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Abstract

Linear systems of structural equations have been recently investigated to reveal the

structures of genome-wide gene interactions in biological systems. However, building

such a system usually involves a huge number of endogenous variables and even

more exogenous variables, and hence demands a powerful statistical method which

limits memory consumption and avoids intensive computation. We propose a two-

stage penalized least squares method to build large systems of structural equations.

Fitting one linear model for each endogenous variable at each stage, the method

employs the L2 penalty at the first stage to obtain consistent estimation of a set of

well-defined surrogate variables, and the L1 penalty at the second stage to consistently

select regulatory endogenous variables among massive candidates. Without fitting a

full information model, the method is computationally fast and allows for parallel

implementation. The resultant estimates of the regulatory effects enjoy the oracle

properties, that is, they perform as well as if the true regulatory endogenous variables

were known. We also demonstrated the effectiveness of the method by conducting

simulation studies, showing its improvements over other methods. Our method was

applied to construct a yeast gene regulatory network with a genetical genomics data.

∗This work was partially supported by NSF CAREER award IIS-0844945 and the Cancer Care Engi-

neering project at the Oncological Science Center of Purdue University.
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1 INTRODUCTION

We consider a linear system with p endogenous and q exogenous variables. With a sample

of n observations from this system, we denote by Yn×p = (Y1, · · · ,Yp) and Xn×q =

(X1, · · · ,Xq) the observed values of endogenous and exogenous variables, respectively. The

interactions between endogenous variables and direct causal effects by exogenous variables

can be described by a system of structural equations,

Y = YΓ+XΨ+ ǫ, (1)

where the p × p matrix Γ has zero diagonal elements and contains regulatory effects, the

q× p matrix Ψ contains causal effects, and ǫ is an n× p matrix of error terms. We assume

that X and ǫ are independent of each other, and each component of ǫ is independently

distributed as normal with zero mean while rows of ǫ are identically distributed.

With gene expression levels and genotypic values as endogenous and exogenous vari-

ables, respectively, model (1) has been used to represent a gene regulatory network with

each equation modeling the regulatory effects of other genes and causal effects of cis-eQTL

(i.e., expression quantitative trait loci located within the region of their target gene) on

a given gene, see Xiong et al. (2004), Liu et al. (2008), Logsdon and Mezey (2010), and

Cai et al. (2013), among others. Genetical genomics experiments (Jansen and Nap 2001)

have been widely undertaken to obtain genome-wide gene expressions and genotypic values

(Schadt et al. 2003). However, fitting a system of structural equations in (1) to genetical

genomics data for the purpose of revealing a whole-genome gene regulatory network is still

hindered by lack of an effective statistical method which addresses issues brought by large

numbers of endogenous and exogenous variables.

Several efforts have been put to construct the system (1) with genetic genomics data.

Xiong et al. (2004) proposed to use a genetic algorithm to search for genetic networks
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which minimize the Akaike information criterion (AIC; Akaike 1974), and Liu et al. (2008)

instead proposed to minimize the Bayesian information criterion (BIC; Schwartz 1978)

and its modification (Broman and Speed 2002) for the optimal genetic networks. Both

AIC and BIC are applicable to inferring networks for only a small number of endogenous

variables. For a large system with many endogenous and exogenous variables, Cai et al.

(2013) proposed to maximize a penalized likelihood to construct a sparse system. However,

it is computationally prohibitive to fit a large system based on the likelihood function of

the complete model. Logsdon and Mezey (2010) instead proposed to apply the adaptive

lasso (Zou 2006) to fitting each structural equation separately, then recover the network

relying on additional assumption on unique exogenous variables. However, Cai et al. (2013)

demonstrated its inferior performance via simulation studies, which is consistent with our

conclusion.

Instead of the full information model specified in (1), we here seek to establish the large

system via constructing a large number of limited information models, each for one endoge-

nous variable (Schmidt 1976). For example, when k-th endogenous variable is concerned,

we can focus on the k-th structural equation in (1) which models the regulatory effects

of other endogenous variables and direct causal effects of exogenous variables, however,

the system structures contained in other structural equations are skipped, leading to the

following limited-information model,







Yk = Y−kγk +Xψk + ǫk,

Y−k = Xπ−k + ξ−k.
(2)

HereY−k refers toY excluding the k-th column, γk refers to the k-th column of Γ excluding

the diagonal zero, and ψk and ǫk refer to the k-th columns of Ψ and ǫ respectively. The

second part of the model (2) is from the following reduced model by excluding the k-th
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equation, with π = Ψ(I− Γ)−1 and ξ = ǫ(I− Γ)−1,

Y = Xπ + ξ. (3)

In a classical low-dimensional setting, it is well known that a two-stage least squares

(2SLS) method can produce consistent estimates of the parameters when the system is

identifiable (Theil 1953; Basmann 1957). However, as in a typical genetical genomics

experiment, we here are interested in constructing a large system with the number of

endogenous variables p much larger than the sample size n. Such a high-dimensional and

small sample size data set makes it infeasible to directly apply 2SLS method. Indeed,

p ≫ n results in perfect fits of reduced form equations at the first stage, which implies

to regress against the observed values of endogenous variables at the second stage and

therefore obtain ordinary least squares estimates of the parameters. It is well known that

such ordinary least squares estimates are inconsistent. Furthermore, constructing a large

system demands, at the second stage, selecting regulatory endogenous variables among

massive candidates, i.e., variable selection in fitting high-dimensional linear models.

Here we propose a two-stage penalized least squares (2SPLS) method to address the

challenges in establishing system (1) in the case p ≫ n. The method fits one regularized

linear model for each endogenous variable at each stage. At the first stage, the L2 penalty

is employed to obtain consistent estimates of a set of well-defined surrogate variables which

allow to separately investigate individual structural models and consistently estimate all

regulatory effects for each endogenous variable. At the second stage, each endogenous

variable is regressed against the estimates of surrogate variables, and the L1 penalty is em-

ployed to identify regulatory variables among massive candidates. The use of regularization

techniques helps avoid overfitting at the first stage and allows to exploit sparse structure of

the system at the second stage. We show that the resultant estimates of regulatory effects

enjoy the oracle properties.
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The proposed method addresses three challenging issues in constructing a large system

of structural equations, i.e., memory capacity, computational time, and statistical power.

First, the limited information models are employed to develop the algorithm so as to avoid

managing the full information models which may consist of many subnetworks and involve

a massive number of endogenous variables. Second, allowing to fit one linear model for

each endogenous variable at each stage makes the algorithm computationally fast. It also

makes it feasible to parallel the large number of model fittings at each stage. Third, the

oracle properties of the resultant estimates show that the proposed method can achieve

optimal power in identifying and estimating regulatory effects. Furthermore, the efficient

computation makes it feasible to use the bootstrap method to evaluate the significance of

regulatory effects for small data sets.

The rest of this paper is organized as follows. We first state an identifiable model in

the next section. Provided in Section 3 is a new view on the classical 2SLS method, which

motivates our development of the 2SPLS method in Section 4. In Section 5, we show

that the estimates from 2SPLS have the oracle properties with the proof included in the

Appendix. Simulation studies are carried out in Section 6 to evaluate the performance

of 2SPLS. An application to a real data set to infer a yeast gene regulatory network is

presented in Section 7. We conclude this paper with a discussion in Section 8.

2 THE IDENTIFIABLE MODEL

We follow the practice of constructing system (1) in analyzing genetic genomics data, and

assume that each endogenous variable is affected by a unique set of exogenous variables.

That is, the structural equation in (2) has known zero elements of ψk. Explicitly, we use Sk

to denote the set of row indices of known nonzero elements in ψk. Then we have known sets
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Sk, k = 1, 2, · · · , p, which dissect the set {1, 2, · · · , q}. We explicitly state this assumption

in the below.

Assumption A. Sk 6= ∅ for k = 1, · · · , p, but Sj ∩ Sk = ∅ as long as j 6= k.

The above assumption indeed satisfies the rank condition (Schmidt 1976), which is

a sufficient condition for model identification. Since each ψk has a set of known zero

components, hereafter we ignore them and simply rewrite the structural equation in model

(2) as,

Yk = Y−kγk +XSk
ψk + ǫk, ǫk ∼ N(0, σ2

kIn). (4)

3 NEW VIEW OF THE TWO-STAGE LEAST

SQUARES METHOD

Because Y−k and ǫk are correlated, fitting solely model (4) results in biased estimates of

γk and ψk. However, we notice that the following two sets of variables are independent,







Z−k = E[Y−k|X] = Xπ−k,

εk = ǫk + ξ−kγk.

Consequently, consistent estimates of γk and ψk can be obtained by applying least squares

method to the following model,

Yk = Z−kγk +XSk
ψk + εk. (5)

When regulatory effects are considered, {Zj = E[Yj|X] = Xπj : j = 1, 2, · · · , p} serves as

a set of surrogate variables which can help estimate both Γ and Ψ in model (1).
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In practice, Z−k is unknown as it involves unknown π−k. Suppose we instead have a

consistent estimate π̂−k of π−k, i.e.,

π̂−k = π−k + oP (1).

Let Ẑ−k = Xπ̂−k, and further take the following assumption.

Assumption B. n−1XTX → C, where C is a positive definite matrix.

It is easy to see that


















1
n
ẐT

−kẐ−k = 1
n
ZT

−kZ−k + oP (1),

1
n
ẐT

−kXSk
= 1

n
ZT

−kXSk
+ oP (1),

1
n
ẐT

−kYk =
1
n
ZT

−kYk + oP (1).

(6)

When replacing Z−k with Ẑ−k in model (5), we obtain the following least squares estimators

of γk and ψk,




γ̂k

ψ̂k



 =





1
n
ẐT

−kẐ−k
1
n
ẐT

−kXSk

1
n
XT

Sk
Ẑ−k

1
n
XT

Sk
XSk





−1



1
n
ẐT

−kYk

1
n
XT

Sk
Yk



 .

Certainly, the properties in (6) imply that the above estimators approach to the least

squares estimators of fitting model (5), which are also consistent.

Theorem 1 Suppose Assumptions A and B are satisfied for the system (1) with fixed p ≪ n

and q ≪ n. When there exists a consistent estimator π̂−k of π−k, the ordinary least squares

estimators of (γk,ψk) obtained by regressing Yk against (Xπ̂−k,XSk
) are also consistent.

When a
√
n-consistent least squares estimator of πj is obtained by fitting each equation

in (3) for j = 1, · · · , p, the resultant estimators of γk andψk are exactly the 2SLS estimators

by Theil (1953) and Basmann (1957). In the following, we consider to construct the system

(1) in the case that p ≫ n. Such a high-dimensional and small sample size data set makes

it infeasible to directly apply the 2SLS method.
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4 THE TWO-STAGE PENALIZED LEAST

SQUARES METHOD

4.1 The Method

To construct the limited-information model (2), we can obtain consistent estimates of the

surrogate variables by fitting high-dimensional linear models, and then conduct a high-

dimensional variable selection following our view on model (5). Hence we propose a two-

stage penalized least squares (2SPLS) procedure to construct each model in (2) so as to

establish the large system (1).

At the first stage, we use the ridge regression to fit each reduced-form model in (3) to

obtain consistent estimates of the surrogate variables. That is, for each j = 1, 2, · · · , p, we
obtain the ridge regression estimator of πj by minimizing the following penalized sum of

squares

‖Yj −Xπj‖2 + τj ||πj||2, (7)

where τj > 0 is a tuning parameter that controls the strength of the penalty. The solution

to the minimization problem is π̂j = (XTX + τjI)
−1XTYj, which leads to a consistent

estimate of Zj ,

Ẑj = PτjYj,

where Pτj = X(XTX + τjI)
−1XT . With a proper choice of τj, ridge regression has very

good prediction performance as shown in the next section.

At the second stage, we replace Z−k with Ẑ−k in model (5) to derive estimates of γk

and ψk. Specifically, we minimize the following penalized error squares to obtain estimates
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of γk and ψk,

1

2
‖Yk − Ẑ−kγk −XSk

ψk‖2 + λnω
T
k |γk|, (8)

where |γk| implies to componentwisely take absolute values of γk, ωk is a known weight

vector, and λn > 0 is a tuning parameter.

Minimizing for ψk in (8) leads to

ψ̂k = (XT
Sk
XSk

)−1XT
Sk
(Yk − Ẑ−kγk),

where XSk
is usually of low dimension, and the above least squares estimator of ψk is easy

to obtain.

Plugging ψ̂k into (8), we can solve the following minimization problem to obtain an

estimate of γk,

γ̂k = argmin
γk

{

1

2
(Yk − Ẑ−kγk)

THk(Yk − Ẑ−kγk) + λnω
T
k |γk|

}

. (9)

This is equivalent to a variable selection problem in regressingHkYk against high-dimensional

HkẐ−k. We will resort to adaptive lasso to select nonzero components of γk and estimate

them. Specifically, picking up a δ > 0 and obtaining γ̃k as a
√
n-consistent estimate of γk,

we calculate the weight vector ωk with components inversely proportional to components

of |γ̃k|δ. The above minimization problem (9) is a convex optimization problem which is

computationally efficient.

4.2 Tuning Parameter Selection

In this method, we need to select tuning parameters at each stage. At the first stage, we

propose to choose each τj in (7) by the method of generalized cross-validation (GCV; Golub
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et al. 1979), that is,

τj = argmin
τ>0

Gj(τ) = argmin
τ>0

(Yj −PτYj)
T (Yj −PτYj)

(n− tr{Pτ})2
.

It is a rotation-invariant version of ordinary cross-validation, and leads to an approximately

optimal estimate of the surrogate variable Zj . At the second stage, the tuning parameter

λn in (9) is obtained via K-fold cross validation.

5 THEORETICAL PROPERTIES

As an extension of the classical 2SLS method to high dimensions, the proposed 2SPLS

method also has some good theoretical properties. In this section, we will show that the

2SPLS estimates enjoy the oracle properties. As the second-stage estimation replies on the

ridge estimates Ẑ−k obtained from the first stage, we first discuss the theoretical properties

on Ẑ−k, which provide guarantee for the oracle properties of our proposed estimates.

As aforementioned, each τj in (7) is obtained by the method of generalized cross-

validation. Interestingly, as stated by Golub et al. (1979), τj obtained by GCV is closely

related to the one minimizing

Tj(τ) = (Zj −PτYj)
T (Zj −PτYj).

Indeed, the following result follows Theorem 2 of Golub et al. (1979).

Theorem 2 Suppose that all components of πj are i.i.d. with mean zero and variance σ2
π,

then

argmin
τ>0

E [E[Gj(τ)|πj ]] = argmin
τ>0

E [E[Tj(τ)|πj ]] =
σ2
ξj

σ2
π

,

where σ2
ξj

is the variance component of ξj in model (2).
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This theorem implies that the GCV estimate Ẑj = PτjYj is approximately the optimal

estimate of the surrogate variable Zj . Furthermore, as the optimal tuning parameter ap-

proximates a constant determined by the variance components ratio, hereafter we take the

following assumption on τj .

Assumption C. τj/
√
n → 0 as n → ∞, for j = 1, · · · , p.

Denote Hk = I−XSk
(XT

Sk
XSk

)−1XT
Sk
, we then have the following properties on Ẑ−k.

Theorem 3 For k = 1, . . . , p, let Mk = πT
−k(C −C•Sk

C−1
Sk,Sk

CSk•)π−k where each CSrSc

is a submatrix of C identified with row indices in Sr and column indices in Sc (the dot

implies all rows or columns). Then, under Assumptions A, B, and C,

a. n−1ẐT
−kHkẐ−k →p Mk, as n → ∞;

b. n−1/2(Yk − Ẑ−kγk)
THkẐ−k →d N(0, σ2

kMk), as n → ∞.

Since n−1ZT
−kHkZ−k → Mk, Theorem 3.a states that ẐT

−kHkẐ−k is a good approxima-

tion to ZT
−kHkZ−k. On the other hand, Hk(Yk − Ẑ−kγk) is the error term in regressing

HkYk against HkẐ−k, and Theorem 3.b implies that n−1(Yk−Ẑ−kγk)
THkẐ−k →d 0. Thus

Ẑ−k results in regression errors with good properties, i.e., the error effects on the 2SPLS

estimators will vanish when the sample size gets sufficiently large.

In summary, the above theorem indicates that Ẑ−k behaves the same way as Z−k asymp-

totically, which makes it feasible to replace Z−k with Ẑ−k at the second stage. The crucial

properties of Ẑ−k in Theorem 3, together with the good theoretical properties of adaptive

lasso, will lead to the oracle properties of our proposed estimates. We denote the j-th

elements of γk and γ̂k as γkj and γ̂kj, respectively. Then, with a proper choice of λn, the

proposed method enjoys the following oracle properties.
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Theorem 4 (Oracle Properties) Let Ak = {j : γkj 6= 0}, Âk = {j : γ̂kj 6= 0}, and Mk,Ak

be the submatrix of Mk identified with both row and column indices in Ak. Suppose that

λn/
√
n → 0 and λnn

(δ−1)/2 → ∞. Then, under Assumptions A, B, and C, the estimates

from the proposed 2SPLS method satisfy the following properties,

a. Consistency in variable selection: limn→∞ P (Âk = Ak) = 1;

b. Asymptotic normality:
√
n(γ̂k,Ak

− γk,Ak
) →d N(0, σ2

kM
−1
k,Ak

), as n → ∞.

It is worthwhile to mention that Theorem 3 plays an essential role in establishing the

oracle properties of 2SPLS. In fact, as long as the properties in Theorem 3 hold true for

the first-stage estimates of Z−k, we can generalize the second-stage regularization to a wide

class of regularization methods, all the theoretical properties of which can be inherited by

our proposed two-stage method.

6 SIMULATION STUDIES

We conducted simulation studies to compare 2SPLS with the adaptive lasso based algorithm

(AL) by Logsdon and Mezey (2010), and the sparsity-aware maximum likelihood algorithm

(SML) by Cai et al. (2013). Both acyclic networks and cyclic networks were simulated,

each involving 300 endogenous variables. Each endogenous variable was simulated to have,

on average, one regulatory effect for sparse networks, or three regulatory effects for dense

networks. The regulatory effects were independently simulated from a uniform distribution

over (−1,−0.5)∪(0.5, 1). To allow the use of AL and SML, every endogenous variable in the

same network was simulated to have the same number (either one or three) of known causal

effects by the exogenous variables, with all effects equal to one. Each exogenous variable

was simulated to take values 0, 1 and 2 with probabilities 0.25, 0.5 and 0.25, respectively,
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emulating genotypes of an F2 cross in a genetic genomics experiment. All error terms were

independently simulated from N(0, 0.12), and the sample size n varied from 100 to 1000.

For each network setup, we simulated 100 data sets and applied all three algorithms to

calculate the power and false discovery rate (FDR).

For inferring acyclic networks, the power and FDR of the three different algorithms

are plotted in Figure 1. In the case that each endogenous variable has only one known

exogenous effect (EE), 2SPLS has the greatest power to infer both sparse and dense acyclic

networks from data sets with different sample sizes. In the case of three EEs available for

each endogenous variable, 2SPLS still has greater power than the other two algorithms

when the sample size is small or moderate. When the sample size is large, 2SPLS and

SML are comparable for constructing both sparse and dense acyclic networks. In any case,

2SPLS and SML provide much greater power than AL. Indeed, AL provides power as low

as under 10% when the sample size is not large, and its power is still under 50% even when

the sample size increases to 1000. On the other hand, 2SPLS provides power over 80% for

small sample sizes, and over 90% for moderate to large sample sizes.

As shown in Figure 1, 2SPLS controls the FDR under 20% except the case with three

available EEs and very small sample sizes (n = 100). While it controls the FDR as low as

under 5% for sparse acyclic networks when the sample sizes are large, SML reports large

FDRs when the sample sizes are not large. Indeed, when the sample sizes are under 200,

SML reports FDR over 40% for dense acyclic networks. In general, both 2SPLS and SML

outperform AL in terms of FDR though AL reports FDR lower than 2SPLS when inferring

sparse acyclic networks with one available EE from data sets of very large sample sizes.

Plotted in Figure 2 are the power and FDR of the three different algorithms when

inferring cyclic networks. Similar to the results on acyclic networks, 2SPLS has greater

power than the other two algorithms across all sample sizes and has lower FDR when
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a. Power of Sparse Networks b. FDR of Sparse Networks
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c. Power of Dense Networks d. FDR of Dense Networks
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Figure 1: Performance of 2SPLS (solid lines), AL (dashed lines), and SML (dotted lines)

when identifying regulatory effects in acyclic networks with one EE (thin lines) or three

EEs (thick lines).
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the sample size is not large. For dense cyclic networks, AL has power mostly under 20%

and FDR over 30%. While it improves the FDR for sparse cyclic networks with large

sample sizes, AL has power as low as under 10%. SML provides power competitive to

2SPLS for sparse cyclic networks, but its power is much lower than that of 2SPLS for

dense cyclic networks. Similar to the case of acyclic networks, SML reports much higher

FDR for inferring dense networks from data sets with small sample sizes though it reports

very small FDR when the sample sizes are large. We also conducted simulation studies on

both acyclic and cyclic networks with small to moderate number of endogenous variables

(e.g., 10 to 50 endogenous variables). The performance of 2SPLS is better than AL and

comparable to SML in those scenarios (results are not shown). Indeed, the power of 2SPLS

exceeds 0.9 while maintaining low FDR in most of the scenarios.

While it generally reports higher power and more robust FDR than SML, 2SPLS signif-

icantly reduces the computation time in comparison to SML as it assembles the network by

investigating limited-information models. To demonstrate such advantage of 2SPLS over

SML, we recorded the computing time of all algorithms in inferring the same networks

from small data sets (n = 100). Each algorithm analyzed the same data set using only one

CPU in a server with Quad-Core AMD OpteronTM Processor 8380. Reported in Table 1

are the running times of the three algorithms for inferring different networks. Apparently,

AL is the fastest, and the running time of 2SPLS usually doubles or triples that of AL. The

slowest algorithm is SML which generally takes more than 40 times longer than 2SPLS to

infer different networks. In particular, SML is almost 200 times slower than 2SPLS when

inferring acyclic sparse networks.
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c. Power of Dense Networks d. FDR of Dense Networks
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Figure 2: Performance of 2SPLS (solid lines), AL (dashed lines) and SML (dotted lines)

when identifying regulatory effects in cyclic networks with one EE (thin lines) or three EEs

(thick lines).
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Table 1: The running time (in seconds) of inferring networks from a data set with n = 100.

Acyclic Cyclic

Sparse Dense Sparse Dense

1 EE 3 EEs 1 EE 3 EEs 1 EE 3 EEs 1 EE 3 EEs

2SPLS 1303 1332 1127 1112 1297 1337 1125 1165

AL 405 652 404 637 443 659 430 781

SML 258875 195739 58509 43118 49393 58716 67949 68081

7 REAL DATA ANALYSIS

We analyzed a yeast data set with 112 segregants from a cross between two strains BY4716

and RM11-la (Brem and Kruglyak 2005). A total of 5,727 genes were measured for their

expression values, and 2,956 markers were genotyped. Each marker within a genetic region

(including 1kb upstream and downstream regions) was evaluated for its association with

the corresponding gene expression, yielding 722 genes with marginally significant cis-eQTL

(p-value < 0.05). The set of cis-eQTL for each gene was filtered to control the pairwise

correlation under 0.90, and then further filtered to keep up to three cis-eQTL which have

the strongest association with the corresponding gene expression.

With 112 observations of 722 endogenous variables and 732 exogenous variables, we

applied 2SPLS to infer the gene regulatory network in yeast. The constructed network

includes 7,300 regulatory effects in total. To evaluate the reliability of constructed gene

regulations, we generated 10,000 bootstrap data sets (each with n = 112) by randomly

sampling the original data with replacement, and applied 2SPLS to each data set to infer the

gene regulatory network. Among the 7,300 regulatory effects, 323 effects were repeatedly

identified in more than 80% of the 10,000 data sets, and Figure 3 shows the three largest
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subnetworks formed by these 323 effects. Specifically, the largest subnetwork consists

of 22 endogenous variables and 26 regulatory effects, the second largest one includes 14

endogenous variables and 18 regulatory effects, and the third largest one has 11 endogenous

variables and 16 regulatory effects.

a.

b. c.

Figure 3: Three gene regulatory subnetworks in yeast (the dotted, dashed, and solid arrows

implied that the corresponding regulations were constructed respectively from over 80%,

90%, and 95% of the bootstrap data sets).

A gene-enrichment analysis with DAVID (Huang et al. 2009) showed that the three

subnetworks are enriched in different gene clusters (controlling p-values from Fisher’s exact

tests under 0.01). A total of six gene clusters are enriched with genes from the first
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subnetwork, and four of them are related to either methylation or methyltransferase. Six

of 22 genes in the first subnetwork are found in a gene cluster which is related to none-

coding RNA processing. The second subnetwork is enriched in nine gene clusters. While

three of them are related to electron, one cluster includes half of the genes from the second

subnetwork and is related to oxidation reduction. The third subnetwork is also enriched in

nine different gene clusters, with seven clusters related to proteasome.

A total of 18 regulations were constructed from each of the 10,000 bootstrap data sets,

and are shown in Figure 4. There are seven pairs of genes which regulate each other. It

is interesting to observe that all regulatory genes up regulate the target genes except two

genes, namely, YCL018W and YEL021W.

YER088C
YJR097W

YDR512C

YDR545W

YCL018W

YEL021W

YBR068C
YLR466W

YHR033W

YML055W

YHR034C

YEL076C

YEL076C−A

YFL057C

YDR511W

YFL056C

YEL075C

YHL048W

YFL047W

YLR452C

YLR462W

YGR295C

Figure 4: The yeast gene regulatory subnetworks constructed in each of 10,000 bootstrap

data sets (with arrow- and bar-headed lines implying up and down regulations, respec-

tively).

8 DISCUSSION

In a classical setting with small numbers of endogenous/exogenous variables, constructing a

system of structural equations has been well studied since Haavelmo (1943, 1944). Anderson
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and Rubin (1949) first proposed to estimate the parameters of a single structural equation

with the limited information maximum likelihood estimator. Later on, Theil (1953) and

Basmann (1957) independently developed the 2SLS estimator, which is the simplest and

most common estimation method for fitting a system of structural equations. However, the

genetical genomics experiments usually collect data in which both the number of endoge-

nous variables and the number of exogenous variables can be very large, invalidating the

classical methods for building gene regulatory networks.

Replacing the ordinary least squares at the two stages with ridge regression and adap-

tive lasso respectively, the proposed 2SPLS method can consistently identify and further

estimate the regulatory effects of the endogenous variables, even with a large number of

endogenous variables. As a high-dimensional extension of the classical 2SLS method, the

2SPLS method is also computationally fast and easy to implement. As shown in construct-

ing a genome-wide gene regulatory network of yeast, the high computational efficiency of

2SPLS allows us to employ the bootstrap method to calculate the p-values of regulatory

effects. Meanwhile, each of the two steps, especially the second one, may be further im-

proved by incorporating recent progresses in high-dimensional variable selection, see, for

example, Chen and Chen (2008), Zhang (2010), and Lockhart et al. (2014).

APPENDIX A: PROOF OF THEOREM 3

a. Since τj/
√
n → 0 for any 1 ≤ j ≤ p, the different choice of τj for each j does not affect

the following asymptotic property involving τj ,

n(XTX+ τjI)
−1 → C. (A.1)
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Without loss of generality, we assume τ1 = τ2 = · · · = τp = τ . Then Ẑ−k = PτY−k.

1

n
ẐT

−kHkẐ−k

=
1

n
(Xπ−k + ξ−k)

TPT
τ HkPτ (Xπ−k + ξ−k)

=
1

n
πT

−kX
TPτHkPτXπ−k +

1

n
ξT−kPτHkPτXπ−k

+
1

n
πT

−kX
TPτHkPτξ−k +

1

n
ξT−kPτHkPτξ−k

We will consider the asymptotic property of each of the above four terms.

First, 1
n
XTX → C implies that

1

n
XTHkX =

1

n
XT{I−XSk

(XT
Sk
XSk

)−1XT
Sk
}X → C−C•Sk

C−1
Sk,Sk

CSk•. (A.2)

The above result and (A.1) easily lead to the following result,

1

n
πT

−kX
TPτHkPτXπ−k

=
1

n
πT

−kX
TX(XTX+ τI)−1XTHkX(XTX+ τI)−1XTXπ−k

→ πT
−k(C−C•Sk

C−1
Sk,Sk

CSk•)π−k = Mk. (A.3)

The other three terms approaching to zero directly follows that 1
n
ξT−kX →p 0. Thus,

1
n
ẐT

−kHkẐ−k →p Mk.

b. Since Hk(Yk −Y−kγk) = Hkǫk, we have

1√
n
(Yk − Ẑ−kγk)

THkẐ−k

=
1√
n
{(Yk −Y−kγk) + (I−Pτ )Y−kγk}THkẐ−k

=
1√
n
ǫTkHkPτY−k +

1√
n
γT
k {(I−Pτ )Y−k}THkPτY−k
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In the following, we will prove that the second term approaches to zero, and the first

term asymptotically approaches to the required distribution, i.e.,

1√
n
ǫTkHkPτY−k →d N(0, σ2

kMk). (A.4)

We notice that

1√
n
ǫTkHkPτXπ−k ∼ N(0,

σ2
k

n
πT

−kX
TPτHkPτXπ−k).

Following (A.3), we have

1√
n
ǫTkHkPτXπ−k →d N(0, σ2

kMk). (A.5)

Because of (A.2) and

1√
n
ǫTkHkX ∼ N(0,

σ2
k

n
XTHkX),

we have
1√
n
ǫTkHkX →d N(0, σ2

k(C−C•Sk
C−1

Sk,Sk
CSk•)).

Since 1
n
ξT−kX →p 0, we can apply Slutsky’s theorem and obtain that

1√
n
ǫTkHkPτξ−k =

1√
n
ǫTkHkX(XTX+ τI)−1XTξ−k →p 0.

Pooling the above result and (A.5) leads to the asymptotic distribution in (A.4).

To prove that the second term asymptotically approaches to zero, we further partition

it as follows,

1√
n
γT
k {(I−Pτ )Y−k}THkPτY−k

=
1√
n
γT
kπ

T
−kX

T (I−Pτ )HkPτXπ−k +
1√
n
γT
k ξ

T
−k(I−Pτ)HkPτXπ−k

+
1√
n
γT
kπ

T
−kX

T (I−Pτ )HkPτξ−k +
1√
n
γT
k ξ

T
−k(I−Pτ )HkPτξ−k.
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It suffices to prove each of these four parts asymptotically approaches to zero.

First, notice that

XT (I−Pτ) = τ(XTX+ τI)−1XT ,

we have

1√
n
γT
kπ

T
−kX

T (I−Pτ )HkPτXπ−k

=
τ√
n
γT
kπ

T
−k(X

TX+ τI)−1XTHkX(XTX+ τI)−1XTXπ−k → 0, (A.6)

which follows (A.2) and that τ/
√
n → 0 as n → ∞.

Because CSk•C
−1C•Sk

= CSkSk
, we have

(C−C•Sk
C−1

Sk,Sk
CSk•)C

−1(C−C•Sk
C−1

Sk,Sk
CSk•) = C−C•Sk

C−1
Sk,Sk

CSk•,

which implies that

1

n
XTPT

τ H
T
k (I−Pτ )

T (I−Pτ )HkPτX

=
1

n
XTPτHkPτX− 2

n
XTPτHkPτHkPτX+

1

n
XTPτHkP

2
τHkPτX → 0.

Since Var(ξ−kγk) is proportional to an identity matrix, the above result leads to that

Var

(

1√
n
γT
k ξ

T
−k(I−Pτ )HkPτXπ−k

)

→ 0,

which implies that

1√
n
γT
k ξ

T
−k(I−Pτ )HkPτXπ−k →p 0. (A.7)

Similarly, we can prove that, for each ξj,

Var

(

1√
n
γT
kπ

T
−kX

T (I−Pτ)HkPτξj

)

→ 0,
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which implies that

1√
n
γT
kπ

T
−kX

T (I−Pτ )HkPτξ−k →p 0. (A.8)

Note that

1√
n
γT
k ξ

T
−k(I−Pτ )HkPτξ−k =

{

1√
n
γT
k ξ

T
−k(I−Pτ)HkX

}

{

(XTX+ τI)−1XTξ−k

}

.

Since

1

n
XTHk(I−Pτ)(I−Pτ)HkX → 0,

we have

Var(
1√
n
γT
k ξ

T
−k(I−Pτ )HkX) → 0.

Therefore,
1√
n
γT
k ξ

T
−k(I−Pτ)HkX →p 0,

which, together with (XTX+ τI)−1XTξ−k →p 0, leads to that

1√
n
γT
k ξ

T
−k(I−Pτ )HkPτξ−k →p 0. (A.9)

Pooling (A.6), (A.7), (A.8) and (A.9), we have proved that 1√
n
γT
k {(I−Pτ )Y−k}THkPτY−k →p

0, which concludes our proof.

APPENDIX B: PROOF OF THEOREM 4

Let ψn(µ) = ‖HkYk−HkẐ−k(γk+
µ√
n
)‖2+λnω

T
k |γk+

µ√
n
|. Let µ̂ = argminµψn(µ), then

γ̂k = γk +
µ̂√
n
or µ̂ =

√
n(γ̂k − γk). Note that ψn(µ)−ψn(0) = Vn(µ), where

Vn(µ) = µT (
1

n
ẐT

−kHkẐ−k)µ− 2√
n
(Yk − Ẑ−kγk)

THkẐ−kµ

+
λn√
n
ωT

k ×√
n(|γk +

µ√
n
| − |γk|).
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Denote the j-th elements of ωk and µ as ωkj and µj, respectively.

If γkj 6= 0, then ωkj →p |γkj|−δ and
√
n(|γkj + µj√

n
| − |γkj|) →p µjsign(γkj). By Slutsky’s

theorem, we have λn√
n
ωkj

√
n(|γkj+ µj√

n
|−|γkj|) →p 0. If γkj = 0, then

√
n(|γkj+ µj√

n
|−|γkj|) =

|µj| and λn√
n
ωkj =

λn√
n
nδ/2(|√nγ̃kj|)−δ, where

√
nγ̃kj = Op(1). Thus,

λn√
n
ωT

k ×
√
n(|γk +

µ√
n
| − |γk|) →p







0, if ‖µAc
k
‖ = 0;

∞, otherwise.

Hence, following Theorem 3 and Slutsky’s theorem, we see that Vn(µ) →d V (µ) for every

µ, where

V (µ) =







µT
Ak
Mk,Ak

µAk
− 2µT

Ak
Wk,Ak

, if ‖µAc
k
‖ = 0;

∞, otherwise.

Vn(µ) is convex, and the unique minimizer of V (µ) is (M−1
k,Ak

Wk,Ak
, 0)T . Following the

epi-convergence results of Geyer (1994) and Knight and Fu (2000), we have






µ̂Ak
→d M

−1
k,Ak

Wk,Ak
,

µ̂Ac
k
→d 0.

Since Wk,Ak
∼ N(0, σ2

kMk,Ak
), we indeed have proved the asymptotic normality.

Now we show the consistency in variable selection. For ∀j ∈ Ak, the asymptotic nor-

mality indicates that γ̂kj →p γkj, thus P (j ∈ Âk) → 1. Then it suffices to show that

∀j /∈ Ak, P (j ∈ Âk) → 0.

When j ∈ Âk, by the KKT normality conditions, we know that ẐT
j Hk(Yk − Ẑ−kγ̂k) =

λnωkj. Note that λnωkj/
√
n →p ∞, whereas 1√

n
ẐT

j Hk(Yk − Ẑ−kγ̂k) = 1
n
ẐT

j HkẐ−k ×
√
n(γk− γ̂k)+

1√
n
ẐT

j Hk(Yk− Ẑ−kγk). Following Theorem 3 and the asymptotic normality,

1√
n
ẐT

j Hk(Yk − Ẑ−kγ̂k) asymptotically follows a normal distribution. Thus, P (j ∈ Âk) ≤
P (ẐT

j Hk(Yk − Ẑ−kγ̂k) = λnωkj) → 0. Then we have proved the consistency in variable

selection.
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