yt−α and Yt−β respectively, and pαβ(·) the

joint density of (Yt−α, Yt−β).

2. Adjust the {mα(yα)}d
α=1 and the constant term Cm accordingly so that m(·) remains

unchanged.

3. Replace the {mα(yα)}d
α=1 by {mα(yα)− C0,α}d

α=1, where C0,α =
∫

mα(u)pα(u)du.

4. Adjust the constant term Cm accordingly so that m(·) remains unchanged.

The analogous procedure can be followed if the model (4) doesn’t satisfy (7) and (9). As

a result, the set of identifiability conditions (6)-(9) does not really impose any additional

constraints on the model (4).

3 The Local Instrumental Variable Estimators

3.1 Estimation Methods

The main objective of this paper is the estimation of the additive and interactive compo-

nents of both the mean and volatility functions in (4). Allowing two-way nonparametric

interactions in addition to additive terms makes the model much more flexible compared

to the traditional GAM model, while still greatly alleviating the “curse of dimension-

ality”. It is known (see, for example, Stone (1994)[45]) that the interactive terms can

be estimated at the optimal rate O(n−q/(2q+2)) while for the additive ones this rate is

O(n−q/(2q+1)) whenever the function to be estimated is q-smooth in the sense of Stone

(1994)[45]. In other words, estimating the additive effect is as hard as one-dimensional

nonparametric smoothing and the interactive effect as hard as a two-dimensional non-

parametric smoothing.
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The GAM literature suggests several possible approaches that can be conceptually ex-

tended to our model. The first one is the so-called backfitting algorithm of Breiman and

Friedman (1985)[9]; see also Hastie and Tibshirani (1987[20], 1990[21]) as well as Buja,

Hastie and Tibshirani (1989)[10]. The classical backfitting algorithm essentially consists

of repeated iterative application of some one-dimensional smoother (e.g. local polynomial

regression) until convergence. As a consequence, it would be more precise to say that

the backfitting is not just a method but a collection of methods depending on the par-

ticular nonparametric smoother (local polynomial regression, smoothing spline etc) being

used. Both classical backfitting and the modified backfitting approach (one-step efficient

estimator) of Linton (1997)[27] can be conceptually extended to our model. A signifi-

cant disadvantage of the backfitting method is, however, the difficulty of its theoretical

analysis. The asymptotic properties of backfitting estimators in the generalized additive

model case had not been established until the pioneering work of Opsomer and Ruppert

(1997)[35] and Mammen, Linton and Nielsen (1999)[29]. The latter group of authors in-

vestigated the modified (one-step) backfitting estimator while the first one worked with

the original definition. Both papers derived asymptotic properties of the estimators con-

sidered, establishing the geometric rate of convergence under some regularity conditions.

A lot of their analysis relies on the projector theory which is hard to extend to analysis

of interaction terms.

Another approach is marginal integration, which was introduced independently by

Newey (1994)[34], Tjostheim and Auestad (1994)[46], and Linton and Nielsen (1995)[26].

Marginal integration approach has been extended to fit the nonparametric model with in-

teractions in Sperlich, Tjostheim and Yang (2002)[42], albeit in the cross-sectional setting

only. One advantage of the marginal integration method is that its statistical properties

are relatively easy to describe; specifically, one can easily prove central limit theorems

for the resulting estimators as well as give explicit expressions for their asymptotic biases

and variances. However, marginal integration is relatively computationally expensive and

another method based on the local instrumental variable (LIVE) approach outperforms

it.

In this paper, we suggest an alternative approach that uses the above mentioned LIVE

idea and represents a generalization of the approach from Kim and Linton (2004)[24].

One of the most important advantages of this approach is that it reduces the number of

smoothings required to estimate a model component by a factor of n; for example, it takes

only O(n2) smoothings to estimate an additive component in the example we give later

in the next section as opposed to O(n3) when using marginal integration. This reduction
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in the number of computations was noticed earlier in Kim and Linton (2004)[24] in the

context of GANARCH model. Also, the asymptotic properties of the LIVE estimator are

fairly easy to derive and, in this regard, it is much more tractable than the backfitting.

The rest of this section is dedicated to the description of the LIVE approach in our context.

3.2 Instrumental Variable Approach

Instrumental variable approach is widely used in econometric modeling. [See Angrist,

Imbens and Rubin (1996)[2], and the accompanying discussion of the econometric concept

of instrument and some background literature.] In the following we explain the basic idea

behind the instrumental variable method and describe the estimation procedure. For ease

of exposition, we use a simple example (d = 3) with i.i.d. data. In section 4 we extend

the procedure to the general case of (4). Consider the following model for i.i.d. data

(Y, X1, X2, X3)

Y = m(X1, X2, X3) + v1/2(X1, X2, X3)ε (10)

m(X1, X2, X3) = Cm + m1(X1) + m2(X2) + m3(X3) (11)

+m12(X1, X2) + m13(X1, X3) + m23(X2, X3)

v(X1, X2, X3) = Cv + v1(X1) + v2(X2) + v3(X3) (12)

+v12(X1, X2) + v13(X1, X3) + v23(X2, X3)

and assume that the identifiability conditions (6)-(9) are satisfied. Let us denote X =

(X1, X2, X3). Let pα(Xα) be a marginal density of Xα, α = 1, 2, 3, pαβ(Xαβ) be a joint

density of (Xα, Xβ), α, β = 1, 2, 3 and p(X) = p(X1, X2, X3) be the joint density of

(X1, X2, X3). For us, an instrumental variable (instrument for short) is defined as a

random variable W such that E[W |F ] 6= 0 but E[Wη|F ] = 0 where F is a σ-algebra

generated by any of {X1, X2, X3} and η is a missing ”regression variable”; for example,

(10) can be expressed as Y = m1(X1) + η + v1/2(X1, X2, X3)ε where η includes all of the

additive mean components except for the “main effect” m1(X1). In this case, we note

that

m1(x1) =
E(WY |X1 = x1)
E(W |X1 = x1)

. (13)

As suggested before in Kim and Linton (2004), it is now possible to use local smoothers

in both the numerator and denominator of (13) to estimate the function m1(·). However,

it is best to note that any choice of an instrument needed to define the function m1(·) is

unique only up to a measurable function of X1 as a factor. It is clear that we can choose
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W = p23(X2,X3)
p(X) as an instrument in (13); however, if we choose W = p1(X1)p23(X2,X3)

p(X) ,

we have another instrument that does not only satisfy the definition of the instrumental

variable but for whom E(W |X1) = 1, and, therefore,

m1(x1) = E(WY |X1 = x1). (14)

(14) allows us to use one smoother instead of two to estimate the value of m1(x1). This

is the definition we will be using in the rest of this paper.

As a next step, we describe how to obtain an identity for each of the additive and

interactive components of both mean function m(X) and variance function V (X) that

can be used for estimation purposes.

1. Due to identifiability conditions above, Cm = E[Y ]

2. Define Ym = Y −Cm and an instrumental variable W1 = p1(X1)p23(X2,X3)
p(X) . It’s easy to

verify that E[W1|X1] = 1, E[W1mi|X1] = 0, i = 2, 3, and E[W1mij |X1] = 0, i, j =

1, 2, 3. Therefore, multiplying both sides of (10) by W1 and taking an expectation

conditionally on X1 = x1 we obtain

m1(x1) = E[W1Ym|X1 = x1]

Similarly, we can define analogous instrumental variables W2 = p2(X2)p13(X1,X3)
p(X) and

W3 = p3(X3)p12(X1,X2)
p(X) ; they, in turn, produce identities mi(xi) = E[WiYm|Xi = xi],

i = 2, 3

3. Now, define the residual Ỹm = Ym − [m1(X1) + m2(X2) + m3(X3)] and a new in-

strumental variable W12 = p12(X1,X2)p3(X3)
p(X) .

It’s easy to verify that E[W12|X1, X2] = 1 but E[W12m13|X1, X2] = 0 and

E[W12m23|X1, X2] = 0 which leads us to the identity

m12(x1, x2) = E[W12Ỹm|X1 = x1, X2 = x2]

In an analogous way, we can define instruments W13 = p13(X1,X3)p2(X2)
p(X) and W23 =

p23(X2,X3)p1(X1)
p(X) and obtain identities mi3(xi, x3) = E[Wi3Ỹm|Xi = xi, X3 = x3],

i = 1, 2

4. To identify components of the conditional variance functions, assume that the mean

function m(X1, X2, X3) is known. Then, we can center the data to define Y ∗ =

[Y −m(X1, X2, X3)]2 and note that Cv = E[Y ∗].
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5. Define Y ∗
v = Y ∗ − Cv and note that vi(xi) = E[WiY

∗
v |Xi = xi], i = 1, 2, 3.

6. Again, define Ỹ ∗
v = Y ∗

v − [v1(X1) + v2(X2) + v3(X3)] and we have vij(xi, xj) =

E[Wij Ỹ
∗
v |Xi = xi, Xj = xj ], i, j = 1, 2, 3.

Of course, in practice the mean function m(X1, X2, X3) will not be known and all of the

conditional expectations need to be estimated. Thus, several additional steps are needed

before we can arrive at the working estimation algorithm. In the next subsection we

describe this estimation algorithm in details in the general setting (4).

3.3 LIVE algorithm for the additive-interactive model (4)

We begin with introducing the notation that will be used repeatedly throughout the paper.

We denote

yt = (yt−1, . . . , yt−d)

y = (y1, . . . , yd)

yt,α = (yt−1, . . . , yt−α+1, yt−α−1, . . . , yt−d)

yα = (y1, . . . , yα−1, yα+1, . . . , yd)

yt,αβ = (yt−α, yt−β)

yαβ = (yα, yβ)

yt,αβ = (yt−1, · · · , yt−α+1, yt−α−1, . . . , yt−β+1, yt−β−1, . . . , yt−d)

yαβ = (y1, . . . , yα−1, yα+1, . . . , yβ−1, yβ+1, . . . , yd)

The underscore in the above means that a particular direction α or directions α and β

have been omitted; boldface is used for all multidimensional quantities. Let pα(yα) be the

marginal density of yt−α while pα(yα), pαβ(yα, yβ), pαβ(yαβ) and p(y) are joint densities

of yt,α, yt,αβ , yt,αβ and yt, respectively.

1. Preliminary density estimation

As we mentioned before, we use regular product kernel density estimators. Specifi-

cally, we estimate the marginal density pα(·) as

p̂α(yα) =
1
ng

n∑
t=1

L

(
yt−α − yα

g

)
, α = 1, 2, · · · , d
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and the joint densities pαβ , pαβ , pα and p(y) as

p̂αβ(yα, yβ) =
1

ng2

n∑
t=1

L

(
yt−α − yα

g

)
L

(
yt−β − yβ

g

)
, 1 ≤ α < β ≤ d

p̂αβ(yα, yβ) =
1

ngd−2

n∑
t=1

d∏
λ=1

λ/∈{α,β}

L

(
yt−λ − yλ

g

)
, 1 ≤ α < β ≤ d

p̂α(yα) =
1

ngd−1

n∑
t=1

d∏
λ=1
λ6=α

L

(
yt−λ − yλ

g

)
, α = 1, 2, · · · , d

p̂(y) =
1

ngd

n∑
t=1

d∏
α=1

L

(
yt−α − yα

g

)
.

In the above, g = g(n) is the bandwidth and L(·) is the unimodal one-dimensional

symmetric kernel function.

Remark Of course, multivariate product kernels are not the only possibility we

could have considered. In general, two popular ways of constructing multivariate

kernels are usually considered. The product kernel is the first while the second is the

so-called spherically symmetric multivariate kernel. In general, multivariate product

kernel based estimators are slightly less efficient than those based on spherically

symmetric kernels (for details, see e.g. Wand and Jones (1995)[47]). However, since

the observed loss of efficiency is rather minor, we prefer to use the product kernel

which implies an easy and straightforward notation.

2. Estimation of the constant component of the mean Cm

Cm can be directly estimated as

Ĉm =
1
n

n∑
t=1

yt.

3. Estimation of the additive components of the mean mα(·)

Define the instrumental variable

Ŵα(yt) =
p̂α(yt−α)p̂α(yt,α)

p̂(yt)
, α = 1, 2, · · · , d

denote ỹt = yt − Ĉm and use it to estimate mα(yα) as

m̂α(yα) = E[Ŵα(yt)ỹt|yt−α = yα] , α = 1, 2, · · · , d

12



Of course, the conditional expectation above needs to be estimated itself. In practice,

m̂α(yα) in the above is determined as the minimizer aα of the kernel-weighted least

squares problem

min
aα,bα

d+n∑
t=d+1

Kh(yt−α − yα){Ŵα(yt)ỹt − aα − bα(yt−α − yα)}2.

which is equivalent to smoothing Ŵα(yt)ỹt using the local linear regression. The

use of local linear regression is adopted to avoid the lack of design adaptivity and

increased bias associated with using simpler kernel regression. (See Fan and Gij-

bels (1996)[13] for more details concerning the right choice of the local polynomial

regression order under varying circumstances.)

4. Estimation of the interactive components of the mean mαβ(·)
Let us denote

ȳt = yt −

[
Ĉm +

d∑
α=1

m̂α(yt−α)

]

Define the instrumental variable

Ŵαβ(yt) =
p̂αβ(yt−α, yt−β)p̂αβ(yt,αβ)

p̂(yt)
, 1 ≤ α < β ≤ d

and estimate the interactive component mαβ by means of the minimizer aαβ of the

two-dimensional kernel-weighted least squares problem

min
aαβ ,bαβ

d+n∑
t=d+1

Kh(yt−α − yα)Kh(yt−β − yβ)×

×{Ŵαβ(yt)ȳt − aαβ − bαβ,α(yt−α − yα)− bαβ,β(yt−β − yβ)}2.

In the above, the vector “slope” bαβ = (bαβ,α, bαβ,β)
′
.

5. Estimation of the constant component of the variance Cv

Denote the squared residuals from the mean estimation

y∗t =

ȳt −
∑

1≤α<β≤d

m̂αβ(yt−α, yt−β)

2

and estimate Cv as Ĉv = 1
n

∑n
t=1 y∗t .

13



6. Estimation of the additive components of the variance vα(·)

Using the instrumental variables defined in step (3) we can estimate vα(·) as the

minimizer of the localized least squares problem

min
aα,bα

d+n∑
t=d+1

Kh(yt−α − yα){Ŵα(yt)y
∗
t − aα − bα(yt−α − yα)}2.

7. Estimation of the interactive components of the variancevαβ(·)
Denote

ỹ∗t = y∗t −

[
Ĉv +

d∑
α=1

v̂α(yt−α)

]

and estimate interactive components vαβ(·) as

min
aαβ ,bαβ

d+n∑
t=d+1

Kh(yt−α − yα)Kh(yt−β − yβ)×

×{Ŵαβ(yt)ỹ
∗
t − aαβ − bαβ,α(yt−α − yα)− bαβ,β(yt−β − yβ)}2.

4 Main Results

In this section we state the main results for estimation in our additive-interactive nonlinear

ARCH model. For this, we need the following definitions and assumptions. Let Fb
a be the

σ-algebra generated by {yt}t=b
t=a and α(k) the strong mixing coefficient of {yt} defined by

α(k) = supA∈F0
−∞,B∈F∞

k
|P (A ∩B)− P (A)P (B)|

1. {yt}∞t=1 is a stationary and strongly mixing process generated by (1)-(3), with a

mixing coefficient α(k) such that
∑∞

k=0 ka{α(k)}1−2/ν < ∞, for some ν > 2 and

a > (1 − 2/ν). For simplicity, we assume that the process {yt}∞t=1 has a compact

support.

2. The functions mα(·),mαβ(·), vα(·), vαβ(·), 1 ≤ α, β ≤ d, are continuous and twice

differentiable with bounded (partial) derivatives on the compact support

3. The joint and marginal density functions, p(·), pα(·), pα(·), pαβ(·) and pαβ(·) are twice

continuously differentiable and has bounded third derivatives. All of the density

functions above are also bounded away from zero on the compact support.
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4. The kernels L(·) and K(·) are bounded, nonnegative, symmetric (around zero),

compactly supported, Lipschitz continuous, and satisfying∫
L(u)du = 1,

∫
uL(u)du = 0,∫

K(u)du = 1,

∫
uK(u)du = 0.

Furthermore we assume their moments of order higher than 2 are not equal to zero

and ‖ u ‖2 L(u) ∈ L1, ‖ u ‖4 K(u) ∈ L1 and ‖ u ‖(2ν+d) K(u) → 0 as ‖ u ‖→ ∞.

5. (a) As g → 0 and n →∞, ngd →∞

(b) As h → 0 and n →∞, nh →∞

(c) As g → 0 and h → 0, g2ν

h → 0

(d) i. There exists a sequence of positive integers satisfying t(n) →∞ and t(n) =

o(
√

nh) such that
√

n
hα(t(n)) → 0

ii.
√

log n
nh → 0 as n →∞, h → 0 and nh →∞

6. (a) As g → 0 and n →∞, ngd →∞

(b) As h → 0 and n →∞, nh2 →∞

(c) As g → 0 and h → 0, g2ν

h2 → 0

i. There exists a sequence of positive integers satisfying t(n) →∞ and t(n) =

o(
√

nh2) such that
√

n
h2 α(t(n)) → 0

ii.
√

log n
nh2 → 0 as n →∞, h → 0 and nh2 →∞.

Theorem 1 Let yα be in the interior of the support of pα(·). Then under conditions (1)

through (5), we have

√
nh[φ̂α(yα)− φα(yα)−Bα(yα)] d→ N [0,Σ∗

α(yα)]

where

φ̂α(yα) =

(
m̂α(yα) + Ĉm

v̂α(yα) + Ĉv

)
, φα(yα) =

(
mα(yα) + Cm

vα(yα) + Cv

)

Bα(yα) =

(
bm
α (yα)

bv
α(yα)

)
, Σ∗

α(yα) =

(
σm

α (yα) σmv
α (yα)

σmv
α (yα) σv

α(yα)

)
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with

bm
α (yα) =

1
2
h2µ2

Km(2)
α (yα) +

1
2
g2µ2

L

∫ [
p(2)

α (zα)

+
p
(2)
α (yα)
pα(yα)

pα(zα)−
pα(zα)

p(yα, zα)
p(2)(yα, zα)

]
m(yα, zα)dzα

bv
α(yα) =

1
2
h2µ2

Kv(2)
α (yα) +

1
2
g2µ2

L

∫ [
p(2)

α (zα)

+
p
(2)
α (yα)
pα(yα)

pα(zα)−
pα(zα)

p(yα, zα)
p(2)(yα, zα)

]
v(yα, zα)dzα

σm
α (yα) =‖ K ‖2

2

∫ {
p2

α(zα)
p(yα, zα)

v(yα, zα) +
[
pα(zα)m(yα, zα)− pα|α(zα|yα)mα(yα)

]2}
dzα

σv
α(yα) =‖ K ‖2

2

∫ {
p2

α(zα)
p(yα, zα)

v2(yα, zα)κ4(yα, zα) +
[
pα(zα)v(yα, zα)− pα|α(zα|yα)vα(yα)

]2}
dzα

σmv
α (yα) =‖ K ‖2

2

∫ [
pα(zα)m(yα, zα)− pα|α(zα|yα)mα(yα)

] [
pα(zα)v(yα, zα)− pα|α(zα|yα)vα(yα)

]
+

p2
α(zα)

p(yα, zα)
v3/2(yα, zα)κ3(yα, zα)dzα

and

µl
K ≡

∫
K(u)uldu, l = 2, 3

µl
L ≡

∫
L(u)uldu, l = 2, 3

‖ K ‖2
2≡
∫

K2(u)du,

κ3(yα, zα) ≡ E
[
ε3
k|(yt−α,yt,α) = (yα, zα)

]
,

κ4(yα, zα) ≡ E
[
(ε2

k − 1)2|(yt−α,yt,α) = (yα, zα)
]

In the above, pα|α(zα|yα) is the conditional density of yα given yα.

Theorem 2 Let (yα, yβ) be in the interior of the support of pαβ(·). Then under conditions

(1) through (4) and (6), we have that
√

nh2[φ̂αβ(yα, yβ)− φαβ(yα, yβ)−Bαβ(yα, yβ)] d→ N [0,Σ∗
αβ(yα, yβ)]

where

φ̂αβ(yα, yβ) =

(
m̂αβ(yα, yβ) + Ĉm

v̂αβ(yα, yβ) + Ĉv

)
, φαβ(yα, yβ) =

(
mαβ(yα, yβ) + Cm

vαβ(yα, yβ) + Cv

)

Bαβ(yα, yβ) =

(
bm
αβ(yα, yβ)

bv
αβ(yα, yβ)

)
, Σ∗

αβ(yα, yβ) =

(
σm

αβ(yα, yβ) σmv
αβ (yα, yβ)

σmv
αβ (yα, yβ) σv

αβ(yα, yβ)

)
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with

Bαβ(yα, yβ)

=
h2

2
µ2

K

[
∂2φαβ

∂y2
t−α

(yα, yβ) +
∂2φαβ

∂y2
t−β

(yα, yβ)

]

+
g2

2
µ2

L

∫ p
(2)
αβ(zαβ) +

p
(2)
αβ(yα, yβ)

pαβ(yα, yβ)
pαβ(zαβ)−

pαβ(zαβ)

p(yα, yβ , zαβ)
p(2)(yα, yβ , zαβ)

∆αβ(yα, yβ , zαβ)dzαβ

+
∫

pαβ(zαβ)∆αβ(yα, yβ , zαβ)dzαβ

σm
αβ(yα, yβ) =‖ K ‖2

2

∫ { p2
αβ(zαβ)

p(yα, yβ, zαβ)
v(yα, yβ, zαβ)

+
[
pαβ(zαβ)m(yα, yβ, zαβ)− pαβ|α,β(zαβ |yα, yβ)mαβ(yα, yβ)

]2 }
dzαβ

σv
αβ(yα, yβ) =‖ K ‖2

2

∫ { p2
αβ(zαβ)

p(yα, yβ, zαβ)
v2(yα, yβ, zαβ)κ4(yα, yβ , zαβ)

+
[
pαβ(zαβ)v(yα, yβ, zαβ)− pαβ|α,β(zαβ |yα, yβ)vαβ(yα, yβ)

]2 }
dzαβ

σmv
αβ (yα, yβ) =‖ K ‖2

2

∫ { [
pαβ(zαβ)m(yα, yβ , zαβ)− pαβ|α,β(zαβ |yα, yβ)mαβ(yα, yβ)

]
[
pαβ(zαβ)v(yα, yβ, zαβ)− pαβ|α,β(zαβ |yα, yβ)vαβ(yα, yβ)

]
+

p2
αβ(zαβ)

p(yα, yβ, zαβ)
v3/2(yα, yβ, zαβ)κ3(yα, yβ , zαβ)

}
dzαβ

and

∆αβ(yα, yβ, zαβ) =

(
bm
α (yα) + bm

β (yβ) +
∑d

λ6=α,β bm
λ (zλ)

bv
α(yα) + bv

β(yβ) +
∑

λ6=α,β bv
λ(zλ)

)

∆αβ(yα, yβ, zαβ) =

(
mαβ(yα, yβ)− bm

α (yα)− bm
β (yβ) +

∑
λ,θ 6=α,β;λ<θ mλθ(zλ, zθ)−

∑
λ6=α,β bm

λ (zλ)

vαβ(yα, yβ)− bv
α(yα)− bv

β(yβ) +
∑

λ,θ 6=α,β;λ<θ vλθ(zλ, zθ)−
∑

λ6=α,β bv
λ(zλ)

)

In the above, pαβ|α,β(zαβ |yα, yβ) is the conditional density of yαβ given yα and yβ . Proofs

of these results are rather demanding technically are omitted here. They are available

upon request.

Remark 3 For both additive and interactive component estimators, the first term in the

bias has the form standard for all local linear regression estimators. The second term in

each case appears because we do not know true marginal and joint densities of the process

yt and effectively the ”penalty” we pay for not knowing them. If these densities are known,

this second term goes away in each case.
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Remark 4 Note that constants Cm and Cv are estimated by Ĉm and Ĉv with the degree

of precision of Op

(
1√
n

)
and, therefore, the individual additive and interactive components

mα(yα), mαβ(yα, yβ), vα(yα) and vαβ(yα, yβ) have the same asymptotic bias and variance

as φα(yα) and φαβ(yα, yβ), respectively.

5 Simulation

This chapter is dedicated to a simulation study that illustrates the finite-sample behavior

of the LIVE estimators v̂α(yα) and v̂αβ(yα, yβ). We follow in the footsteps of Kim and

Linton (2004), considering examples with zero conditional mean function only for now.

Example 1 The design in this example is additive-interactive nonlinear ARCH(3) with

uniformly distributed innovations. We define the process

yt =
√

4 + v1(yt−1) + v2(yt−2) + v3(yt−3) + v12(yt−1, yt−2) + v13(yt−1, yt−3) + v23(yt−2, yt−3)εt

where v1(u) = v2(u) = −v3(u) = 0.5sin(u),

v12(u, v) = v13(u, v) = v23(u, v) = 0.5arctan(u)arctan(v), εt independent of Ft−1 and

εt ∼ Uniform(−
√

3,
√

3).

The components of the volatility function are selected to satisfy conditions of Lu and

Jiang (2001) to ensure the geometric ergodicity (and, therefore, the strict stationarity) of

the process yt. Condition (B1) of Lu and Jiang (2001) reduces in the one-dimensional case

to the requirement that the growth rate in each coordinate must not exceed the linear one;

apparently, the product of arctan functions satisfies this condition. Based on this model,

we simulate 500 samples with sample size n = 500. For each realization of the ARCH

process, we apply the instrumental variable estimation procedure from Section (3.3) to

obtain estimates of vα(·) and vαβ(·), 1 ≤ α, β ≤ 3. Gaussian kernels are used for all of the

nonparametric estimates. We use one-dimensional Gaussian and product Gaussian kernel

to estimate density functions as well as additive and interactive components of the mean

and variance functions. Bandwidth g is selected according to the Gaussian rule of thumb

as g = cn−1/(l+4) where c = ( 4
l+2)1/(l+4) and l is the number of dimensions of the function

to be estimated. For example, l = 1 for any one-dimensional marginal density, l = 2 for

p̂αβ(yα, yβ), l = d for p̂(y), etc. (see, for example, Wand and Jones (1995)[47] for details).

The constant c is selected to ensure that the bandwidth g is asymptotically optimal in the

mean squared error sense under the assumption that the true density is Gaussian. The

same rule is used to select the second bandwidth h where l = 1 or l = 2 for additive and
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Table 1: AVERAGED MSE AND MAE FOR SIX VOLATILITY ESTIMATORS IN THE

UNIFORM DISTRIBUTION CASE
v1 v2 v3 v12 v13 v23

MSE 0.33 0.31 0.30 0.54 0.56 0.53

MAE 0.25 0.24 0.24 0.36 0.37 0.36

interactive components, respectively. To evaluate the performance of the estimators, the

mean squared error (MSE) and the mean absolute deviation error (MAE) are computed

for each simulated sample. They are defined as

MSE(vα) =

 1
101

101∑
j=1

[vα(xj)− v̂α(xj)]2


1/2

,

MSE(vαβ) =

 1
2601

2601∑
j=1

[vαβ(xj,1, xj,2)− v̂αβ(xj,1, xj,2)]2


1/2

,

MAE(vα) =
1

101

101∑
j=1

|vα(xj)− v̂α(xj)|,

MAE(vαβ) =
1

2601

2601∑
j=1

|vαβ(xj,1, xj,2)− v̂αβ(xj,1, xj,2)|,

1 ≤ α < β ≤ 3. In the above, {xj}101
j=1 is an equispaced grid on [−4, 4], and {xj,1}51

j=1 ×
{xj,1}51

j=1 is an equispaced grid on [−4, 4] × [−4, 4]. The grid range covers more than

99% of all observations in both one- and two- dimensions so very little information is lost.

Table (1) shows averages of MSE’s and MAE’s for all six components from 500 repetitions.

Figure (1) shows the averaged estimates of three additive components as well as the true

functions; the solid lines in red are the true curves and the dotted ones in black are the

estimates averaged over 500 repetitions. Figures (2) through (5) show the true surface

of the interactive components next to the estimates averaged over 500 simulations. In

general, the results show a very good fit for both additive and interactive components;

among interactive components, v12(·) and v23(·) seem to have been fit particularly well.

It can be clearly seen that the use of local polynomial regression eliminated boundary

effects to a great extent in both additive and interactive component estimation.

Example 2 Again, consider the model

yt =
√

4 + v1(yt−1) + v2(yt−2) + v3(yt−3) + v12(yt−1, yt−2) + v13(yt−1, yt−3) + v23(yt−2, yt−3)εt

19



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−4 −2 0 2 4

−
1.

0
0.

0
1.

0

X1

th
e 

1s
t c

om
po

ne
nt

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−4 −2 0 2 4
−

1.
0

0.
0

1.
0

X2

th
e 

2n
d 

co
m

po
ne

nt

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−4 −2 0 2 4

−
1.

0
0.

0
1.

0

X3

th
e 

3r
d 

co
m

po
ne

nt

Figure 1: Estimates of three additive components in example 1
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Figure 2: True surface of the interactive components in example 1
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Figure 3: Estimated surface of v12(·) in example 1
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Figure 4: Estimated surface of v13(·) in example 1
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Figure 5: Estimated surface of v23(·) in example 1

where

v1(u) = v2(u) = −v3(u) = 0.5sin(u)

v12(u, v) = v13(u, v) = v23(u, v) = 0.5arctan(u)arctan(v)

εt independent of Ft−1 and εt ∼ N(0, 1)

The previous example has the finitely supported error(innovation) distribution and this

may not be realistic enough in practice. Therefore, we are interested in testing the

performance of the method in case where the innovation distribution does not have

a compact support. Obviously, the most intuitive choice is the standard normal dis-

tribution. The grid ranges we chose are [−3.2, 3.2] in one-dimensional regressions and

[−3.2, 3.2] × [−3.2, 3.2] in two-dimensional ones. These ranges cover approximately 90%

and 80% of all observations, respectively. The averages of MSE’s and MAE’s for all the

six components from 500 repetitions are shown in table (2). Note that the performance

of the method does not seem to be any worse compared to the previous example. While

additive components seem to be estimated with slightly less precision, the opposite is

true when it comes to interactive components for either choice of the loss function. The

averaged estimates of six volatility components as well as the true ones are presented in
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Table 2: AVERAGED MSE AND MAE FOR SIX VOLATILITY ESTIMATORS IN THE

NORMAL DISTRIBUTION CASE
v1 v2 v3 v12 v13 v23

MSE 0.40 0.40 0.39 0.41 0.40 0.42

MAE 0.32 0.32 0.32 0.31 0.30 0.31
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Figure 6: Estimates of three additive components in example 2

figures (6) through (10).

6 Discussion

The additive-interactive model (4) represents a further step in the development of the

nonparametric volatility model theory. The article provides the instrumental variable

based algorithm that can be easily used to fit such a model. The algorithm is compu-

tationally efficient and easy to implement. At the same time, central limit theorems for

the estimators of the individual components are obtained and closed form expressions for

asymptotic biases and variances of these estimators are given.

Among several interesting questions that remain unanswered for now in the context

of the model(4) is the question of testing the statistical significance of individual additive

and interactive components. This is the question of obvious practical interest. It has some
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Figure 7: True surface of the interactive components in example 2
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Figure 8: Estimated surface of v12(·) in example 2
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Figure 9: Estimated surface of v13(·) in example 2
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Figure 10: Estimated surface of v23(·) in example 2
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prior history in the cross-sectional context. Specifically, a test that can handle the sepa-

rability hypothesis in the mean function under a specific alternative (inclusion of second

order interactions) for cross-sectional data had been proposed in Sperlich, Tjostheim and

Yang (2002)[42]. Consistent specification tests for nonparametric/semiparametric models

proposed in Li, Hsiao and Zinn (2003)[25] are designed for null models that may include,

among other possible nonparametric components, second order interactions. However,

not much is known about similar testing problems in the time series context. Note that

many of the modern applications are concerned with situations where the number of lags

d considered can be quite large. Even in the cross-sectional context, multicollinearity

among many different explanatory variables is very much a commonplace; in the time

series context, it is always the case. Therefore, multiple hypotheses testing is, probably,

much more important under these circumstances. For example, to test the separability

hypothesis in the mean(variance) function for model (4), it is necessary to test mαβ ≡ 0,

1 ≤ α < β ≤ d (vαβ ≡ 0, 1 ≤ α < β ≤ d, respectively). It may also be of interest to test

the null hypothesis that includes both additive and interactive components. Thus, the

design of the F-type tests here seems to be an important issue.
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