
Divide and Recombine (D&R) Data Science Projects for 
Deep Analysis of Big Data and High Computational Complexity 

By: 

W. Tung, M. C. Bowers, A. Barthur, Y. Song, W. S. Cleveland 
Purdue University 

J. Gerth 
Stanford University 

Technical Report #18-01 

Department of Statistics 
Purdue University        

March 15, 2018



Divide and Recombine (D&R) Data Science Projects for
Deep Analysis of Big Data and High Computational Complexity

W. Tung and M. C. Bowers
Purdue Department of Earth,

Atmospheric, and Planetary Sciences
A. Barthur

Purdue Center for Education and Research
in Information Assurance and Security

J. Gerth
Stanford Departments of Computer
Science and Electrical Engineering

Y. Song and W. S. Cleveland
Purdue Department of Statistics

Abstract

The focus of data science is data analysis. This article begins with a categorization of the
data science technical areas that play a direct role in data analysis. Next, big data are ad-
dressed, which create computational challenges due to the data size, as does the computational
complexity of many analytic methods. Divide and Recombine (D&R) is a statistical approach
whose goal is to meet the challenges. In D&R, the data are divided into subsets, an analytic
method is applied independently to each subset, and the outputs are recombined. This enables
a large component of embarrassingly-parallel computation, the fastest parallel computation.
DeltaRho open-source software implements D&R. At the front end, the analyst programs in
R. The back end is the Hadoop distributed file system and parallel compute engine. The goals
of D&R are the following: Access to the 1000s of methods of machine learning, statistics,
and data visualization; Deep analysis of the data, which means analysis of the detailed data
at their finest granularity; Easy programming of analyses; High computational performance.
To succeed, D&R requires research in all of the technical areas of data science. Network cy-
bersecurity and climate science are two subject-matter areas with big, complex data benefiting
from D&R. We illustrate this by discussing two datasets, one from each area. The first is the
measurements of 13 variables for each of 10,615,054,608 queries to the Spamhaus IP address
blacklisting service. The second has 50,632 3-hourly satellite rainfall estimates at 576,000
locations.
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1 What is Data Science?

Data science is, at its foundation, centered on the analysis of data. The technical areas of data
science are those that need direct study to make data analysis as effective as possible (Cleveland,
2001; Cleveland and Hafen, 2014). The areas are:
• statistical theory,
• statistical models,
• statistical and machine-learning methods,
• visualization methods,
• algorithms for statistical, machine-learning, and visualization methods,
• computational environments for data analysis: hardware, software, and database manage-

ment, as well as
• live analyses of data where results are judged by the subject-matter findings, not the method-

ology and systems that are used.

Of course, these areas can be divided into sub-areas, which in turn can have sub-sub-areas, and so
forth. Also, research in an area can depend heavily on research in others.

1.1 The Role of Live Data Analyses

Researchers in an organization who work on one or more of the of areas (1) to (6) need to have
exposure to live data analyses that are an integral part of the organization’s culture. “Live” means
the success of the analysis is judged by the subject matter results. Live analyses serve as an
effective heat engine for research ideas that solve real problems, and serve as a testbed for the
those ideas (Cleveland, 2001, 2005; Cleveland and Hafen, 2014). Analyses need to be live because
it is important to judge research based on how well it increases subject-matter knowledge and the
effort required to get the increases. There are notions of statistical accuracy that can be important,
too, but those become subject to the same criterion of increasing subject-matter knowledge.

So, live analysis of data enters into a symbiosis with the technical areas of data science. This
is illustrated by the monumental contribution of John W. Tukey to numerical spectrum analysis
(Brillinger, 2002). His close ties with physical scientists and their data stimulated him to lay a
foundation for power spectrum analysis. He provided many tools such as the Fast Fourier Trans-
form and the simple idea of tapering to decrease leakage. This led to substantial increases in
the resolution of spectrum estimates. The data-driven work, in turn, led to deeper understanding of
physical science phenomena and discoveries such as the normal modes of the Earth, and the modes
of atmospheric waves.

1.2 Computational Environments for Data Analysis

One way to think through environments for data analysis is to divide software into the front end
and the back end, possibly with software that connects the two. The front end is software that a
data analyst uses to specify commands for analysis. The back end is software that executes analytic
routines.
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What we want from the front end is software that is very time-efficient for the data analyst. A
good way to judge this is to compare (1) the fraction of time the analyst spends programming with
the data to carry out the analysis, and (2) the fraction of time spent thinking about the subject
matter and about the choice of analysis methods to use to maximize what is learned. Clearly, we
want (2) to be as large as possible and (1) as small as possible. We can describe this as easy to
program with the data, but this is not really enough. We want the front end to be a language for
data analysis that is also powerful, allowing analysis of the data at their finest granularity. We call
this “deep analysis”. Analyzing summary statistics is important to analysis, but doing only that
and not studying the data in detail runs the risk of missing important information in the data.

One example of an excellent front end is the R language for data analysis. It is the open-source
implementation of the S language, which won the ACM System Award in 1998. It was developed
at Bell Labs. The citation was: “John M. Chambers. For The S system, which has forever altered
how people analyze, visualize, and manipulate data.” Other past award winners included Unix,
Visicalc, and the World Wide Web. So, S has quite good company.

S and therefore R provide very efficient and powerful programming. To do this, computational
performance was slower than some other systems. The reason is that whenever a choice had to
be made between efficiency of the user or efficiency of the computation, the user always won.
However, today, this is a less critical matter because the only way to face big data with high
computational complexity is through parallel computing. This has been done with R, and will be
described below. Another important aspect of R is that it has by far the most implementations of
analytic methods of any system for data analysis. Currently, the R CRAN repository has 12,179
packages along with many analytic methods in the core distribution.

2 Divide & Recombine (D&R) with DeltaRho

2.1 D&R

Computational performance is challenging today. Datasets can be big, computational complexity
of analytic methods can be high, and computer hardware power can be limited. Small datasets can
be challenging, too, when the computations have high complexity. Divide & Recombine (D&R) is
a statistical approach to meet the challenges (Guha et al., 2009, 2012; Cleveland and Hafen, 2014).

In D&R, the analyst divides the data into subsets by a D&R division method. Each analytic method
is applied to each subset, independently, without communication. The outputs of each analytic
method are recombined by a D&R recombination method. Sometimes, the goal is one result for all
of the data, such as a logistic regression; D&R theory and methods seek division and recombination
methods to optimize the statistical accuracy. Much more common in practice is a division based
on the subject matter. The data are divided by conditioning on variables important to the analysis.
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2.2 DeltaRho Software for D&R

D&R computation is mostly embarrassingly parallel, the simplest parallel computation. The
DeltaRho software is an open-source implementation of D&R (http://www.deltarho.org, Hafen
et al. 2016.) The front end is the R package datadr, which is a domain specific language for D&R.
The data analyst programs in R, and uses datadr to specify divisions, applications of analytic
methods, and recombinations. The datadr package makes programming D&R simple. At the back
end, running on a cluster, is a distributed database and parallel compute engine such as Hadoop,
which spreads subsets and outputs across the cluster, and executes the analyst’s R and datadr code
in parallel. The R package RHIPE, the R and Hadoop Integrated Programming Environment,
provides communication between datadr and Hadoop.

2.3 Division

Subject Matter Division. It is natural to divide data based on the subject matter. The data are
divided by conditioning on variables important to the analysis. For example, the Tropical Rain-
fall Measuring Mission (TRMM, Huffman et al. 2007) multi-satellite dataset analyzed in Sec. 4
initially has 50,632 3-hourly rainfall records at each of the 462,240 locations. There are missing
values. One typical division is by location across time, so there are 462,240 subsets with 50,632
records per subset. Another is by time across locations, so there are 50,632 subsets with 462,240
locations per subset.

Subject matter division is just as valid for small datasets. It has been widely practiced in the past
and is a statistical best practice. For D&R we use such division both for a best practice and for
computational gain. Subject-matter division is the most used in practice.

Sampling Division. Sometimes the goal is one result for all of the data, for example, a logistic
regression. In this case, each subset in a division is seen as a sample of the data. Subsets are repli-
cate samples. For example, we can carry out random replicate division: choose subsets randomly.
Another division method is to choose subsets to make each as representative of the data as possible.
The D&R result is not the same as that we could have gotten had we been able to apply the logistic
regression to all of the data. However, D&R theory and methods seek division and recombination
methods to optimize the statistical accuracy and make its accuracy as close as possible to that of
the all-data estimate.

How fast? Logistic Regression for a 1 TB Dataset. We carried out logistic regression with 230

observations of the response and 127 explanatory variables. There is 1 TB of data. There were 220

subsets, each with 210 observations per subset. The cluster had 11 nodes with 264 cores, 528 GB
total RAM, and 88 TB total disk.

We measured the elapsed time to read subsets into memory and form the subsets. We also mea-
sured the elapsed time to carry out the computation of the logistic regressions of subsets and the
recombination to get a single result. The two time measurements were 12.1 min and 6.0 min,
respectively, a total of 18.1 min. This is not an undue amount of time in practice.
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2.4 D&R: What do we get?

Deep Analysis. We get deep analysis, as described above, even when the data are big and com-
putational complexity is high. This includes visualization of the detailed data, critical to statistical
model building and validation, as well as to determining if a machine learning method is appropri-
ate for the visualized patterns in the data. We do visualization by applying a method to subsets that
have the detailed data. While it is feasible typically to apply a visualization method to all subsets,
it is often not practical to look at them all because there can be far too many subsets, which in
applications can be tens of thousands to the millions. So, we sample. Sampling plans that preserve
the information in the data can be readily devised because we can compute sampling variables
across all subsets to use as the basis of a rigorous sampling plan.

High Computational Performance. We get high computational performance. DeltaRho can
increase dramatically the data size and analytic computational complexity that are feasible in prac-
tice, whether hardware power of an available cluster is small, medium, or large. The data can have
a memory size that is larger than the physical cluster memory. For us, this occurs routinely. Ap-
proaches to big data analysis that rely on data to be stored in memory to get good computational
performance, for example, because there are iterations, place a heavy limitation on datasets that
can be analyzed.

Access to Methods. We get access to the thousands of methods of statistics, machine learning,
and data visualization. Of course, R provides this.

High Efficiency Programming by the Analyst. We get very high efficiency in using R and
datadr to program with the data, along with great power and flexibility that allow deep analysis
and tailoring analyses to the data. Most importantly, DeltaRho protects the analyst from the de-
tail of distributed parallel computation and subset database management. Furthermore, datadr is
abstracted from the back-end choices, so that its code is the same whatever the back end. For exam-
ple, you can use datadr on a single multicore machine. Of course, back ends other than Hadoop
require other software that connects datadr and a back end like RHIPE does for Hadoop.

The Price is Excellent. It’s free. GitHub is the development site: http://github.com/delta-rho.
The software is open source with both GPL and Apache licenses. It is available for download from
R CRAN for installation on a cluster. We have an appliance to spin up a cluster on the Amazon
AWS service. We have much documentation for datadr and RHIPE. To get the software and
documentation, please see http://www.deltarho.org.

2.5 Computational Performance Measurement and Analysis (CPM&A)

In the world of big data and high computational complexity, CPM&A is critical but is often lack-
ing in rigor, and not sufficiently informative. Research for CPM&A can greatly enhance the per-
formance of data analysis. It can also compare rigorously different computational methods and
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systems. Conventional performance tests, however, use only a few low-level computations such as
sort. Such “benchmarks” are not informative for data analyses. Instead, CPM&A should be the
study of elapsed times of analytic methods, which are directly what an analyst experiences. Also,
benchmark testing today often fails to control for factors that are important for comparing aspects
of two systems. For example, configuration parameters for Hadoop and its competitor Spark can
have a big impact on performance. Pilot experiments have shown that there are strong interactions
among factors (e.g., Shi et al., 2015). Little attention today is given to factor interactions. These
problems must be addressed by multifactor experiments that include interactions when needed.

Experimentation is challenging. Knowledge of big-data systems is needed to determine salient
factors. Interactions are not readily quantifiable from the knowledge. So, empirical model-building
is necessary. Running a design on a high-performance computing cluster can be complex. Some
factors have levels that can be changed only by system administrators. In comparing Hadoop and
Spark it is important to keep factors fixed for each system, and both must be installed on a cluster.
Attention must be paid to limiting all other processes other than the operating system. Care must
be taken to ensure replicate runs are independent and not affected by aspects of the systems that
can create trends in duplicate runs. Many topics need to be evaluated by running on more than one
cluster.

3 Example 1: Spamhaus Blacklist IP Address Data

3.1 Introduction

Each device connected to the Internet has an IP address. An Internet connection consists of one
IP address, the source, seeking to connect to another, the destination. The purpose is to achieve
transmission of information that is broken up into packets whose sizes are up to 1500 bytes. On
the way are a series of devices with IP addresses that forward the packets from one device to
the next along a path from source to destination. The Spamhaus blacklisting service (http://
www.spamhaus.org) classifies IP addresses of devices as blacklisted based on reports of device
behaviors such as being a major producer or conduit of spam. Many network operations use this
service. For example, email servers check IP addresses of the source and previous forwarding
devices of an email message by sending “queries” about all the IP addresses to a blacklisting
service. The “response” says whether each queried IP address is blacklisted or not, and if so, the
categories of network misuse that occurred, for example, spam. If any device is blacklisted, the
email server can decide to block the message and not forward. One aspect of blacklisting is that it
is dynamic; a queried IP address can vary between blacklisted and not-blacklisted.

We collected the query/response data for 10,615,054,608 queries from the Stanford mirror of the
Spamhaus service. The collection period was 18 weeks. Each query results in values of 13 vari-
ables. The total memory size of the data, which consists of R objects, is 3.71 TB. The cluster on
which we analyze the data has 1.28 TB of physical memory. This provides an example of our
statement in Sec. 2 that needing data to reside in memory to get good computational performance
is very limiting.

We have addressed a number of topics in analyzing the data. One topic is to study through time, all

6



queries of each unique queried IP address that has at least one blacklisting result in its queries; there
are 59,435,635 such blacklisted addresses. Altogether, there are 207,081,108 queried IP addresses,
so 29% are blacklisted at least once. The largest number of queries for the addresses is about 1.5
million. The distribution is very skewed. About 80% of the addresses have less than 16 queries.

The division of the data has each of the 59,435,635 blacklisted IPs as a subset, so it is a subject-
matter division. Each subset consists of values of 9 variables at the query points in time for each
blacklisted IP through time. One variable is the timestamp of each query. The other 8 variables
provide information about the query. One is the IP address of the querying host. Five violation
variables specify whether each was violated or not. If there is at least one violation, then the query
result is a blacklisting at the query timestamp. If none are violated, the result is not-blacklisted at
the timestamp.

The result for each blacklisted IP address is a marked point process. The timestamps are the points
and the other 8 variables are the marks. So each subset is a time profile for the blacklisted IP ad-
dress. The profiles are marked point processes whose number of points, a very skewed distribution,
ranges from 16 to 2,097,152. An R dataframe object for a blacklisted IP address has 9 columns and
each row is a query. The timestamps have runs of blacklistings (on’s) and runs of not-blacklistings
(off’s), creating an on-off process which is of great interest.

3.2 Blacklisting and Not-Blacklisting Rates

Spamhaus has procedures for removing a blacklisting. But, they are complex and require verifica-
tion by the Spamhaus staff. If a highly reputable Internet service provider reports that one of their
blacklisted IP addresses assigned to a customer should be unlisted, then Spamhaus does so. Or,
Spamhaus does its own investigations. An individual or organization can use a tool provided by
Spamhaus to remove a blacklisting. This is a slow manual process, however. One would expect
that blacklistings would persist for some time. One very interesting topic then is the blacklisting
and not-blacklisting marked point process for a queried IP. Studying this comprehensively is very
complex, and beyond the scope of this article. Here, we will show a few suggestive properties that
need much further investigation.

Figure 1 is a plot for one blacklisted IP address with 512,783 queries over a period of 96 days.
There are 271,986 blacklistings and 240,797 not blacklistings, close to 1/2 each. The queries
were broken up into blocks of 212 consecutive queries through time. The last time for each block
is the first time of the next block to include all intervals between queries. There are 125 intervals.
For each block, the duration from the first query to the last in min is divided into 212 to get a
number of queries per min. Also, for each block, the number of blacklistings and not-blacklistings
were divided by the duration to get rates in number of listings per min. In Fig. 1, the rates of
blacklistings and not-blacklistings are plotted against query rates on a log base 2 scale for the 125
blocks. A line was fitted to the data for the blacklisted and for the not-blacklisted using robust
regression. The intercept and slope are 0.3528 and 0.8093, respectively, for not-blacklisted, and
0.2950 and 0.8347 for blacklisted.

Figure 1 suggests there may be a rapid back and forth of the on-off process, the blacklisting runs
the not-blacklisting runs, rather than long periods of each. Across all rates, the fractions of black-
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Figure 1: Listing rates, blacklisted and non-blacklisted, are plotted against query rates. A line is
fitted to the data in both cases using robust linear regression.

listings and not-blacklistings are close to the overall fractions, about 0.5 each. The blacklisting
and not-blacklisting rates are not far from being proportional to the query rates. The duration of
the largest query rate block is about 9.7 hr. It has 2340 blacklistings and 2153 not-blacklistings.
Understanding the on-off processes generally will have to come from further deep analysis of the
blacklisted IP marked point processes.

4 Example 2: Large Complex Weather and Climate Data

4.1 Background: Science Meeting Societal Impacts

Climate change, population growth, and extreme weather are increasingly challenging the limited
natural resources of Earth. For society to understand and counter this challenge, it is critical to in-
tegrate multi-disciplinary knowledge at the nexus of intricately coupled systems: weather, climate,
environments, resources, energy, and societies. This is exemplified by the integrated framework
of the United Nations Sustainable Development Goals (http://Sustainabledevelopment.un.
org). van Vliet et al. (2016), for example, studied climate change and the resulting changes in
water resources available to power generation. Hydropower and thermoelectric power-generation
technologies comprise 98% of the world’s electricity generation. Both strongly depend on water
availability; thermoelectric technology further depends on water temperature for cooling. van Vliet
et al. (2016) suggested that as the flow of many rivers is projected to decrease while water tem-
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perature rises, in future decades more power plants will be forced to shut down or lose efficiency,
presenting uncertainty in other energy sectors as well as regional economy and political stability.
Developing nations rely heavily on these power-generation methods and, therefore, will likely face
more of these setbacks than developed ones.

The World Economic Forum has been conducting annual Global Risk Perception Surveys among
international multi-stakeholder communities since 2007 (e.g., World Economic Forum, 2017). In
recent years, extreme weather events have been among the top five global risks perceived as mostly
likely to occur. In the Forum’s 2017 Global Risk Report, it has risen to be the most likely to occur
and the second highest impact (after weapons of mass destruction). Failure of climate change
mitigation and adaptation is also among the top five highest-impact risks by perception. The risks
posed by extreme weather events, failure of climate change mitigation and adaptation, food crises,
water crises, and large-scale involuntary migration are perceived to be strongly linked. Yet, each
of these risks is influenced by trends such as changing climate, degrading environment, or rising
urbanization. These perception surveys have motivated numerous data-driven research.

Earth’s complex natural and human-built systems are challenging but fertile application areas for
data science. Generating insights and knowledge with data-driven research in complex global
issues requires geoscientists having access to the big datasets that must be collected for scientific
study of the systems, and access to computational environments for data analysis that enable deep
analysis of the data, high computational performance, and highly efficient programming with the
data. This understanding has been manifested in prior data-driven research, in part summarized in
(Sellars et al., 2013) such as in automated evaluation of satellite-based estimates of tropical rainfall
using artificial neural networks (Sorooshian et al., 2000), object-based approaches for verification
of precipitation forecasts (Davis et al., 2006a,b) or to study the impact of climate variability on
precipitation (Sellars et al., 2015), interactive 3D visualization of geospatial data (Mitasova et al.,
2012), and machine-learning techniques to diagnose aviation turbulence (Williams, 2014) or to
extract basic modes of tropical atmospheric convection (Tung et al., 2014).

NASA’s Earth Observing System Data and Information System represents the US federal govern-
ment’s system-wide investment to innovate open data access. As a result, scientists from multiple
disciplines are able to study Earth systems collaboratively in a data-driven environment. Scalable
data analysis techniques have become ever more critical in anticipation of the deluge of current and
future satellite data. Following, we present the analysis of ∼17 years of global tropical precipita-
tion on fixed 0.25◦×0.25◦ grids and 3-hourly time intervals from the Tropical Rainfall Measuring
Mission. In the analysis, we calculated the long-range dependence (long-memory) property of
precipitation at each grid point (location) of the data with DeltaRho.

4.2 TRMM Dataset

Precipitation, including the process of precipitation, has both operational and fundamental scien-
tific importance. It is the part of the local and global water cycle that concentrates the heat used to
evaporate the water that is transported in the atmosphere, and it delivers water to the ocean or land
surfaces.

The Tropical Rainfall Measuring Mission was a joint mission of NASA and the Japanese Aerospace
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Exploration Agency (Simpson et al., 1996). The TRMM Version 7 3B42 Multi-satellite Precip-
itation Analysis (TMPA) data product combines calibrated precipitation estimates from multiple
satellites and surface rain gauges where feasible (Huffman et al., 2007). The dataset has global
spatial coverage from 50◦ S–50◦ N with 0.25◦× 0.25◦ horizontal resolution, spanning the period
from 1998 through early 2015 with 3-hourly resolution. At fine time scales, the TMPA successfully
reproduces the surface observation-based distribution of precipitation as well as large daily events.
However, in common with other fine-scale rainfall estimators, it has lower skill in correctly speci-
fying low and moderate rainfall amounts on short time scales (Huffman et al., 2007). We removed
data before October 1998 and pole-ward of 40◦ latitudes because of a nontrivial fraction of missing
data. The small fraction of remaining missing data points were imputed by linear interpolation.
The total data size was about 1/4 TB, not very big. Yet, in this project we were challenged by the
computational complexity of the analytic methods.

4.3 Detrended Fluctuation Analysis

The persistent temporal scaling properties of a time series can be conveniently characterized by the
Hurst exponent or Hurst parameter H (Hurst, 1951). The Hurst parameter quantifies the persistence
of correlations such that when 0 < H < 1/2, the signal has anti-persistent correlations; when
H = 1/2, the signal is memoryless or has short-range correlations; when 1/2 < H < 1, the signal
has persistent long-range correlations; and when H > 1 the signal may be non-stationary or have
non-trivial trends. While the Hurst parameter can be estimated by a variety of methods, few are
capable of accurately estimating H when H > 1 (Gao et al., 2006, 2007). One of the few methods
capable of accurate estimation in the presence of trends or non-stationarity is detrended fluctuation
analysis (DFA) (Peng et al., 1994). Because of the potential for non-stationarity associated with
tropical expansion, we use DFA to estimate the strength of temporal scaling in the tropical rainfall
data.

DFA works as follows: given a noise (or increment) time series, x1,x2,x3, · · · , with mean x, one
first constructs a random walk process,

u(i) =
i

∑
k=1

(xk− x), i = 1,2, · · · ,N (1)

then divides {u(i), i = 1,2, · · · ,N} into bN/mc non-overlapping segments (where bN/mc denotes
the largest integer equal to or smaller than N/m), each containing m points. The local trend in each
segment is then computed, typically as the ordinate of a best linear or polynomial fit of the random
walk in that segment. Finally, one computes the “detrended walk”, denoted by um(k),k= 1,2, ...,m,
as the difference between the original segment (the“walk”), u(k), and the local trend. The fractal
behavior is described by the following scaling law

Fd(m) =
〈 m

∑
i=1

um(i)2
〉1/2
∼ mH (2)

where the angle brackets denote ensemble averages of all the segments.

While it is common to use linear or polynomial regression to estimate the local trend in each
segment, this leads to discontinuities or even large abrupt jumps at the segment boundaries. By
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using a smooth trend instead of the discontinuous piecewise trend, DFA can better handle non-
stationarity or arbitrary trends in the data (Gao et al., 2011). Here, we used the loess smoother
(Cleveland and Devlin, 1988) to compute a globally smooth trend vw(i), where w denotes the span
(bandwidth) of the loess smoother. The residual, u(i)−vw(i), characterizes fluctuations around the
global trend, and its variance yields the Hurst parameter H according to

F(w) =
[ 1

N

N

∑
i=1

(u(i)− vw(i))2
]1/2
∼ wH . (3)

To capture the clustering of rainfall events within each 6-month season, we estimated the fluctu-
ation function F(w) on the time scales from 12 hours to 16 days, which correspond with typical
“mesoscale” to “synoptic-scale” atmospheric variability. To estimate H, we used the slope coeffi-
cient of a linear regression of log2 F(w) against log2 w (e.g., Bowers et al., 2013).

4.4 Divide and Recombine

To scrutinize the temporal correlation structure in the TRMM precipitation data, we employed
D&R with DeltaRho using a Hadoop cluster. Our primary interest was in the temporal correlation
structure of local precipitation. Since precipitation regimes can vary dramatically across locations
and seasons, we divided the dataset into subsets, each consisting of a 6-month-long 3-hourly time
series of precipitation rates for a particular location. We used the concept of “monsoon years (Ya-
sunari, 1991)” starting with Northern Hemispheric summer as May through October, followed by
winter as November through the next April. For each of the 462,240 locations, we had 17 winter
subsets (winter 1998 to winter 2014) and 16 summer subsets (summer 1999 to summer 2014),
∼ 15 million subsets in total. We applied DFA to the time series data in each subset to estimate the
persistence (as discussed in Sec. 4.5) yielding an estimate of H for each subset. We performed sev-
eral statistical recombinations of the DFA results. After applying DFA, we performed a statistical
recombination of the results for each location and season, e.g., taking an average, yielding a map
of that statistic for both Northern Hemispheric summer and winter seasons. The Hadoop cluster
running the DeltaRho software stack provided high computational performance for the divisions,
application of analytic methods, and statistical recombinations.

4.5 Results and Discussions

Figure 2 shows two example seasonal subset precipitation time series. Both subsets have a seasonal
average precipitation rate of about 3 mm day−1; however, the distribution of rainfall throughout
the season is markedly different. Whereas the top panel shows a somewhat homogeneous distri-
bution of rainfall throughout the season, the bottom panel shows a strong clustering of rainfall
into a relatively short period of time. While the two subsets have the same seasonal average water
availability, the subset in the bottom panel may be considered to experience drought, while that in
the top panel does not.

The difference in the temporal distribution of rainfall between the two subsets in Fig. 2 is echoed by
the estimates of Hurst parameter. The top panel exhibits a homogeneous temporal distribution or
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Figure 2: Seasonal block precipitation time series for (top) Northern Hemispheric summer 2004
at 32.875◦E, 7.875◦N and (bottom) winter 2013 at 85.625◦E, 14.625◦N.

weak clustering and has H near 1/2, indicating a memoryless precipitation process from 12 hours to
16 days. On the other hand, the bottom panel exhibits strong clustering and has H ≈ 0.9, indicating
persistence in the precipitation process from 12 hours to 16 days. The persistent clustering in fact
exists on multiple scales; on a seasonal scale, the majority of rainfall is confined to the month
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from mid-November to mid-December, but on a weekly scale the rainfall within that month is
also clustered into distinct events. This fractal behavior is consistent with other findings of self-
similarity in rainfall (e.g., Lovejoy and Mandelbrot, 1985). We note that while these two locations
have equivalent seasonal average rainfall, the difference in temporal clustering patterns echoed by
the Hurst parameter has profoundly different implications for local water resource management.

Having established that the Hurst parameter can distinguish various rainfall clustering patterns we
now examine the average spatial distribution of clustering patterns in the global tropical belt. Fig-
ure 3 shows the average Hurst parameter for each location and season. Each pixel in the figure
represents the average of the 17 winter or 16 summer H values estimated from 12 hours to 16 days
at each location. In general, H values range between 1/2 and 1 indicating that tropical precipitation
is either memoryless or persistent on the meso- and synoptic- time-scales. There is a pronounced
land-sea contrast with a tendency for marine rainfall to be persistent and land rainfall to be memo-
ryless. Persistence tends to be enhanced in regions with highly active atmospheric convection such
as the Indian Ocean–Pacific “warmpool”, the Inter-Tropical Convergence Zone, the South Pacific
Convergence Zone, the tropical Atlantic, and the Caribbean. Persistence also tends to be particu-
larly strong in regions with sharp horizontal gradients in mean precipitation, as indicated by the 2
and 4 mm day−1 contours.

Seasonal Average H
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Figure 3: Maps of seasonal average H for Northern Hemispheric summer (May–October, top)
and winter (November–the next April, bottom). Contours indicate 2 and 4 mm day−1 average
precipitation. White indicates locations where H is not defined.

It is possible that the scaling behavior measured on scales from 12 hours to 16 days is better
defined in some locations than others. In particular, the scaling exponent H can actually take
different values over different frequency bands; the transition point between scaling regimes is
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Seasonal Average R−squared
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Figure 4: Maps of seasonal average R2 obtained in fitting H. Contours indicate 2 and 4 mm day−1

average precipitation. White indicates locations where H is not defined.

called a “scaling break” (e.g., Gao et al., 2011) or “crossover” (e.g., Telesca et al., 2012). To
obtain a heuristic indication of possible scaling breaks we use the coefficient of determination R2

from the linear models used to estimate H. Low R2 indicates that there is variability in log2 F(w)
that is not accounted for by the single linear fit, i.e., a scaling break.

Figure 4 shows the seasonal average maps of R2. The seasonal average R2 are obtained analogously
to the mean H in Fig. 3, i.e., they are the average R2 of either 17 winter subsets or 16 summer
subsets for each location. In general, the fit quality indicated by R2 tends to be very high in
regions with high seasonal average precipitation as well as over land, especially in the summer
hemisphere. There is some tendency for regions with low mean precipitation to have lower quality
fits. This could be indicative of the presence of scaling breaks in the band from 12 hours to 16
days. It could also reflect increased sampling variability in the fluctuation function F(w) due to
the smaller number of positive precipitation rate observations available in certain arid locations.
Further diagnosis of the additional scaling regimes that could be present in locations with lower
quality fits is an excellent subject for future investigations.

4.6 D&R Meeting Data Analysis Challenges

Phenomena in Earth’s weather and climate systems are inherently complex, largely owing to non-
linear interactions among its physical components. One classical example of such complexity is the
multiscale, or “hierarchical”, structure of tropical atmospheric convection (Nakazawa, 1988): con-
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vective organization over the tropical Indo-Pacific sector appears to have spatial sizes from O(102)
to O(103) km and temporal scales from O(1) to O(10) days. Fractal and multifractal concepts orig-
inally developed to understand turbulence phenomena (e.g., Frisch, 1995; Barenblatt, 1996) have
been applied to phenomenologically describe the multiscale atmospheric convection and related
physical processes, such as the persistence of tropical precipitation observed in Fig. 3. Despite of
the parsimonious mathematical expression, conventional numerical weather and climate models
that are among the essential tools for solving complex global issues have difficulty simulating or
forecasting the scaling behavior in Eq.(2).

Bjerknes (1904) had dispelled a strictly mathematically analytical solution for the weather forecast
problem for its over-simplification of multiscale problems. Instead, Bjerknes prophetically, per-
haps in a whim, depicted “graphical or mixed graphical and numerical methods” that evolve a map
based on initial observations to that representing the new state of the atmosphere, and remarked that
“everything will depend on succeeding in breaking down the problem, which is overwhelmingly
difficult as a whole, into partial problems of which none represents insurmountable difficulties”.

More than a century has passed. The progress of finding and articulating the laws of the evolv-
ing multiscale atmospheric dynamics and physics remains excruciatingly slow. Focused on at-
mospheric convection, Arakawa et al. (2011, 2016) proposed two routes to unify the multiscale
modeling of the atmosphere. The first route is a unified convection scheme applicable to a range of
horizontal mesh resolutions between coarse ones typically used by global climate models (GCMs)
and fine cloud-resolving models (CRMs); the second route is a multiscale-modeling framework
that implements explicit representation of convection and associated cloud-scale processes by
CRMs. These theoretical and the ensuing modeling developments have not been matched with
a data analysis framework for validation and uncertainty quantification. To gain insights from the
immense and complex model outputs along with observational data, deep analysis with D&R is
one promising approach.

5 Summary and Conclusions

The Divide & Recombine statistical approach to big data and high computational complexity of
analytic methods enables deep analysis, that is, analysis of data at their finest granularity including
visualization (Sec. 2). It is tempting when the data are big to first carry out dimension reduction or
to analyze just summary statistics. This greatly increases the risk of missing important information
in the data. Deep analysis is possible with small data and is widely practiced. D&R extends this to
big data.

The DeltaRho D&R software provides high-performance parallel, distributed computing for the
analysis of big data and high computational complexity of analytic methods. It has the Hadoop
distributed parallel compute engine and database at the back end. An analyst programs analyses at
the front end with R using the DeltaRhoR-package datadr, a domain-specific language for D&R.
This makes programming D&R analyses very efficient for the data analyst. In the lifecycle of
a big-data analysis project, more time can be spent on thinking about the data analyzed and the
subject matter, and less time programming. In addition, datadr can be run by itself on a multicore
server and manage parallel computing itself with data in memory or on disk.
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With Hadoop as the back end, we illustrated D&R by application to two big, complex datasets
that benefitted greatly from D&R with DeltaRho. One is for the Spamhaus IP address blacklisting
service (Sec. 3). The data are values of 13 variables for 10,615,054,608 queries of the status of IP
addresses. We briefly discuss analysis of the profiles of 59,435,635 unique queried IP addresses
with at least one blacklisting. The profiles are marked point processes whose number of points,
a very skewed distribution, ranges from 16 to 2,097,152. The marks for each are values of 8
variables. Deep analysis will be required to understand and model these processes.

The other is the Tropical Rainfall Measuring Mission (TRMM) data (Sec. 4). Our study of the
TRMM data illuminates the persistent temporal clustering patterns of tropical rainfall through
their correlation structure as quantified by the Hurst parameter H. We estimated the H for 12-hr to
16-day time-scale of interests to operational atmospheric scientists, conditioned on seasons in the
global Tropics with ∼ 17-years of 3-hourly TRMM data. We pointed out that while two regions
may have very similar seasonal average precipitation, one may have very consistent rainfall while
another has an envelope of extreme rainfall events followed by drought. The Hurst parameter con-
veniently discriminates between these patterns. Furthermore, we showed that the seasonal average
clustering patterns feature a land-sea contrast with much stronger clustering over the oceans. High
temporal clustering tends to occur in regions with strong horizontal gradient of the mean precip-
itation and near coastal boundaries. These patterns are of great practical importance for water
resource management since they control how the local seasonal water supply becomes available
over time.
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