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Abstract

This paper is concerned with asymptotic behavior of a variety of functionals of
increments of continuous semimartingales. Sampling times are assumed to follow a
rather general discretization scheme. If an underlying semimartingale is thought of
as a financial asset price process, a general sampling scheme like the one employed in
this paper is capable of reflecting what happens whenever the financial trading data
are recorded in a tick-by-tick fashion. A law of large numbers and a major central
limit theorem are proved after an appropriate normalization. Applications of our
results include statistical estimation and inference for high-frequency financial data
models.

Keywords: central limit theorem, continuous semimartingale, law of large numbers,
stochastic sampling times.

1 Introduction

One of the common tasks in stochastic processes theory is to estimate the parameters of
the process. As an alternative, nonparametric estimation, such as that of spot or inte-
grated quadratic volatility, may need to be performed as well. Over the past decade, the
field of volatility modeling and analysis for high-frequency financial data has developed
optimistically. A plethora of methodologies were introduced to estimate the quadratic
variation of a price process from high-frequency data. Estimation methods for univariate
volatilities include realized volatility [2, 3, 6], bi-power realized variation [7], two-time
scale realized volatility [27], multi-scale realized volatility [25], wavelet realized volatil-
ity [14], realized kernel volatility [4, 5], pre-averaging realized volatility [10, 18], and
Fourier realized volatility [12, 19]. For multiple assets, popular co-volatility estimators
are Hayashi and Yoshida (HY) estimator based on overlap intervals [16], the previous-
tick and multi-scale approach [26], refresh-time scheme and realized kernel volatility
[5], generalized synchronization scheme and quasi-maximum likelihood estimation [1],
pre-averaging approach [10], large volatility matrix estimators based on regularization
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[20, 21, 22, 23]. These methods have been shown to be successful in applications; more-
over, they have significantly improved our understanding of time-varying volatility of
stochastic processes as well as the ability to predict future volatility. A comprehensive
review in this literature was given in, e.g., [24].

Most of the time, a stochastic process Xt is observed at discrete times that are com-
monly non-equispaced. Moreover, in many cases, such as that of various asset price pro-
cesses in financial mathematics, the frequency of sampling is extremely high and occurs
on a tick-by-tick basis. That results, in turn, in a random high-frequency sampling. We
consider the so-called finite horizon case, where the observation window is a fixed time in-
terval [0, T ] for some T > 0. The sampling times are t(n, i) , i = 1, . . . , n and the average
duration time between the two consecutive sampling times τ(n, i) = t(n, i)− t(n, i− 1)
goes to zero as the sample size goes to infinity. In order to conduct any nonparametric
inference, one typically needs, as a first step, the consistency of various functionals of
increments of the the process Xt. Usually just consistency is not enough, and one also
need rates of convergence and an associated central limit theorem. To obtain these re-
sults, certain restrictions on the nature of sampling process have to be imposed. These
assumptions imply that both expectation and the variance of a duration time between
two successive sampling times go to zero as the sample size n → ∞ at rates of O(n−1)
and O(n−2), respectively. Such an assumption is rather mild in the sense that it in-
cludes, for example, a well known Poisson model that implies exponentially distributed
duration times.

The need to take the random high-frequency sampling into account when performing
non-parametric estimation and inference has been noted earlier. Barndorff-Nielsen et al.
[4] noted, for example, that the regular realized kernel estimator of quadratic volatility
becomes inconsistent under a typical random high-frequency sampling scheme. Hayashi
et al. [15] considered irregular sampling schemes while posing conditions on the variance
of the sampling durations. The main contribution of this paper is that we obtain both a
law of large numbers and a major central limit theorem under very broad assumptions
on the nature of the sampling process. No specific distribution for the duration times
is assumed as well. Our results can be rather easily generalized to the case where the
duration times are not independent. The paper is structured as follows. Section (2) is
concerned with the detailed model set-up. Section (3) discusses the law of large numbers
while section (4) covers a major important central limit theorem.

2 Model Set-up

1. Price model:
Assume that we have a probability space (Ω, P,F) and an assigned filtration {Ft}t≥0

containing all the price process related information up to time t; also, let {Wt} be a
Brownian Motion defined on this space. Let Xt = ln(St) be the log price process such
that dXt = btdt+σtdWt with a drift process bt and the volatility process σt. We assume
that the drift process bt and the volatility process σt are adapted to Ft. For brevity, we
denote the integrated volatility IV =

∫ T
0 σ2

t dt.



3

Throughout this paper, we will use several important assumptions on the nature of
the process Xt. For convenience, we start with enumerating all of them in one location.

1. Assumption A:
Given any finite T > 0, we assume that the spot volatility σ2

t , 0 ≤ t ≤ T can be
bounded with probability 1:

P{σ2
t ≤MT , 0 ≤ t ≤ T} = 1

where MT is a random variable with finite fourth moment:

E(M4
T ) <∞

2. Assumption B:
We also assume that the drift bt, 0 ≤ t ≤ T can be bounded with probability 1:

P{|bt| ≤ AT , 0 ≤ t ≤ T} = 1

for any fixed T > 0 where AT is a random variable with finite fourth moment:

E(A4
T ) <∞

Assumption H:
Let Xt be a continuous Itô semimartingale with the representation

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs

where Wt is a standard Wiener process and bt, σt are locally bounded. Moreover,
the volatility process σt is also an Itô semimartingale of the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃dWs + κ̃(δ̃) ? (µ− ν)t + κ̃′(δ̃) ? µ

t

where µ is a Poisson random measure on (0,∞) × E with intensity measure
ν(dt, dx) = dt⊗ λ(dx), where λ is a σ-finite and infinite measure without atom on
an auxiliary measurable set (E, E). κ̃ is a truncation function and κ̃′(x) = x−κ̃(x).
δ̃(ω, t, x) is a predictable function on Ω×R+ × E. Moreover, we assume that

(a) Let γ̃ be a (non-random) nonnegative function such that
∫
E(γ̃(x)2∧1)λ(dx) <

∞. Then, the processes b̃t(ω) and supx∈E
‖δ̃(ω,t,x)‖
γ̃(x) are locally bounded, and

(b) All paths t → bt(ω), t → σ̃t(ω), t → δ̃(ω, t, x) are right-continuous with left
limits (càdlàg).
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The following assumption is fairly strong and is only used as a starting point for
the classical localization procedure. All of our results are proved under the much
more relaxed local boundedness assumption as stated in Assumption H.

Assumption SH:
In addition to the assumption (H) we have, for some constant Λ and all (ω, t, x):

‖bt(ω)‖ ≤ Λ, ‖σt(ω)‖ ≤ Λ, ‖Xt(ω)‖ ≤ Λ

‖b̃t(ω)‖ ≤ Λ, ‖σ̃t(ω)‖ ≤ Λ, ‖δ̃(ω, t, x)‖ ≤ Λ(γ̃(x) ∧ 1).

3. Trading time model: Assumption T
To study asymptotic properties, we will allow the frequency of observations in-
creases to infinity. Hence at each stage n, we have strictly increasing observation
times (t(n, i) : i ≥ 0), and without restriction we may assume t(n, 0) = 0. We
further denote

τ(n, i) = t(n, i)− t(n, i− 1)

Nn
t = sup(i : t(n, i) ≤ t)

E [τ(n, i)] = ∆n

πnt = sup
i=1,··· ,Nn

t

τ(n, i), δnt = inf
i=1,··· ,Nn

t

τ(n, i)

We assume that with T the time horizon,

πnT = Op(n
−1), δnT = Op(n

−1) as n→∞

Remark 2.1. The Assumption T implies the following useful results:

∆n = O(n−1), V ar(τ(n, i)) = O(n−2)

Nn
t∑

i=1

(t(n, i+ 1)− t(n, i))2 = Op(n
−1)

and
Nn

t∑
i=1

1 = Nn
t = Op(n)

which can be very useful in our proofs of LLN and CLT.

Remark 2.2. Note that this assumption includes, for example, the Poisson model
in which the exponential distribution is commonly used to model duration times.
Historically, the assumption of exponential distribution for duration times was quite
popular. As an example, a well known model of [11] models the trading times as a
simple Poisson process which means that the trading durations are i.i.d. exponen-
tially distributed with some parameter λ. Other alternative models of trading times
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may assume that the trading durations are correlated over time as in, for example,
the autoregressive conditional duration (ACD) model introduced by [13]. Moreover,
Bouchaud et al. [8] offers a comprehensive study on the empirical properties of the
whole order book. Since our main interest lies in estimation of realized volatility of
the data, we are going to start with a simple assumption of independent duration
times first. We will consider possible generalization to the ACD model as a next
step in our research.

Remark 2.3. From now on, for convenience purposes, we use tni instead of t(n, i),
especially when it is a subscript itself. On occasion, whenever it does not cause
any confusion, the index n is omitted and tni is simply denoted ti. All of the above
also applies to τ(n, i).

Finally, the last assumption concerns the relationship between transaction times
tni and the price process Xt.

4. Independence Assumption C:
Let {N n

t }t≥0 be the filtration generated by transaction times 0 ≤ tn1 , . . . , t
n
Nn

t
≤ t

for some 0 ≤ t ≤ T . We assume that N n
t is independent of Ft.

3 Laws of large numbers (LLNs) for increments of functions of semi-
martingales

Our first goal is to obtain a uniform law of large numbers for normalized increments of the

semimartingale process Xt = X0 +
∫ t

0 bsds+
∫ t

0 σsdWs when all of the durations {τni }
Nn

t
i=2

satisfy Assumption T. We denote ∆n
i X = Xti−Xti−1 the increments of this process. For

an arbitrary function f , functions of the increments of Xt are V (f)t = Σ
Nn

t
i=1f(∆n

i X) and,

in the normalized form, V ′(f)t = Σ
Nn

t
i=1f(∆n

i X/
√
τi). Finally, we also define the so-called

approximate variation of the pth order for the process Xt as X̃t as B(p)t = Σ
Nn

t
i=1|∆n

i X|p.
Before formulating our LLN, we need to define the idea of uniform convergence in

probability.

Definition 3.1. A sequence of jointly measurable stochastic processes ξnt is said to con-
verge locally uniformly in probability to a process ξt if limn→∞ P

(
sups≤t |ξnt − ξt| > K

)
=

0 for any K > 0 and any finite t. This convergence is commonly denoted ξnt
u.c.p.→ ξt.

Now we can state the following uniform law of large numbers.

Theorem 3.2. Assume (H) and (T). Let f be a continuous function on Rk for some
k ≥ 1, which satisfies

|f(x1, . . . , xk)| ≤ K0

k∏
j=1

(1 + ‖xj‖p)
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for some p > 0 and K0. Define

V
′
(f, k)t =

Nn
t∑

i=1

f
(
∆n
i X/
√
τi, · · · ,∆n

i+k−1X/
√
τi+k−1

)
.

Also, let ρ⊗kσ (f) = E[f(X)] where X = (x1, x2, · · · , xk) ∼ N(0, σ2I) and I is a k × k
identity matrix. Then,

∆nV
′
(f, k)t

u.c.p.−−−→
∫ t

0
ρ⊗kσu (f)du.

Proof. To prove this theorem, we will use the so-called localization procedure described in
detail in [17]. Essentially, we prove the statement we need under the weaker assumption
(SH) and then extend it to a more general situation through the use of a Lemma 3.14
in [17], p. 218. In what follows we only prove that the statement of the Theorem (3.2)
is true when X satisfies (SH). For convenience purposes, from now on we denote tni the
time of the ith transaction within the interval [0, T ]; the superscript n refers to the
total number of transactions in this interval. We approximate ∆n

i+lX by substituting
the value σtni−1

for the whole function σt on each of the intervals [tni+l−1, t
n
i+l] for 1 ≤ l ≤

n − i. To make the notation more precise, we also define ∆n
i+lW := Wtni+l

−Wtni+l−1
,

βni,l := σtni−1
∆n
i+lW/

√
τi+l, and xni,l := 1√

τi+l

∫ tni+l

tni+l−1

(
bsds+ (σs − σtni−1

)dWs

)
. Therefore,

we can now write

∆n
i+lX =

√
τi+l(x

n
i,l + βni,l).

Define Eni+l−1(·) = E
(
·|Ftni+l−1

∨
Ntni+l−1

)
; then, it’s easy to check that, for any q > 0,

there exists a constant Kq such that

Eni+l−1(‖βni,l‖q) ≤ Kq.

A repeated use of Doob’s and Burkholder-Davis-Gundy inequalities (see [9]) results in,

first, E (‖σt+s − σt‖q|Ft) ≤ Kqs
1∧(q/2); this, in turn, lets us claim that Eni+l−1

(
|xni,l|

)
≤

KqE
n
i+l−1(

√
τi+l) → 0. Next, for any function f satisfying the assumptions in Theorem

(3.2), and any A > 0, we have GA(ε) = sup{xj ,yj :‖xj‖≤A,‖yj‖≤ε} ‖f(x1 + y1, · · · , xk +

yk) − f(x1, · · · , xk)‖
ε→0−−→ 0. Let us introduce an auxiliary functional V

′′
(f, k)t =

Σ
Nn

t
i=1f(βni,0, · · · , βni,k−1). We can conclude, then, that

∆n

(
V ′(f, k)t − V

′′
(f, k)t

)
u.c.p.−−−→ 0

and so it is sufficient to show the uniform convergence to zero for the functional ∆nV
′′
(f, k).

First, denote ηni = ∆nf(βni,0, · · · , βni,k−1). Then we have Eni−1(ηni ) = ∆nρ
⊗k
σtn

i−1

(f) =

(τni + ∆n − τni ) ρ⊗kσtn
i−1

(f) = τni ρ
⊗k
σtn

i−1

(f) + (∆n − τni )ρ⊗kσtn
i−1

(f). As a first step note that

Nn
t∑

i=1

(∆n − τni )ρ⊗kσtn
i−1

(f)
u.c.p.−−−→ 0
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because we have, due to Lemma 3.4 in [17], that
∑Nn

t
i=1E

n
i−1

(
(∆n − τni )ρ⊗kσtn

i−1

(f)

)
= 0

and
∑Nn

t
i=1E

n
i−1

(
|(∆n − τni )ρ⊗kσtn

i−1

(f)|2
)

=
∑Nn

t
i=1

(
ρ⊗kσtn

i−1

(f)

)2

V ar(τni ) ≤ K
∑Nn

t
i=1 V ar(τ

n
i )

P−→

0. Note that we also have Eni−1(|ηni |2) ≤ K∆2
n, thus by Riemann integration, we have

Σ
Nn

t
i=1E

n
i−1(ηni ) =

Nn
t∑

i=1

∆nρ
⊗k
σtn

i−1

(f)
u.c.p.−−−→

Nn
t∑

i=1

τiρ
⊗k
σtn

i−1

(f)
u.c.p.−−−→

∫ t

0
ρ⊗kσv (fv)dv

which concludes our proof.

4 Main central limit theorem

Now, we have to obtain the CLT for the increments of Yt. A major problem in doing
so is to be able to characterize the limit, and, more specifically, the quadratic variation
of the limiting process. As usual, we start with the necessary notation. Consider a
sequence (Ui)i≥1 of independent N (0, 1) variables. Recall that ρσ, defined before, is
actually the distribution law of σU1, and so ρσ(g) = E(g(σU1)). Also recall that a
function of k-dimensional argument f(x1, . . . , xk) : Rk → R exhibits polynomial growth
if |f(x1, . . . , xk)| ≤ K0

∏k
j=1(1 + |xj |)p for a positive constant K0 and some positive p.

For such a function f on Rk we set

Rσ(f, k) =

k−1∑
l=−k+1

E [f(σUk, · · · , σU2k−1)f(σUl+k, · · · , σUl+2k−1)]−(2k−1)E2 [f(σU1, · · · , σUk)]

=
k−1∑

l=−k+1

E [f(σUk, · · · , σU2k−1)f(σUl+k, · · · , σUl+2k−1)]− (2k − 1)
[
ρ⊗kσ (f)

]2

Our main result is as follows.

Theorem 4.1. Assume (H) and (T). Let f satisfy either one of the two assumptions
stated below.

• (a) f is a polynomial function on Rk for some k ≥ 1, which is globally even, that
is

f(−x1, · · · ,−xl, · · · ,−xk) = f(x1, · · · , xl, · · · , xk)

• (b) f is a continuous and once differentiable function with all derivatives exhibiting
polynomial growth on Rk for some k ≥ 1, which is even in each argument, i.e.

f(x1, · · · ,−xl, · · · , xk) = f(x1, · · · , xl, · · · , xk), ∀ 1 ≤ l ≤ k



8

If X is continuous, then the process

1√
∆n

(
∆nV

′(f, k)t −
∫ t

0
ρ⊗kσu (f)du

)
converge stably in law to a continuous process U ′(f, k) defined on an extension (Ω̃, F̃ , P̃ )
of the space (Ω,F , P ). Such a process U ′(f, k) is a centered Gaussian R1-valued process
with independent increments that, conditionally on the σ-field F , satisfies

Ẽ(U ′(f, k)tU
′(f, k)t) =

∫ t

0
Rσu(f, k)du+M

∫ t

0

[
ρ⊗kσu (f)

]2
du

=

k−1∑
l=−k+1

∫ t

0
E [f(σuUk, · · · , σuU2k−1)f(σuUl+k, · · · , σuUl+2k−1)] du−(2k−1−M)

∫ t

0

[
ρ⊗kσu (f)

]2
du

=

∫ t

0
R′σu(f, k)du

where

R′σu(f, k) =
k−1∑

l=−k+1

E [f(σuUk, · · · , σuU2k−1)f(σuUl+k, · · · , σuUl+2k−1)]−(2k−1−M)
[
ρ⊗kσu (f)

]2
,

M is a constant defined as M = V ar(τni )/∆2
n, and Ẽ refers to the expectation defined on

an extended probability space (Ω̃, F̃ , P̃ ). If Sσ(f, k) is the square root of R′σ(f, k), then
there exists a 1-dimensional Brownian motion B on an extension of the space (Ω,F , P ),
independent of F , such that U ′(f, k) is given by

U ′(f, k)t =

∫ t

0
Sσu(f, k)dBu

Proof:
First, we define the following convenient notation:

ζni = f(∆n
i X/
√
τi, · · · ,∆n

i+k−1X/
√
τi+k−1),

ζ
′n
i = f(βni,0, · · · , βni,k−1),

ζ
′′n
i = ζni − ζ

′n
i

The basic idea of the proof is to replace each normalized increment ∆n
i+lX/

√
τi by βni,l,

and show that CLT is true for that simpler process, then justify this replacement by show-
ing that the simpler process converges to the original process we are really interested in.
Since the proof is rather long and technical, we separate it into a sequence of lemmas
are proved separately. Then, they are combined to produce a proof of the general result.
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Lemma 4.2. √
∆n

Nn
t∑

i=1

(
ζ
′′n
i − Eni−1(ζ

′′n
i )
)

u.c.p−−−→ 0

Lemma 4.3.

1√
∆n

∆n

Nn
t∑

i=1

ρ⊗kσtn
i−1

(f)−
∫ t

0
ρ⊗kσu (f)du

 s−→ Zt

where Zt is a Gaussian random variable N
(

0,M
∫ t

0

[
ρ⊗kσs (f)

]2
ds
)

, and M = V ar(τi)/∆
2
n

Lemma 4.4. The processes

Ūnt =
√

∆n

Nn
t∑

i=1

(
ζ
′n
i − ρ⊗kσtn

i−1

(f)

)

converge stably in law to the process U(f, k) defined on an extension (Ω̃, F̃ , P̃ ) of the space
(Ω,F , P ), which is a centered Gaussian R1-valued process with independent increments
that, conditionally on the σ-field F , satisfies

Ẽ(U(f, k)tU(f, k)t) =

∫ t

0
Rσu(f, k)du

Lemma 4.5. √
∆n

Nn
t∑

i=1

Eni−1(ζ
′′n
i )

u.c.p−−−→ 0

Once we prove these four lemmas, then our Theorem (4.1) follows rather easily. As
long as the limiting terms in (4.3) and (4.4) are independent (and we establish that
independence as part of the proof),

1√
∆n

(
∆nV

′(f, k)t −
∫ t

0
ρ⊗kσu (f)du

)
=
√

∆nV
′(f, k)t −

1√
∆n

∫ t

0
ρ⊗kσu (f)du

=
√

∆n

Nn
t∑

i=1

ζni −
1√
∆n

∫ t

0
ρ⊗kσu (f)du

=
√

∆n

Nn
t∑

i=1

(
ζ
′n
i + ζ

′′n
i

)
− 1√

∆n

∫ t

0
ρ⊗kσu (f)du

=
√

∆n

Nn
t∑

i=1

(
ζ
′n
i + ζ

′′n
i

)
−
√

∆n

Nn
t∑

i=1

ρ⊗kσtn
i−1

(f)du+
√

∆n

Nn
t∑

i=1

ρ⊗kσtn
i−1

(f)du− 1√
∆n

∫ t

0
ρ⊗kσu (f)du
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= Ūnt +
√

∆n

Nn
t∑

i=1

(
ζ
′′n
i − Eni−1(ζ

′′n
i ) + Eni−1(ζ

′′n
i )
)

+
1√
∆n

∆n

Nn
t∑

i=1

ρ⊗kσtn
i−1

(f)du−
∫ t

0
ρ⊗kσu (f)du


= Ūnt +Mn

t + Zt

where Mn
t represents all the terms in the above equation besides Ūnt and Zt. Due to

Lemmas (4.2) and (4.5), Mn
t converge to 0 uniformly in probability.

Proof of Lemma (4.2) In order to prove (4.2), we need to prove the following
proposition

Proposition 4.6. Assume (SH). Let k ≥ 1 and let q > 0. Let f be a continuous function
on Rk, that exhibits polynomial growth as in (3.2) for some p ≥ 0 and K0 ≥ 0. If we
further assume that X is continuous, then as n→∞:

sup
i≥0,ω∈Ω

Eni−1

(∣∣∣∣f (∆n
i X√
τi
, · · · ,

∆n
i+k−1X√
τi+k−1

)
− f(βni,0, · · · , βni,k−1)

∣∣∣∣q)→ 0

The proof of (4.6) relies on Cauchy-Schwarz inequality and Lemma (3.17) in [17].
It is rather straightforward and we omit it here to make the presentation more concise.
The combination of this proposition and Lemma (3.4) from [17] results in the needed
conclusion.

Proof of Lemma (4.3)
As before, we prove this result under the assumption (SH). Recall that under (SH) ||σt|| ≤
Λ and denote by M′ the interval (0,Λ]. Define the function g(σ) = ρ⊗kσ (f) on the set

M′ and introduce ci = τi
∆n

. As a first step, define ηni = 1√
∆n

∫ ti
ti−1

(
g(σu)− g(σnti−1

)
)
du

and εni = 1√
∆n

∫ ti
ti−1

g(σnti−1
)
(

1− 1
ci

)
du. Simple algebra suggests that

1√
∆n

∆n

Nn
t∑

i=1

ρ⊗kσtn
i−1

(f)du−
∫ t

0
ρ⊗kσu (f)du

 = −
Nn

t∑
i=1

ηni −
Nn

t∑
i=1

εni

and so it is enough to show that

Nn
t∑

i=1

ηni
u.c.p.−−−→ 0,

Nn
t∑

i=1

εni
u.c.p.−−−→ 0

To prove that
∑Nn

t
i=1 η

n
i

u.c.p.−−−→ 0 we expand it first as ηni = η
′n
i + η

′′n
i , where

η
′n
i =

1√
∆n

g′(σnti−1
)

∫ ti

ti−1

(σu − σnti−1
)du

η
′′n
i =

1√
∆n

∫ ti

ti−1

[
g(σu)− g(σnti−1

)− g′(σnti−1
)(σu − σnti−1

)
]
du
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Moreover, we further expand η
′n
i as η

′n
i = µni +µ

′n
i where µni = 1√

∆n
g′(σnti−1

)
∫ ti
ti−1

du
∫ u
ti−1

b̃sds

and µ
′n
i = 1√

∆n
g′(σnti−1

)
∫ ti
ti−1

du
(∫ u

ti−1
σ̃sdWs +

∫ u
ti−1

∫
δ̃(s, x)(µ− ν)(ds, dx)

)
. Because g

is C1
b and b̃ is bounded, we have |µni | ≤ Λ

τ2i√
∆n

, and so
∑Nn

t
i=1 |µni | ≤ Λ

∑
τ2i√

∆n
. Based on

the Assumption T, we have E(τ2
i ) = O(∆2

n), and so
∑Nn

t
i=1E

n
i−1(‖µni ‖)

P−→ 0. Then, by

Lemma (3.4) in [17], we have
∑Nn

t
i=1 µ

n
i

u.c.p.−−−→ 0. Using a similar argument plus Doob’s and
Cauchy-Schwarz inequalities, we also have Eni−1(µ

′n
i ) = 0 and Eni−1((µ

′n
i )2) ≤ ΛEni−1(τ2

i ).

Thus we have, yet again,
∑Nn

t
i=1 µ

′n
i

u.c.p.−−−→ 0 and
∑Nn

t
i=1 η

′n
i

u.c.p.−−−→ 0.
As for η

′′n
i , since X is continuous and f is assumed to have polynomial growth,

we further know that g is C2
b on the compact set M. Then by Taylor expansion, we

have |g(σ′) − g(σ) − g′(σ)(σ′ − σ)| ≤ Λ‖σ′ − σ‖2 for all σ, σ′ ∈ M. Therefore, η
′′n
i ≤

K√
∆n

∫ ti
ti−1
|σu − σnti−1

|2du. Due to the inequality (3.73) from [17] we have

E(‖σs+t − σt‖q|Ft) ≤ Kqs
1∧(q/2)

for a constant Kq that may depend on q. Therefore, for some K > 0, we have

Eni−1(|η′′ni |) ≤
Λ·E(τ2i )√

∆n
≤ K∆

3/2
n and

∑[t/∆n]
i=1 Eni−1(|η′′ni |) → 0. Then we have shown

that
∑Nn

t
i=1 η

n
i

u.c.p.−−−→ 0.
Now we prove that

Nn
t∑

i=1

εni
u.c.p.−−−→ 0

First of all, we have εni = 1√
∆n

∫ ti
ti−1

g(σnti−1
)(1 − 1

ci
)du = 1√

∆n
g(σnti−1

) (τi −∆n) and so

E(εni ) = 0 because E(τi) = ∆n. Moreover, by Assumption T we have the conditional

variance V arni−1(εni ) = Eni−1(‖εni ‖2) = g2(σtni−1
)V ar(τi)∆n

= Mg2(σtni−1
)∆n for some ε > 0

where M = V ar(τi)/∆
2
n is a constant. Thus

s2
n =

Nn
t∑

i=1

V arni−1(εni ) = M

Nn
t∑

i=1

g2(σtni−1
)∆n →M

Nn
t∑

i=1

g2(σtni−1
)τi →M

∫ t

0
g2(σs)ds

The above implies that the Lindeberg condition is satisfied for
∑Nn

t
i=1 ε

n
i , and so we have

the stable convergence to Zt:
Nn

t∑
i=1

εni
s−→ Zt

where Zt is a Gaussian distributed random variable with mean zero and varianceM
∫ t

0 g
2(σs)ds:

Z ∼ N
(

0,M

∫ t

0
g2(σs)ds

)

Proof of Lemma (4.4)
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To make this proof simpler, we only consider the case k = 2. For the case of k ≥ 3 no
new ideas are needed but the derivations are much more involved and tedious.

Let gt(x) =
∫
ρσt(dy)f(x, y), we have

Ūnt =

Nn
t +1∑
i=2

ηni + γ
′n
1 − γ

′n
Nn

t +1

where ηni = γni + γ
′n
i and γni =

√
∆n

(
f(βni−1,0, β

n
i−1,1)−

∫
ρσtn

i−2
(dx)f(βni−1,0, x)

)
and

γ
′n
i =

√
∆n

(∫
ρσtn

i−1
(dx)f(βni,0, x)− ρ⊗2

σtn
i−1

(f)

)
. As before, we use the localization pro-

cedure to establish the result we need. First, based on earlier results, we can easily
show that Eni+l−1(|βni,l|q) ≤ Kq for some constant Kq that depends on q; this implies, in

turn, that [E(|γ′ni |) ≤ K
√

∆n. For brevity, define Ū
′n
t =

∑Nn
t +1

i=2 ηni ; now, it is enough
to show that Ū

′n
t converges stably in law to the process U(f, 2)t. Note that ηni is Ftni

measurable. Combining the conclusion of Theorem (3.2) and Lemma (4.3), we show
that Eni−1(ηni ) = 0; moreover, due to localization and the polynomial growth of function
f , it is also easy to check that Eni−1(|ηni |4) ≤ K∆2

n, Before calculating Eni−1((ηni )2), we
first list several simple facts that can be used later:

Eni−1(βni−1,0) = βni−1,0

βni−1,1|Ftni−1

∨
Ntni−1

∼ N(0, σ2
tni−2

) = ρσtn
i−2

βni,0|Ftni−1

∨
Ntni−1

∼ N(0, σ2
tni−1

) = ρσtn
i−1

Our main goal at this stage is to calculate
∑Nn

t +1
i=2 Eni−1((ηni )2) for the variance term. As

a first step, expand Eni−1

(
(ηni )2

)
= ∆nφ

n
i where φni = g(tni−2, t

n
i−1, β

n
i−1,0), and

g(s, t, x) =

∫
ρσs(dy)f2(x, y)−

(∫
ρσs(dy)f(x, y)

)2

+

∫
ρσt(dy) (ρσt(dz)f(y, z))2 −

(
ρ⊗2
σt (f)

)2 − 2ρ⊗2
σt (f)

∫
ρσs(dy)f(x, y)

+2

∫
ρ(dy)ρ(dz)f(x, σsy)f(σty, σtz)

Clearly, if we can establish that

Nn
t +1∑
i=2

Eni−1(∆n
i Nη

n
i )

P−→ 0 (4.1)

for any N which is a component of W (in the 1-dimensional case the W itself) or is a
bounded martingale orthogonal to W , and

∆n

Nn
t +1∑
i=2

φni
P−→
∫ t

0
Rσu(f, 2)du (4.2)
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then the Lemma (3.7) from [17] will yield the stable convergence in law of Ū
′n
t to U ′(f, 2).

First, (4.1) follows from the following

Proposition 4.7. Under (SH), for any function (ω, x) 7→ g(ω, x) on Ω × R which is(
Ftni−1

∨
Ntni−1

)
⊗R-measurable and even, and with polynomial growth in x, we have

Eni−1(∆n
i Ng(., βni )) = 0

where N can be either the process W itself or any bounded martingale orthogonal to both
W and {τi}i≥1.

The proposition (4.7) is a rather standard statement and its proof is omitted for
brevity. To prove the (4.1), we just need to show that Eni−1(∆n

i Nγ
n
i ) = 0 and Eni−1(∆n

i Nγ
′n
i ) =

0. The part involving γ
′n
i is a direct consequence of Proposition (4.7). Furthermore,

while N is a martingale orthogonal to W , we can derive Eni−1(∆n
i Nγ

n
i ) = 0 following

similar arguments as in the proof of Proposition (4.7). So it only remains to prove

that while N is W itself,
∑Nn

t +1
i=2 ξni

P−→ 0,where ξni = Eni−1(γni ∆n
i N) = Eni−1(γni ∆n

iW ).
Since f is globally even and ρs is a measure symmetric about the origin, it is not
hard to see that h(σ, x, y) is globally even in (x, y), and thus

∫
ρσ(dy)h(σ, x, y)y is odd

in x. Further note that σtni−2
∈ Ftni−1

and ∆n
i−1W ∈ Ftni−1

, then it is obvious that

ξni = Eni−1(γni ∆n
iW ) = Eni−1(

√
∆nh(σtni−2

,∆n
i−1W/

√
τi−1,∆

n
iW/
√
τi)∆

n
iW ) = 0. Thus

we finish the proof of (4.1). In order to finish the proof of Lemma (4.4) we only need to
verify the property (4.2). Recall that Eni−1

(
(ηni )2

)
= ∆nφ

n
i . We have

φni = g(tni−2, t
n
i−1, β

n
i−1)

where function g(s, t, x) is as defined before. Observe that φni is Ftni−1

∨
Ntni−1

-measurable
and

Eni−2,i−1(φni ) = E
(
φni |Ftni−2

∨
Ntni−1

)
= h(tni−2, t

n
i−1), Eni−2,i−1(|φni |2) ≤ K

where h(s, t) =
∫
ρσs(dx)g(s, t, x).

Then by Lemma (3.4) from [17], the property (B) would follow if we can show that

∆n

Nn
t∑

i=1

h(tni−1, t
n
i )

P−→
∫ t

0
Rσu(f, 2)du.

Since, due to Lemma (3.4) from [17], ∆n
∑Nn

t
i=1 h(tni−1, t

n
i ) −

∑Nn
t

i=1 τih(tni−1, t
n
i )

P−→ 0, we
only need to verify that

Nn
t∑

i=1

τih(tni−1, t
n
i )

P−→
∫ t

0
Rσu(f, 2)du. (4.3)
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(4.3) follows immediately from the Taylor expansion of the function h(tni−1, y) at the
point y = tni−1 and the use of Riemann sum approximation.

Proof of Independence:
Before moving forward, we need to check whether or not the limiting term in Lemma
(4.3) is conditionally independent of the limiting term in Lemma (4.4). If they are not
independent, then a covariance term needs to be added into the variance of the limiting
distribution in our CLT. For simplicity, we still work on the case k = 2 since this will not
change the fact we want to prove. To do this, it is only necessary to check the correlation

between
∑Nn

t
i=1 ε

n
i and

∑Nn
t +1

i=2 ηni , because other terms converge in probability uniformly
as n →∞. In this proof, the key point is to show that τni is conditionally independent
of f(βni−1,0, β

n
i−1,1) given Ftni−1

∨
Ntni−1

, which is true since

βni−1,0|Ftni−1

∨
Ntni−1

= βni−1,0

βni−1,1|Ftni−1

∨
Ntni−1

∼ N(0, σ2
tni−2

)

Thus we have

E
(
(τni −∆n)f(βni−1,0, β

n
i−1,1)

)
= E

[
E
(

(τni −∆n)f(βni−1,0, β
n
i−1,1)|Ftni−1

∨
Ntni−1

)]
= 0

Similarly we have

E

(
(τni −∆n)

∫
ρσtn

i−2
(dx)f(βni−1,0, x)

)
= 0

It is also easy to check that

E

(
(τi −∆n)

∫
ρσtn

i−1
(dx)f(βni,0, x)

)
= 0

Thus we have

E(εni η
n
i ) = E

[
ρ⊗2
σti−1

(f)(τni −∆n)

(
f(βni−1,0, β

n
i−1,1)−

∫
ρσti−2

(dx)f(βni−1,0, x)

)]

+E

[
ρ⊗2
σti−1

(f)(τni −∆n)

(∫
ρσti−1

(dx)f(βni,0, x)− ρ⊗2
σtn

i−1

(f)

)]
= 0

And it is trivial to check
E(εni η

n
j ) = 0, if i > j

To calculate E(εni−1η
n
i ), just conditional on Ftni−1

∨
Ntni−1

and notice that εni−1 ∈ Ftni−1

∨
Ntni−1

,
then

E(εni−1η
n
i ) = E

[
E
(
εni−1η

n
i |Ftni−1

∨
Ntni−1

)]
= E

[
εni−1E

(
ηni |Ftni−1

∨
Ntni−1

)]
= E

[
εni−1 × 0

]
= 0
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And similarly we have
E(εni η

n
j ) = 0, if i+ 1 < j

Thus we have shown that for any i, j > 0,

E(εni η
n
j ) = 0

Thus

E

Nn
t∑

i=1

εni

Nn
t +1∑
i=2

ηni

 = 0

and this confirms the independence of the two limiting terms.
Proof of Lemma (4.5)

We start with defining, for l = 0, · · · , k − 1, the following functional sequence:

gni,l(x) =

∫
f

(
∆n
i X√
τi
, · · · ,

∆n
i+l−1X√
τi+l−1

, x, xl+1, · · · , xk−1

)
ρ⊗(k−l−1)
σtn

i−1

(dxl+1, · · · , dxk−1)

Note that, as a function of ω, gni,l(x) is Ftni+l−1

∨
Htni+l−1

-measurable, while as a function
of x it is once continuously differentiable. Also, for some random variable Zi,l that is
Ftni+l−2

∨
Htni+l−2

-measurable, we easily obtain that, based on the assumptions about the
price process Xt and the assumption (SH), |gni,l(x)|+ | 5 gni,l(x)| ≤ KZni,l(1 + |x|r) where
r ≥ 0 and Eni−1(|Zni,l|p) ≤ Kp ∀p > 0. For all A ≥ 1 there is also a positive function
GA(ε) converging to 0 as ε→ 0, such that with Zni,l as above:

|x| ≤ A,Zni,l ≤ A, |y| ≤ ε =⇒ |5 gni,l(x+ y)−5gni,l(x)| ≤ GA(ε)

If we define

ζ
′′n
i =

k−1∑
l=0

f

(
∆n
i X√
τi
, · · · ,

∆n
i+lX√
τi+l

, βni,l+1, · · · , βni,k−1

)
−f
(

∆n
i X√
τi
, · · · ,

∆n
i+l−1X√
τi+l−1

, βni,l, · · · , βni,k−1

)
,

we can immediately verify that

Eni−1(ζ
′′n
i ) =

k−1∑
l=0

Eni−1

(
gni,l(∆

n
i+lX/

√
τi+l)− gni,l(βni,l)

)
Now, it is enough to prove that for any l ≥ 0 we have

√
∆n
∑Nn

t
i=1E

n
i−1

(
gni,l(∆

n
i+lX/

√
τi+l)− gni,l(βni,l)

)
u.c.p.−−−→

0, or, defining ξni,l = ∆n
i+lX/

√
τi+l − βni,l,

√
∆n

Nn
t∑

i=1

Eni−1

(
gni,l(β

n
i,l + ξni,l)− gni,l(βni,l)

) u.c.p.−−−→ 0.
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Using Taylor expansion, the left side of the above can be further written as

√
∆n

Nn
t∑

i=1

Eni−1

(
gni,l(β

n
i,l + ξni,l)− gni,l(βni,l)

)

=
√

∆n

Nn
t∑

i=1

Eni−1

[
5gni,l(βni,l)ξni,l +

(
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

]

=
√

∆n

Nn
t∑

i=1

Eni−1

(
5gni,l(βni,l)ξni,l

)
+
√

∆n

Nn
t∑

i=1

Eni−1

((
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

)
Thus, in order to prove the Lemma, we only needs to show

√
∆n

Nn
t∑

i=1

Eni−1

(
5gni,l(βni,l)ξni,l

) u.c.p.−−−→ 0 (4.4)

and √
∆n

Nn
t∑

i=1

Eni−1

((
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

)
u.c.p.−−−→ 0 (4.5)

separately. The proof of (4.5) is a straightforward application of multivariate calculus
and is therefore omitted for brevity.

Proof of (4.4)
To prove (4.4), following the same scheme as in [17], we first further decompose ξni,l into
two parts as below:

ξni,l =
(
ξ̂ni,l + ξ̃ni,l

)
/
√
τi+l

where

ξ̂ni,l =

∫ tni+l

tni+l−1

(bs − btni+l−1
)ds

+

∫ tni+l

tni+l−1

[∫ s

tni+l−1

(
b̃udu+ (σ̃u − σ̃tni+l−1

)dWu

)
+

∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

]
dWs

ξ̃ni,l = btni+l−1
τi+l+

∫ tni+l

tni+l−1

[
σ̃tni+l−1

∫ s

tni+l−1

dWu +

∫ s

tni+l−1

∫
δ̃(ti+l−1, x)(µ− ν)(du, dx)

]
dWs

Then (4.4) amounts to the following two claims:

√
∆n

Nn
t∑

i=1

Eni−1

[
1
√
τi+l
5 gni,l(β

n
i,l)ξ̃

n
i,l

]
u.c.p.−−−→ 0 (4.6)
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and √
∆n

Nn
t∑

i=1

Eni−1

[
1
√
τi+l
5 gni,l(β

n
i,l)ξ̂

n
i,l

]
u.c.p.−−−→ 0. (4.7)

Proof of (4.6)
Note that the restriction of µ to (ti+l−1,∞)×E and the increments of W after time ti+l−1

are independent, then conditional on Mtni+l−1
= Ftni+l−1

∨
σ(Wt : t ≥ 0)

∨
σ(τi : i ≥ 0),

we get

E(ξ̃ni,l|Mti+l−1
) = bti+l−1

τi+l + σ̃tni+l−1

∫ ti+l

ti+l−1

(∫ s

tni+l−1

dWu

)
dWs

which is even in W . Thus for a function h which is odd with polynomial growth, we
deduce

Eni+l−1(ξ̃ni,lh(βni,l)) = 0

At this point, it is easy to see that, if function f is even in each argument, then gni,l(β
n
i,l)

is even and 5gni,l(βni,l) is odd. This implies immediately that (4.6) is true and we are only
left with proving (4.6) in case of the globally even polynomial function f . To achieve
that, first, define

h (∆i,lX,x) = gni,l(x) =

∫
f

(
∆n
i X√
τi
, · · · ,

∆n
i+l−1X√
τi+l−1

, x, xl+1, · · · , xk−1

)
ρ⊗(k−l−1)
σtn

i−1

(dxl+1, · · · , dxk−1)

where ∆i,lX =
(

∆n
i X√
τi
, · · · , ∆n

i+l−1X√
τi+l−1

)
Clearly, the function h is globally even in (∆i,lX,x) since f is globally even and the
Gaussian law is symmetric. Since f is a continuous function with at most polynomial
growth, we can expand function h as h(∆i,lX,x) = a(∆i,lX)+bi,l(x)+c(∆i,lX,x) where
function a only contains constant and terms with no x involved, bi,l only contains terms
with x (but not any part of ∆i,lX) involved, and function c contains the rest, i.e. those
terms with both x and part of ∆i,lX involved. Denote the partial differential w.r.t x 5x,
then obviously we have 5xa(∆i,lX) = 0. Since h is globally even, the terms that only
contain x must be even in x, i.e. bi,l(x) is even is x. Thus 5xbi,l(x) is odd in x and we

have Eni−1

(
1√
τi+l
5x bi,l(x)ξ̃ni,l

)
= 0 while x = βni,l from the arguments above. Since f

is a polynomial function, we can write function c as c(∆i,lX,x) =
∑l−1

j=0

(
∆n

i+jX√
τi+j

)pj
xqj .

Since function c should still be globally even in (∆i,lX,x) (because function h is globally
even), for any j, pj + qj must be an even number. Thus 5xc(∆i,lX,x) is globally odd in
(∆i,lX,x). Let τ represent the vector (τi, · · · , τi+l−1) and dW represent any terms that
contain an integral w.r.t the Brownian motion. Now we treat function 5xc(∆i,lX,β

n
i,l)

as a function of dW and τi+j so that 5xc(∆i,lX,β
n
i,l) = c1(τ, dW ) + c2(dW ) where c1 is

the term that depends on both τ and dW while c2 depends on dW onlye. Recall that

E(ξ̃ni,l|Mti+l−1
) = bti+l−1

τi+l + σ̃tni+l−1

∫ ti+l

ti+l−1

(∫ s

tni+l−1

dWu

)
dWs



18

and so

Eni−1

(
1
√
τi+l
5x c(∆i,lX,β

n
i,l)ξ̃

n
i,l

)
= Eni−1

((
1
√
τi+l

c1(τ, dW ) +
1
√
τi+l

c2(dW )

)
ξ̃ni,l

)
Since function 5xc(∆i,lX,β

n
i,l) is globally odd, then it is easy to check that c2 is of odd

power of dW and Eni−1

(
c2(dW )ξ̃ni,l

)
= 0. As for the term Eni−1

(
1√
τi+l

c1(τ, dW )ξ̃ni,l

)
,

after simple calculations it is easy to check that those terms are all, at least, of order

O(n−
3
2 ). (since Eni−1

(
1√
τi+l

τ2
i+j

)
= O(n−

3
2 )).

Thus we still have

√
∆n

Nn
t∑

i=1

Eni−1

(
1
√
τi+l
5x c(∆i,lX,β

n
i,l)ξ̃

n
i,l

)
u.c.p.−−−→ 0

Finally recall that

gni,l(x) = h(∆i,lX,x) = a(∆i,lX,x) + bi,l(x) + c(∆i,lX,x)

and so (4.6) has been established by showing that it converges to zero for each of the
functions above in the decomposition.
Proof of (4.7)

To make our notation more convenient, denote E (·|Fi+l−1 ∨NT ) = E∗i+l−1. It is con-
venient to split the statement of (4.7) into two separate Lemmas that, taken together,
suffice to establish it. We state these Lemmas first.

Lemma A2A:
Assuming (SH), we have

E∗i+l−1

(
|ξ̂ni,l|2

)
≤ Kτi+l

(
τ2
i+l + αni,l

)
where

αni,l = E∗i+l−1

(∫ tni+l

tni+l−1

(
|bs − bti+l−1

|2 + |σ̃s − σ̃tni+l−1
|2 +

∫
|δ̃(s, x)− δ̃(tni+l−1, x)|2λ(dx)

)
ds

)

Lemma A2B: Under the same assumptions as the previous Lemma,

√
∆n

Nn
t∑

i=1

√
E(αni,l)→ 0

Both Lemmas have rather simple proofs. The proof of Lemma A2B is rather elementary
and we omit it altogether. The proof of Lemma A2A relies extensively on the use of
Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities and we omit it as well in the
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interest of brevity. Now we can finally prove the statement (4.7). Combining Lemma
A2A and A2B, we can show that

√
∆n

Nn
t∑

i=1

Eni−1

[
1
√
τi+l
5 gni,l(β

n
i,l)ξ̂

n
i,l

]
≤
√

∆n

Nn
t∑

i=1

Eni−1

(
K
√
τi+l

Zni,l(1 + |βni,l|r)|ξ̂ni,l|
)

≤
√

∆n

Nn
t∑

i=1

Eni−1

(
KZni,l√
τi+l

√
Eni+l−1(1 + |βni,l|r)2 ·

√
E∗i+l−1|ξ̂ni,l|

2

)

≤
√

∆n

Nn
t∑

i=1

Eni−1

(
KZni,l(τi+l +

√
αni,l)

)

≤
√

∆n

Nn
t∑

i=1

K
(

∆n +
√
Eni−1(αni,l)

)
u.c.p.−−−→ 0

Thus we finished the proof of (4.7). Combining this with the proof of (4.6) and (4.5),
the result of Lemma (4.5) is immediately obtained.

Note that in Theorem (4.1) the function f is a 1-dimensional function on Rk. How-
ever, it is easy to check that the CLT should still be true even when f is a q-dimensional
function on Rk as long as every assumption in Theorem (4.1) still holds true. Such a
version may be more useful in many applications since it offers us more flexibility when
constructing function f . We will state such a q-dimensional version as a Corollary here.
Since its proof is almost the same as that of (4.1) but with an added layer of technical
complexity, it will be omitted here.

Corollary 4.8. Assume (H) and (T). Let f = (f1, · · · , fq) be a q-dimensional function
on Rk satisfying any one of the two cases below

• (a) a polynomial function which is globally even, that is

f(−x1, · · · ,−xl, · · · ,−xk) = f(x1, · · · , xl, · · · , xk)

• (b) a C1 function with derivatives having polynomial growth on Rk, which is even
in each argument, i.e.

f(x1, · · · ,−xl, · · · , xk) = f(x1, · · · , xl, · · · , xk), ∀ 1 ≤ l ≤ k

If X is continuous, then the process

1√
∆n

(
∆nV

′(f, k)t −
∫ t

0
ρ⊗kσu (f)du

)
converge stably in law to a continuous process U ′(f, k) defined on an extension (Ω̃, F̃ , P̃ )
of the space (Ω,F , P ), which conditionally on the σ-field F is a centered Gaussian Rq-
valued process with independent increments, satisfying

Ẽ(U ′(fi, k)tU
′(fj , k)t) =

∫ t

0
Ri,jσu(f, k)du
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where for i, j = 1, · · · , q we set:

Ri,jσ (f, k) =
k−1∑

l=−k+1

E (fi(σUk, · · · , σU2k−1)fj(σUl+k, · · · , σUl+2k−1))

−(2k − 1−M)E (fi(σU1, · · · , σUk))E (fj(σU1, · · · , σUk))

5 Discussion

In this paper, we obtain some general asymptotic results for normalized functionals
of increments of a continuous semimartingale process under a broad ranging random
sampling scheme. In our approach, the random duration times τi between the two
successive trading times ti−1 and ti are not specified down to a specific distribution but.
Rather, we only impose a general restriction on how the largest and smallest duration
time behaves in large samples; this assumption implies, in turn, the rate at which both
the expected value and the variance of a duration time goes to zero as the sample size
n → ∞. Such a broad random discretization scheme includes, as a special case, the
classical Poisson arrival scheme. Through delicate treatment of the functionals of the
increments of the stochastic process for asset returns and duration times, we proved some
important asymptotic results for the new estimator including the law of large numbers
and the central limit theorem. This work builds the theoretical foundation for statistical
estimation and inference on continuous semimartingales under wide ranging selection of
random discretization schemes.

There is a number of possible extensions that could be considered as part of the
future research. As an example, in this paper it is assumed that the stochastic trading
times ti are independent of the log price process Yt. This is somewhat restrictive from
the application viewpoint; thus, another step ahead would be to obtain a similar law of
large numbers and the central limit theorem under a reasonable dependence assumption
between the two. Another interesting extension that could be considered is the possibility
of dependence between duration times in our random discretization scheme.
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estimation for high-dimensional Itô processes with measurement errors. Annals of
Statistics, 41(4):1816–1864.

[23] Wang, Y. and Zou, J. (2010). Vast volatility matrix estimation for high-frequency
financial data. Annals of Statistics, 38(2):943–978.

[24] Wang, Y. and Zou, J. (2014). Volatility analysis in high-frequency financial data.
Wiley Interdisciplinary Reviews: Computational Statistics, 6(6):393–404.

[25] Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observa-
tions: a multi-scale approach. Bernoulli, 12(6):1019–1043.

[26] Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise. Journal
of Econometrics, 160(1):33–47.

[27] Zhang, L., Mykland, P. A., and Aı̈t-Sahalia, Y. (2005). A tale of two time scales:
determining integrated volatility with noisy high-frequency data. Journal of the Amer-
ican Statistical Association, 100(472):1394–1411.


