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Overview

• Mass spectrometry imaging collects chemical profiles across the surface of a tissue
• Few statistical methods exist for analysis of such data, and few software provide statistical tools

• We provide a unified software framework for clustering and classification based on nearest
shrunken centroids (Tibshirani et al. 2002) and spatially-aware clustering (Alexandrov & Kobarg
2011) which uses statistical regularization to automatically identify important masses
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Figure 1: (A) DESI mass spectra being collected from a painting of a cardinal. (B) Image segmentation that reconstructs
the painting via clustering based on the mass spectra. (C) Mass spectrum of a pixel located in the body of the bird, being
viewed in the CARDINAL software. (D) Ion image being viewed in the CARDINAL software of the mass feature at m/z
649.08, showing the spatial distribution of that mass. GUI allows rich interaction with dataset.

Results

Mouse Brain

• MALDI spectra with intact proteins acquired from a mouse brain

• The mass spectra were TIC normalized, smoothed, baseline corrected, and peak picked

• 2 clusters chosen with an average of 5 (of 31) mass features selected per cluster
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Figure 2: (A) Optical image of the brain tissue showing the morphology. (B) The segmentation for initial parameters
k = 5, s = 6 yields 2 clusters (red and light blue) showing the structure of the brain. Opacity is used to indicate the probability
of a pixel belonging to a cluster. Note that this segmentation has a high degree of uncertainty (seen by the low opacity). (C)
The mass feature most associated with the light blue cluster by t-statistic at m/z 9984. (D) The mean mass spectrum of the
light blue cluster, showing the 5 (of 31) mass features selected that are important in distinguishing the light blue cluster. (E)
The t-statistics associated with the selected masses, showing m/z 9984 as the highest (most co-localized) with the light blue
cluster. (F) The resulting number of clusters for different initializations of the sparsity parameter s and the initial number of
clusters k. Notice that it stabilizes at 2 or 3 clusters around s = 6.

Pig Fetus

• DESI spectra acquired from a pig fetus cross-section

• The mass spectra were TIC normalized and peak picked

• 11 clusters chosen with an average of 88.4 (of 255) mass features selected per cluster
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Figure 3: (A) Optical image of the pig fetus section. (B) The segmentation for initial parameters k = 20, s = 8 yields 11
clusters showing the anatomy of the pig fetus. Opacity is used to indicate the probability of a pixel belonging to a cluster.
Note that this segmentation has a low degree of uncertainty (seen by the high opacity). (C) The mass feature most associated
with the “heart” cluster (dark blue) by t-statistic at m/z 187.33. (D) The mean mass spectrum of the “heart” cluster, showing
the 29 (of 255) mass features selected that are important in distinguishing the “heart” cluster. (E) The t-statistics associated
with the selected masses, showing m/z 187.33 as the highest (most co-localized) with the “heart” cluster. (F) The resulting
number of clusters for different initializations of the sparsity parameter s and the initial number of clusters k. Notice that it
stabilizes after s = 4 and compeletely equalizes after s = 8.

Farmhouse Painting

• DESI spectra acquired from the pigments in an artistic farmhouse painting set a slide

• The mass spectra were TIC normalized and peak picked

• 14 clusters chosen with an average of 60.4 (of 181) mass features selected per cluster
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Figure 4: (A) Optical image of the farmhouse painting. (B) The segmentation for initial parameters k = 20, s = 8 yields
14 clusters that reconstructs the painting. Opacity is used to indicate the probability of a pixel belonging to a cluster. Note
that this segmentation has a low degree of uncertainty (seen by the high opacity). (C) The mass feature most associated with
the “house” cluster (red) by t-statistic at m/z 277.16. (D) The mean mass spectrum of the “house” cluster, showing the 35 (of
181) mass features selected that are important in distinguishing the “house” cluster. (E) The t-statistics associated with the
selected masses, showing m/z 277.16 as the highest (most co-localized) with the “house” cluster. (F) The resulting number
of clusters for different initializations of the sparsity parameter s and the initial number of clusters k. Notice that it stabilizes
after around s = 4.

Classification
• DESI spectra from 8 matched pairs of kidney tumor and normal tissue

• The mass spectra were TIC normalized and binned to unit resolution

• Performed cross-validation with spatial sparse classification based on nearest shrunken centroids
using smoothing radius r = 0, 1, 2, 3 and sparsity parameter s = 0, 2, 4, 6, 8, 10, 12

• 8-fold cross-validation used to select the best parameters for prediction

• Cross-validated misclassification rate of 0.078% for smoothing radius r = 2 and sparsity parameter
s = 10, using only 151 out of the 849 binned mass features.

• The t-statistics can be used to identify masses strongly indicative of cancer
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Figure 5: (A) The H&E stained tissue sections for sample UH9912-01 showing tumor and normal diagnoses. (B) An
ion image for sample UH9912-01 at the top-ranked m/z 886.5 showing increased intensity in the tumor tissue. (C) The
diagnostic predictions for sample UH9912-01 based on the probabilities from the spatially-aware nearest shrunken centroid
classifier. (D) The H&E stained tissue sections for sample UH9911-05 showing tumor and normal diagnoses. (B) An
ion image for sample UH9911-05 at the top-ranked m/z 886.5 showing increased intensity in the tumor tissue. (C) The
diagnostic predictions for sample UH9911-05 based on the probabilities from the spatially-aware nearest shrunken centroid
classifier. Note the classification is very good using only 151 of the 849 mass features.

Conclusions
• There is a strong need for better open-souce software for analysis of MS imaging data
• Few existing tools provide methods for statistical analysis or utilize spatial information

• It is useful for interpretation to have a common framework for clustering and classification

• Statistical regularization facilitates idenfication and interpretation important masses
• Sparsity can help guide parameter choices for the number of clusters
• The t-statistics can be used to rank the top masses for either segmentation or classification; the

t-statistics for unimportant masses are shrunken toward 0

• Use of transparency for probability in visualization of image segmentations allows quick and
straightforward evaluation of segmentation quality and uncertainty
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