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Abstract

We are interested in modelling the time series process yt = σ(xt)ǫt, where ǫt=φ0ǫt−1 + vt.

This model is of interest as it provides a plausible linkage between risk and expected return of

financial assets. Further, the model can serve as a vehicle for testing the martingale difference

sequence hypothesis, which is typically uncritically adopted in financial time series models.

When xt has a fixed design, we provide a novel nonparametric estimator of the variance function

based on the difference approach and establish its limiting properties. When xt is strictly

stationary on a strongly mixing base (hereby allowing for ARCH effects) the nonparametric

variance function estimator by Fan and Yao (1998) can be applied and seems very promising.

We propose a semiparametric estimator of φ0 that is
√

T−consistent, adaptive, and asymptotic

normally distributed under very general conditions on xt.

1 Introduction

In this paper we consider estimation of a time series process with an unknown and possibly time

varying conditional variance function and serially dependent innovations. By allowing for depen-

dence in the innovation process, the model provides a plausible linkage between risk and expected

return of financial assets not previously analyzed. Furthermore, the model provides a vehicle for

testing the martingale difference sequence hypothesis, which is typically uncritically assumed in

financial time series models, such as ARCH and GARCH.

We characterize the estimated parameters of the serially correlated innovation process as a so-

lution to a weighted least squares (WLS) problem, where the weights are given by a nonparametric

estimator of the conditional variance function. This semiparametric estimator belongs to the class
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of so-called MINPIN estimators. By using the framework of Andrews (1994) the asymptotic prop-

erties of the estimated parameters in the innovation process can be established under very general

conditions. If the regressors entering the variance function are strictly stationary on an α-mixing

base, the nonparametric estimator of the variance function suggested by Fan and Yao (1998) can

be used. However, if the design is fixed, a new and in some cases more efficient nonparametric esti-

mator is proposed and its asymptotic properties are established. Based on simulation experiments

we show that under a fixed design this novel estimator has better small sample properties than the

one proposed by Fan and Yao (1998).

2 The model

Consider the following process for the time series of interest denoted yt ∈ R, t = 1, 2, ..., T where

yt = σtǫt, (1)

ǫt = φ0ǫt−1 + vt. (2)

Furthermore, assume i) vt ∼ i.i.d. (0, 1) , E
(
|vt|l+γ

)
< ∞ for l = 1, ..., 4 and for some γ > 0, ii)

φ0 ∈ Θ = (−1, 1), iii) σ2
t ≡ σ(xt)

2 ∈ F = C2[0, 1], P
(
σ2

t > 0
)

= 1 for all t = 1, 2, ..., T, and finally

iv) ǫt is a strongly mixing sequence with mixing coefficient equal to − (1 + 2/δ) for δ > 0. σ2
t

(denoted also as σ2) will be refered to as the variance function although strictly speaking it does

not fully describe the variance structure of the model whenever φ0 6= 0. It should be noticed that

the model given by (1)-(2) belongs to the general class of function coefficient autoregressive (FAR)

models, as can be seen from the following simple re-parameterization

yt = σtσ
−1
t−1φ0yt−1 + σtvt.

Here, the functional autoregressive coefficient is given by the term g(xt; φ0) = σtσ
−1
t−1φ0. This

coefficient is allowed to be numerically larger than unity for certain values of t, and during these

periods yt will exhibit explosive behavior. A second important feature of the model is that an

increase in the variance will have a positive (negative) effect on the conditional expectation of yt

provided that φ0 is positive (negative). If yt are observations on a return series associated with

a risky asset, this feature can be interpreted as a tradeoff between risk and expected return. The

size and direction of such a tradeoff is of great importance in asset pricing theory and can easily

be quantified using our approach. It is important to note that φ0 6= 0 implies that the estimator

of var(yt|xt, xt−1, yt−1) generally will be inconsistent, if based on residuals from a least squares

regression of yt on yt−1, due to the time varying properties of the autoregressive coefficient. This

potential source of inconsistency has often been ignored (e.g., when estimating (G)ARCH models),

due to uncritical adoption of the assumption that the innovation process is a martingale difference

sequence. As a by-product of our analysis, a simple parametric test of the martingale difference

hypothesis, i.e., φ0 = 0, is proposed that enables the researcher to avoid this potential pitfall. Our

main interest, however, is in the estimation of σ2
t and φ0. We will proceed under the following two

alternative assumptions regarding the regressor xt:
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• Case 1: xt has a fixed design on the unit interval.

• Case 2: xt is a strictly stationary process with an α−mixing base.

Note that Case 2 encompasses the situation where xt = yt−1, hence allows for the presence of

ARCH effects. The estimation procedure is simple and consists of two stages: In the first stage the

estimator of σ2
t - denoted σ̂2

t - is obtained. Secondly, a semiparametric estimator of φ0 is computed

using weighted least squares, where the weights are constructed using σ̂2
t . This semiparametric

estimator belongs to the class of MINPIN estimators introduced by Andrews (1994). In Case 1

we propose a novel nonparametric estimator based on the difference approach, which turns out

to have nice asymptotic properties and is very easy to handle computationally. In Case 2 the

estimator proposed by Fan and Yao (1998) seems promising. We begin, however, by characterizing

the asymptotic properties of the MINPIN estimator.

3 Characterization of φ̂ and its asymptotics

Consider the objective function d (σt, σt−1; φ) = m (σt, σt−1; φ)
2
, where

m (σt, σt−1; φ) = σ−1
t σ−1

t−1ytyt−1 − σ−2
t−1φy2

t−1 = vtǫt−1. (3)

Since d (σt, σt−1; φ) is unobservable (as σt is unknown), a GMM estimator of φ0 can be defined as

the minimizer of the sample analog of E (d (σt, σt−1; φ)), i.e.,

φ̂ = argmin
φ∈Θ

(2T )−1
T∑

t=2

d (σ̂t, σ̂t−1; φ) =

(
(1/T )

T∑

t=2

σ̂−2
t−1y

2
t−1

)−1(
(1/T )

T∑

t=2

σ̂−1
t σ̂−1

t−1ytyt−1

)
. (4)

Before characterizing the asymptotic properties of φ̂, the following regularity conditions on m (σt, σt−1; φ)

and its derivative need to be established.

Lemma 1 mt(σ; φ) = m (σt, σt−1; φ) is twice continuously differentiable in φ on Θ, ∀σ ∈ F and

∀t ≥ 1. mt(σ; φ) and (∂/∂φ)mt(σ; φ) satisfy a uniform WLLN on Θ × F . Moreover, m (σ; φ) =

limT→∞ (1/T )
∑T

t=2 E (m (σt, σt−1; φ)) and M = limT→∞ (1/T )
∑T

t=1 E (∂mt(σ; φ)/∂φ) exist uni-

formly over Θ ×F and are continuous at (σ, φ0) with respect to some pseudo-metric on Θ ×F for

which
(
σ̂, φ̂

)
p−→ (σ, φ0) .

Proof of Lemma 1 We will begin by verifying that mt = mt(σ; φ) satisfies a uniform WLLN on

Θ×F following Andrews (1987): Assumption A1 in Andrews (1987) is trivially satisfied. Assumption

A2 is satisfied since mt = vt

∑∞
i=0 φivt−1−i and consequently mt

p−→ 0 uniformly on the interior of

Θ×F (not only locally in a closed ball around φ). Next, define m∗
t = mt

(
σ∗

t , σ∗
t−1; φ

∗) and consider

|m∗
t − mt| =

∣∣∣∣∣vt

∞∑

i=0

φ∗ivt−1−i − vt

∞∑

i=0

φivt−1−i

∣∣∣∣∣ ≤

√√√√
∞∑

i=0

φ2iv2
t−1−iv

2
t

√√√√
∞∑

i=0

(
φ∗i − φi

φi

)2

.
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By letting bt(vt, vt−1, φ) =
√∑∞

i=0 φ2iv2
t−1−iv

2
t and ρ (φ∗, φ) =

√
∑∞

i=0

(
φ∗i−φi

φi

)2

this implies that

sup
T

(1/T )

T∑

t=2

E bt(vt, vt−1, φ) ≤ sup
T

(1/T )

T∑

t=2

√√√√E

( ∞∑

i=0

φ2iv2
t−1−iv

2
t

)
=

√
1

1 − φ2
,

and ρ (φ∗, φ) ↓ 0 as φ∗ → φ. Consequently, Assumption 4 in Andrews (1987) holds and accordingly

(using Corollary 2 in Andrews (1987)) we can conclude that mt satisfies the uniform WLLN over

Θ × F . Next, note that ∂mt/∂φ = vt

∑∞
i=0 φivt−2−i. Using similar steps as above it follows

straightforwardly that also for ∂mt/∂φ Assumptions A1, A2, and A4 in Andrews (1987) apply, hence

it satisfies the UWLLN uniformly on Θ×F . As mt and ∂mt/∂φ do not depend on σt, Corollary 2 in

Andrews (1987) also establishes uniform continuity of m = limT→∞ (1/T )
∑T

t=1 E (mt(φ, σt)) and of

M = limT→∞ (1/T )
∑T

t=1 E (∂mt/∂φ) = 1/
(
1 − φ2

)
. Finally, notice that mt is twice differentiable

in φ uniformly on Θ which completes the proof.�

Immediately the following asymptotic results can be established.

Theorem 1 Let data be generated according to the model (1)-(2) under Assumptions i)-iv) with

xt defined as in Case 1 or Case 2. Let σ̂2
t be a nonparametric estimator of σ2

t and suppose 1)

supφ∈Θ

∥∥σ̂2
t − σ2

t

∥∥ p−→ 0 for some σ2
t ∈ F and 2) P (σ̂2

t ∈ F)
p−→ 1. Then φ̂

p−→ φ0.

Proof of Theorem 1 In addition to the requirements 1) and 2), the consistency result requires

uniform continuity of dt = d (σt, σt−1; φ) and the existence of a unique minimizer of d (σt, σt−1; φ),

see, e.g., Theorem A-1 in Andrews (1994). Uniform continuity of dt follows directly from Lemma

1 as sup(φ,σ)∈Θ×F ‖m (σ; φ)‖ = 0. The existence of a unique minimizer of dt on Θ follows from the

compactness of Θ, continuity of dt, and since ∂2dt/ (∂φ)
2

=
(
σ−2

t−1y
2
t−1

)2
> 0.�

To establish asymptotic normality of φ̂ define mT (σ; φ) = (1/T )
∑T

t=1 m (σt, σt−1; φ) . The regularity

conditions on m (σt, σt−1; φ) , established by Lemma 1, allow a mean value expansion of
√

TmT (σ̂; φ̂)

about φ0 given as

√
TmT (σ̂; φ̂) =

√
TmT (σ̂; φ0) +

∂

∂φ
mT (σ̂; φ∗)

√
T
(
φ̂ − φ0

)
, (5)

where φ∗ lies between φ̂ and φ0. There are basically 3 steps involved to establish the asymptotic

normality of
√

T
(
φ̂ − φ0

)
. If a) limT→∞(∂/∂φ)mT (σ̂; φ∗)

p−→ M, where M is given by Lemma 1

then √
T
(
φ̂ − φ0

)
= −M−1

(
op(1) +

√
TmT (σ̂; φ0)

)
, (6)

since
√

TmT (σ̂; φ̂) = op(1), where φ̂ solves the first order condition mT (σ̂; φ̂) = 0 and φ̂ belongs

to the interior of Θ wp→1. Consequently, the asymptotic normality of
√

T
(
φ̂ − φ0

)
follows if

b)
√

TmT (σ; φ0) is asymptotically normally distributed and c)
√

T (mT (σ̂; φ0) − mT (σ; φ0))
p−→
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0. Let m∗
T (σ; φ) = (1/T )

∑T
t=1 E (m (σt, σt−1; φ)) and υT (σ) =

√
T ((1/T )

∑T
t=1 m (σt, σt−1; φ) −

m∗
T (σ; φ)) such that

√
T (mT (σ̂; φ0) − mT (σ; φ0)) = υT (σ̂) − υT (σ) −

√
Tm∗

T (σ̂; φ) .

Then, condition c) is true if υT (σ̂) is stochastic equicontinuous at σ and
√

Tm∗
T (σ; φ)

p−→ 0. In

what follows we first show that
√

Tm∗
T (σ; φ)

p−→ 0 (Lemma 3). Based on this result, it is relatively

easy to show that condition b) holds (Lemma 5).

Lemma 2 Given the assumptions of the model (1)-(2),
√

TmT (σ̂; φ0)
p−→ 0 in Case 1 and 2.

Proof of Lemma 2 Note that for any ǫ > 0

√
Tm∗

T (σ̂; φ0) =
√

Tm∗
T (σ; φ0) 1 (ρF(σ̂, σ) ≤ ǫ) |σ=bσ +

√
Tm∗

T (σ̂; φ0) 1 (ρF (σ̂, σ) > ǫ) ,

where ρF (σ̂, σ) is a pseudometric defined on F . As E (m (σt, σt−1; φ0)) = 0 uniformly on F , it follows

that
√

Tm∗
T (σ̂; φ0) = 0 + op(1) where the last term is a result of consistency of σ̂ with respect to

σ.�

Lemma 3 Define υT (σ) =
√

T
(
(1/T )

∑T
t=1 m (σt, σt−1; φ) − m∗

T (σ; φ)
)

. Then, υT (σ)
d−→ N

(
0, 1/

(
1 − φ2

))

in Case 1 and 2.

Proof of Lemma 3 It follows from Lemma 2 that υT (σ) = 1√
T

∑T
t=1 vtǫt−1 + op(1) where vtǫt−1

is a martingale difference sequence with an α−mixing base (given by current and lagged values of

vt) defined uniformly on Θ×F with finite variance var(vtǫt−1) = 1/
(
1 − φ2

)
. The result of Lemma

3 then follows in a straightforward manner from, e.g., Theorem 7.11 in Bierens (2005).�

Before showing that υT (σ̂) is stochastic equicontinuous we need the following result.

Lemma 4 Given the assumptions of the model (1)-(2), T−1/2
∑T

t=2 ǫ2t−1 = Op(1) in Case 1 and

2.

Proof of Lemma 4 Define an increasing sequence of σ−fields as Ft=σ((yt, xt), (yt−1, xt−1) ,...,

(y1, x1)) such that
{
ǫ2t , Ft

}
t

is an adaptive stochastic sequence. Since E
(
ǫ2t
)

= 1/
(
1 − φ2

)
< ∞,

then {Zt, Ft}t for Zt = ǫ2t − E
(
ǫ2t |Ft−1

)
is a martingale difference sequence on an α-mixing base.

Furthermore, note that

E
(
Z2

t

)
= E

((
v2

t − 1 + 2φvtǫt−1

)2)
= E

(
v4

t

)
+ 4φ2/

(
1 − φ2

)
− 1 < ∞,

since E
(
v4

t

)
= µ4 < ∞ by Assumption ii) and due to independence of vt and ǫt−1. Consequently, it

follows from, e.g., Theorem 7.11 in Bierens (2005) that
√

T
∑T

t=2 Zt
d−→ N

(
0, E

(
Z2

t

))
. The desired

result follows from strict stationarity of ǫ2t and since E
(
Z2

t

)
< ∞.�
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Lemma 5 Let υT (·) be defined as in Lemma 3. Then, υT (σ̂) is stochastic equicontinuous at σ.

Proof of Lemma 5 Write m (σt, σt−1; φ) = S
′
tτ where

St =

[
ytyt−1

φy2
t−1

]
=

[
σtσt−1φǫ2t−1 + σtσt−1vtǫt−1

φσ2
t−1ǫ

2
t−1

]
,

and τ =
(
σ−1

t σ−1
t−1, σ

−2
t−1

)′
. Let ρF (·, ·) be the Euclidian metric and note that

lim
T→∞

P

(
sup

ρF (bσ,σ)<δ′

|υT (σ̂) − υT (σ)| > η

)
= lim

T→∞
P

(
sup

ρF (bσ,σ)<δ′

∣∣∣∣∣T
−1/2

T∑

t=2

(
St − E (St)

′
(τ̂ − τ)

)
∣∣∣∣∣ > η

)

≤ lim
T→∞

P

(
sup

ρF (bσ,σ)<δ′

∥∥∥∥∥T
−1/2

T∑

t=2

St − E (St)

∥∥∥∥∥ > η/δ′

)

→ 0,

provided that a) T−1/2
∑T

t=2 (St − E (St)) = Op(1) and b) δ′ is sufficiently small. In Case 1, con-

dition a) is satisfied from the results of Lemmas 3 and 4 (implying that T−1/2
∑T

t=2 vtǫt−1 = Op(1)

and T−1/2
∑T

t=2 ǫ2t−1 = Op(1)) and because 0 < σ2
t < ∞ for all t. In Case 2, use T−1/2

∑T
t=2 ǫ2t−1 =

T−1/2
∑T

t=2 σ−2
t y2

t−1 = Op(1). It then follows that

max
1<j≤T

(
σ2

j

)
T−1/2

T∑

t=2

y2
t−1 ≤ T−1/2

T∑

t=2

σ−2
t y2

t−1 = Op(1),

hence T−1/2
∑T

t=2 y2
t−1 = Op(1). Furthermore,

T−1/2
T∑

t=2

ytyt−1 = φT−1/2
T∑

t=2

σtσ
−1
t−1y

2
t−1 + T−1/2

T∑

t=2

σtσt−1vtǫt−1 = Op(1),

due to the previous established result and since σtσt−1vtǫt−1 is a martingale difference sequence on

an α−mixing base with bounded variance, i.e.,

E
(
σ2

t σ2
t−1v

2
t ǫ2t−1

)
≤ max

t

(
σ2

t σ2
t−1

) (
1 − φ2

)−1
< ∞,

as σ2
t σ2

t−1 is bounded. Consequently, it can be concluded that υT (σ̂) is stochastic equicontinuous at

σ. Condition b) is trivially satisfied due to consistency of σ̂2
t with respect to σ2

t .�

Theorem 2 Let the Assumptions of Theorem 1 hold. Then, under Case 1 and 2,
√

T
(
φ̂ − φ0

)
d−→

N
(
0, 1 − φ2

0

)
.
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Proof of Theorem 2 Consider the mean value expansion given by (5). From Lemma 1 we have

that ∂
∂φmT (σ̂; φ∗)

p−→ (1 − φ2
0)

−1. The results of Lemma 2 and 5 imply that
√

TmT (σ̂; φ0) and

vT (σ) =
√

TmT (σ; φ0) are asymptotically equivalent and that their asymptotic distribution (from

Lemma 3) is given by N
(
0, (1 − φ2

0)
−1
)
. Consequently,

√
T
(
φ̂ − φ0

)
= −

(
1 − φ2

0

) (
op(1) + N

(
0, (1 − φ2

0)
−1
))

= N
(
0, (1 − φ2

0)
)

+ op(1),

which completes the proof.�

Theorem 2 gives conditions under which φ̂ is not dependent on the estimator of σ2
t asymptotically and

is asymptotically equivalent to the maximum likelihood estimator of φ0 given that ǫt is observable.

Consequently, the φ̂ is asymptotically efficient. In addition, since φ̂ is an efficient estimator of φ0

and φ0 is the only unknown parameter in the model, the estimator is adaptive, see, e.g., Andrews

(1994, p. 59). Finally, it is noteworthy that φ̂, as many semiparametric estimators, converge to φ0

at the parametric
√

T− rate.

4 Asymptotics of the variance function estimators

To characterize the asymptotic properties of the variance function estimator we will use the asymp-

totic mean squared error (AIMSE), which consists of the first two terms of a Taylor expansion of

integrated mean squared error given as IMSE =
∫ 1

0 E (σ̂2
t − σ2

t )2 dt. The minimal value of AIMSE

achieved at the optimal (minimizing) bandwidth is referred to as AIMSEo.
1

4.1 Case 1: The difference based estimator

Following the so-called difference sequence based approach by Hall et al. (1990) and Levins (2003),

we define ηt = (1/2)
−1/2

(yt − yt−2) and consider the local linear estimator σ̂2
t = σ̂2 (xt) given as â

that solves the problem

(â, b̂) = argmin
a,b

T∑

t=3

(
η2

t − a − b(xt − x)
)2

Kh(xt − x), (7)

where Kh(·) is a kernel function. The choice of ηt is motivated by the observation that for any

stationary AR(1) time series process the difference between the variance, γ0 = var(ǫt), and the co-

variance, γ2 = cov(ǫt, ǫt−2), equals unity. We use this property to establish the following consistency

result.

1The following notation will be used: Dkf(t) = dkf(t)/ (dt)k .
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Theorem 3 Let data be generated according to the model (1)-(2) under Case 1. Suppose that

K(u) is a second order non-negative kernel function satisfying: K(u) ≥ 0 for any u ∈ [−1, 1],

µ1 =
∫

K(u) du = 0, σ2
K ≡ µ2 =

∫
u2K(u) du 6= 0, and RK =

∫
K(u)2 du. Then, the estimator

given by (7) is consistent in mean square with convergence rate O(T−4/5). Furthermore, the optimal

(in the sense of Parzen (1962) and Rosenblatt (1956)) bandwidth is h = O(T−1/5).

Proof of Theorem 3 From (7), E
(
σ̂2

t

)
= e

′(X ′
WX/T )−1

X
′
W E

(
η2

t

)
/T, where e = (1, 0)′,

W=diag(Kh(x1−x),. . . ,Kh(xT −x)) for Kh(·) = h−1K (·/h) , and a typical row of X is (1, (x−xt)).

Existence of two continuous derivatives of σ2
t guarantees that σ2

t = σ2 − Dσ2(x − xt) + D2σ2(x −
xt)

2/2 + o(h2). Writing η2
t = 1

2

(
σ2

t ǫ2t + σ2
t−2ǫ

2
t−2 − 2

√
σ2

t σ2
t−2ǫtǫt−2

)
, using the expansions for σ2

t

and σ2
t−2, and the fact that

√
1 + x = 1 + x/2 + o(x) for small x gives

E
(
η2

t

)
= (γ0 − γ2)σ

2 − γ0Dσ2[(x − xt) + (x − xt−2)]/2 (8)

+γ0D
2σ2[(x − xt)

2 + (x − xt−2)
2]/2 + γ2Dσ2[(x − xt) + (x − xt−2)]/2

−γ2D
2σ2[(x − xt)

2 + (x − xt−2)
2]/4 − γ2(Dσ2)2(x − xt)(x − xt−2)/σ2 + o(h2),

where cov(ǫt, ǫt−l) ≡ γl. Defining sr (x; h) = T−1
∑

t(x − xt)
rKh(x − xt) and sr,m (x, h) =

T−1
∑

t(x−xt)
r(x−xt−2)

mKh(x−xt) and noticing that sr (x; h) = sr−1,1 (x, h) = hr
∫ 1

−1
urK(u)du+

O(T−1) implies

(X ′
WX/T )−1 =

[
1 + O(T−1) O(T−1)

O(T−1) h2σ2
k + O(T−1)

]−1

.

In addition, as the first entry in X
′
W E

(
η2
)
/T equals

(
X

′
W E

(
η2

t

)
/T
)
1

= σ2 +
[
D2σ2/4 − γ2(Dσ2)2/σ2

]
h2σ2

K/2 + o(h2) + O(T−1),

it follows that Bias
(
σ̂2

t

)
=
[
D2σ2/4 − γ2(Dσ2)2/σ2

]
h2σ2

K/2 + o(h2) + O(T−1). Using similar tech-

niques, the variance of σ̂2
t can be found as

var
(
σ̂2

t

)
= RKC(φ0)σ

4 (Th)
−1

+ o((Th)
−1

), (9)

where C(φ) is a constant that depends on φ0 only. Finally, the optimal bandwidth can be found to

be

h = T−1/5

(
C(φ0)RK

∫
σ4

t dt

)1/5

/

(
σ4

K

∫ [
D2σ2

t /4 − γ2(Dσ2
t )2/σ2

t

]2
dt

)1/5

, (10)

and consequently

AIMSEo = (5/4)T−4/5

(
RKC(φ)

∫
σ4

t dt

)4/5(
σ4

K

∫ [
D2σ2

t /4 − γ2(Dσ2
t )2/σ2

t

]2
dt

)1/5

.

Hence, the optimal AIMSE is of the order O
(
T−4/5

)
and the variance estimator σ̂2

t converges in

the mean square (pointwise), i.e., E [(σ̂2
t − σ2)2] = O

(
T−4/5

)
hereby completing the proof.�
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A few remarks are in order here. First, note that the quadratic functional

∫ 1

0

[
D2σ2

t /4 − γ2(Dσ2
t )2/σ2

t

]2
dt, (11)

characterizes the degree of curvature of the function σ2
t corrected for the correlation present in the

data. The larger the expression in (11), the smaller the bandwidth we have to choose. Secondly,

the rates of convergence are identical to those obtained for the kernel regression estimator of the

mean function under identical smoothness requirements, see, e.g., Simonoff (1996). Thirdly, as an

immediate consequence of Theorem 3, Dkσ̂2
t

p−→ Dkσ2 for any positive integer k. In addition to the

result of Theorem 3, these results are very useful in obtaining consistency of φ̂ as they imply that

conditions a) and b) in Theorem 1 hold. Finally, notice that since σ̂2
t converges in L2-sense, it also

converges in probability at the rate Op

(
1/

√
Th
)
.

Theorem 4 Let the Assumptions of Theorem 1 hold. Then,

σ̂2
t

d−→ N
(
E
(
σ̂2

t

)
, var

(
σ̂2

t

))
, (12)

as T → ∞, h → 0 and Th → ∞ , where E
(
σ̂2

t

)
= σ2

t + Bias
(
σ̂2

t

)
and where the expression of bias

and variance of σ̂2
t are as given in the proof of Theorem 3.

Proof of Theorem 4 Since σ̂2
t can be written as a partial sum process, i.e., σ̂2

t =
∑T

i=3 aT (xi, xt) η2
i

where,

aT (xt; x) = T−1 (s2(x; h) − s1(x; h)(xt − x)) Kh(xt − x)

s2(x; h)s0(x; h) − s1(x; h)2
,

asymptotic normality of σ̂2
t can be shown using Theorem 2.2.(c) in Peligrad and Utev (1997). First,

the ”kernel function” aT (xt, x) must satisfy (2.1) in Peligrad and Utev (1997), which consists of two

conditions: 1) it requires that max1≤t≤T |aT (xt; x)| → 0 as T → ∞. This follows immediately from

the fact that a) the kernel function K(·) has bounded support and b) its first moment is equal to

zero. Indeed, asymptotically as h → 0, T → ∞, and Th → ∞, s2(x; h)s0(x; h) − s1(x; h)2 → h2σ2
K

and the same is true of s2(x; h) − s1(x; h)(xt − x). Therefore, the entire coefficient asymptotically

behaves as K
(

xt−x
h

)
/Th and therefore max1≤t≤T K

(
xt−x

h

)
/Th → 0 as T → ∞ and Th → ∞, as

desired. 2) it requires that supT

∑
a2

T (xt; x) < ∞. To establish that this condition holds just note

that asymptotically a2
T (xt; x) = (K((xt − x)/h))2 /(Th)2. As the support of the kernel function

K(·) is bounded, the infinite sum of a2
T (xt; x) will converge and we can conclude that the entire

(2.1) in Peligrad and Utev (1997) holds. Next, condition (2.2) in Peligrad and Utev (1997) needs

to be verified: Uniform integrability of η4+γ
t for some γ > 0 follows directly from Shiryaev (1996),

with G(t) = t4+γ for γ > 0 such that limt→∞ G(t)/t = ∞ and supt E
(
|ηt|4+γ

)
< ∞. The last

condition is due to boundedness of σ2 and since E |vt|4+γ < ∞. The remaining conditions of

Theorem 2.2.(c) are easily established : η2
t is strongly mixing as it is a measurable function of the

strongly mixing process ǫt and inft var
(
η2

t

)
> 0 follows from the assumption that σ2

t > 0 for ∀t.

Finally,
∑

t α(t)t2/δ < ∞ follows as ǫt, and therefore - by assumption - η2
t , has mixing coefficient

equal to − (1 + 2/δ) .�
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Table 1: Alternative data generating processes. ϕ(·) is the standard normal c.d.f.

Specifications

Model 1 yt =
√

0.1 + 0.5x2
t ǫt

Model 2 yt =
√

0.4 exp(−2x2
t ) + 0.2ǫt

Model 3 yt =
√

ϕ(xt + 1.2) + 1.5ϕ(xt − 1.2)ǫt

4.2 Case 2: The Fan and Yao estimator

Here the variance function estimator suggested by Fan and Yao (1998) seems natural to employ with

E(yt|xt) = φ0yt−1σ(yt−1)/σ(yt−2) and var(yt|xt) = σ(yt−1)
2. Under conditions similar to the ones

assumed in relation to the model given by (1) - (2), Fan and Yao prove consistency and asymptotic

normality of the estimators of E(yt|xt) and var(yt|xt), denoted ât and α̂t, respectively, and given as

(ât, b̂t) = arg min
at,bt

T∑

s=3

(ys − at − (xs − xt)bt)
2
K1

h1
(xs − xt) , (13)

(α̂t, β̂t) = arg min
αt,βt

T∑

s=3

(
r̂2
s − αt − (ys−1 − yt−1)βt

)2
K2

h2
(ys−1 − yt−1) , (14)

where r̂t = yt − ât and K1
h1

(·), K2
h2

(·) are kernel functions. It should be noticed that the Fan and

Yao variance function estimator also works in Case 1. However, in this case xt = (xt, xt−1, yt−1)

and convergence can be expected to be relatively slow. The finite sample efficiency relative to the

difference based estimator in Case 1 might also be affected adversely by bandwidth selection which

has to be performed twice.

5 Simulations

In this section properties of the estimators σ̂2
t and φ̂ are studied using simulations. We consider

the data being generated by the model (1)−(2) for alternative choices of variance functions and for

various values of φ0. The specification of σ2
t in Model 1 is a leading example in econometrics/statistics

and can generate ARCH-effects when xt = yt−1. Model 2 is adapted from Fan and Yao (1998). In

particular, the choice of σ2
t is identical to the variance function in their Example 2. The variance

function in Model 3 is from Haerdle and Tsybakov (1997). When xt is i.i.d. U(0, 1) (Case 1) we

refer to the models in Table 1 as Models 1-3 respectively. When xt = yt−1 (Case 2) we refer to the

models in Table 1 as Models 1e - 3e. We consider first the precision of the nonparametric estimator

using

MSE
(
σ̂2

t

)
=

1

M

M∑

s=1

(
(1/T )

T∑

t=1

(
σ̂2

t,s − σ2
t,s

)2
)

, (15)

where M denotes the number of Monte Carlo replications, T equals the sample size, and σ̂2
t,s is

the nonparametric estimator of σ2
t,s at time t based on the sth Monte Carlo replication. In Figure

10



Figure 1: MSE from the difference based variance function estimator (solid line) and the Fan-Yao

estimator (dotted line) under alternative variance function specifications and alternative values of

φ0. T = 1000 and the number of Monte Carlo replications equals 1000.
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1 the MSE based on the difference estimator and the Fan and Yao (1998) estimator (hereafter,

Fan-Yao estimator) are compared for the specifications of σ2
t given in Table 1 (Case 1 and Case 2)

and alternative values of φ0.

Bandwidths for the simulation experiments are chosen such that MSE
(
σ̂2

t

)
is minimized based on

appropriate training data set which is feasible because the true data generating process is known.

This procedure is adapted to minimize uncertainty related to bandwidth selection.2 Figure 1 illus-

trates that for numerically small values of φ0 the two estimators perform approximately equally well

in Case 1. However, for values of φ0 > 0.7 the difference estimator of σ̂2
t is clearly more efficient that

the Fan-Yao estimator. In Case 2, we have included the difference estimator for easy comparison.

We would expect the Fan-Yao estimator to be relative efficient, which is also the case under Model

2e. However, when applied to Model 1e and Model 3e the differences are negligible for small values

of φ0. In Model 3e the difference estimator actually outperforms the Fan-Yao estimator for larger

values of φ0. This may be due to the simplicity of the difference estimator, however, caution is

needed when interpreting these results as the asymptotic properties of the difference estimator are

unknown under Case 2.

Finally, we consider the sample density of n̂T =
√

T
(
φ̂ − φ0

)
/
√

1 − φ2
0, which according to

Theorem 2 should converge to a standard normal density. In Figure 2 the density of n̂T for each of

the Models 1-3 and 1e-3e based on T = 1000 and φ0 = 0.5 is depicted together with the standard

normal density. From the illustration, it is clear that the simulation results confirm the prediction

2For empirical applications, bandwidths could be chosen using either the approach suggested by Fan and Gijbels

(1995) or plug-in methods as the asymptotic variance function of both nonparametric estimators is known.
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Figure 2: Finite sample (simulated) densities and the asymptotic density of
√

T
(
φ̂ − φ0

)
/
√

1 − φ2
0

under alternative variance function specifications for T = 1000 and φ0 = 0.5. Solid line: N(0, 1).

Dashed Line: Fan-Yao. Dotted line: Difference based. The number of Monte Carlo replications

equals 1000.
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of Theorem 2. No severe small sample biases seem to be present in any of the pictures and the small

sample approximation to the standard normal in general seems to be very good.

6 Conclusion

We introduce and analyze a model that has at least two important implications for research in

empirical finance. First, it provides a plausible linkage between risk and expected return of financial

assets. Secondly, it can serve as a vehicle for testing the martingale difference sequence hypothesis

which typically is uncritically adopted in financial time series models. Under general conditions,

we discuss how to estimate the model and establish the asymptotic properties of the proposed

estimators. It is important to stress that the present analysis has been limited to a very simple

dependence structure in the innovation process. Allowing for a general ARMA structure would be

a natural extension and we conjecture that similar results can be obtained. In particular, it is very

likely that the difference approach will produce a nonparametric estimator that is inconsistent up to

a multiplicative constant and consequently the MINPIN estimators based on WLS will be unaffected

asymptotically. Furthermore, if the multiplicative constant depends on the MINPIN parameters,

bias-correcting the initial nonparametric estimator will be straigtforward. Research addressing these

possible extensions is ongoing.
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