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1. Background
1.1. Internet Technology and Network Engineering

Internet traffic results from the transfers of information between pairs of computers,
or hosts, across the Internet [Stevens, 1994; Peterson and Davie, 1999; Kesidis, 2007].
For simplicity we refer to the information as a “file”. The file is broken up into packets
with sizes typically up to 1460 bytes = 11680 bits. The packets are sent from the source
host over a path consisting of routers connected by transmission links, and the file is
reassembled at the destination host. The two hosts establish a connection to carry out
the transfer, which means each is listening for the arrival of packets from the other.
Headers, typically 40 bytes in size, are added to each packet to manage the file trans-
mission and packet routing. In addition, both hosts can send control packets with no
file data, just headers, as part of the transmission management. This means that packet
sizes range from 40 bytes to 1500 bytes. Each router has input links and output links;
when a packet arrives on an input link, the router reads a field in the header to deter-
mine the destination host, and looks in a table to determine the output link over which
the packet should be sent to get to the destination.

Each transmission link on the Internet at each point in time can be servicing many
ongoing connections. The packet arrival times for transmission on the link are a super-
position of the packet arrival times of the individual ongoing connections. Interestingly,
the term ““superposition” is used in statistics, but in network engineering, the term is
“statistical multiplexing”. We use the latter here to remind us that this area of Inter-
net research is about statistics. If a packet arrives for transmission and the link is busy
transmitting, then the arriving packet is put in a queue. The interface that writes the
packet to the link has a speed in bits/sec that determines the service time, the packet
size in bits divided by the link speed. The queueing is a major factor in quality-of-
service (QoS) for Internet connections; if queueing delay is too large, QoS degrades
[Rolls et al., 2005].

This work addresses a common type of traffic being carried on most Internet links.
The traffic consists of a very wide range of applications such as downloading Web
pages, sending email, logging in remotely to a computer, and streaming video or au-
dio. We name this “multi-application traffic”. We shall see from the work here that
the statistical multiplexing homogenizes the traffic once there are enough connections
using a link. This is just a beginning of the well known central limit theorem of point
processes: they tend toward Poisson as the number of multiplexed processes increases.
The detailed arrival behavior of individual applications is washed out by this, making
statistical modeling possible. As we will see, this tends to happen at quite low traffic
rates.

1.2. The Need for a Validated Statistical Model for the Multiplexed Arrival Process

One task in network engineering is to determine, for each link, a traffic rate and a link
speed that lead to a queueing delay distribution that is commensurate with QoS needs.
One might think that this would be easy. Just institute a measurement program that col-
lects arrival times and packet sizes of each packet in many streams of packets on many
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routers for different rates and types of traffic. The problem is that the Internet is not
instrumented to do this. Even if it were, the complexity of finding just the right traffic
conditions needed in an experiment would be quite hard, and impossible when the con-
ditions do not yet exist. The most practical route for network engineering study is to
run computer simulations with packet arrival times as inputs to a queue, and queueing
delay as the output.

A simulation for network engineering requires a model for the arrival process. The
queueing properties are determined by the statistical properties of the process [de Pereira et al.,
2002; Belottia et al., 2008; Bogdan and Marculescu, 2011; Vieira and Lee, 2010]. We
take the arrival process to be the sequence of interarrival times, ¢,,. The interarrivals
have very complex statistical properties when studied directly, which in the past has
made modeling complex. Three properties account for the complexity — long-range
dependence, non-Gaussian behavior, and changing statistical properties with the packet
arrival rate o« = 1/E(t,,).

The long-range dependence was discovered in the 1990s and reported in two pi-
oneering articles [Leland et al., 1994; Paxson and Floyd, 1995]. Here, we take long-
range dependence to mean that as the frequency f goes to zero, the power spectrum
increases like f~2¢ for 0 < d < 0.5, which means as the lag k gets large, the auto-
correlation function decreases like k29~ 1. These statistical properties make the arrival
process “bursty”, in the language of network engineering. Compared with Poisson ar-
rivals that have the same arrival rate, the upper tail of queueing delays is longer, and
the average amount of traffic that can be put on the link and maintain QoS is less
[Duffield, 1996; Erramilli et al., 1996; Heyman and Lakshman, 1996; Park et al., 1997;
Ribiero et al., 2006]. As one would expect, the interarrival sequence is non-Gaussian,
and the statistical properties of the arrival process change with the expected number of
ongoing connections. The change is not just a change in «, but rather a profound change
in the multivariate distributions of any sequence of m consecutive interarrivals. This is
a very general result for point processes [Cox and Miller, 1977]. The expected number
of connections changes due to diurnal, weekly, and calendar effects in the usage of a
link.

For a network engineering simulation study to be valid, a statistical model that gen-
erates the packet arrival times needs to be valid. Validation must be carried out in
substantial detail. In addition, to be most useful for simulation, there needs to be a
way to accomplish fast generation of packet arrivals, especially at high packet rates.
Interestingly, while there has much past work in describing the statistical properties of
the arrival process, cited in coming sections, there is still not a validated model that
provides fast generation. The barrier has been the complexity due to the long-range
dependence, nonlinearity, and changing statistics with the arrival rate.

1.3. Accomplishments of the Work Presented in This Article

This article presents the multifractal fractional sum-difference (MFSD) model, devel-
oped for t,,. The model is simple and very easy to understand. This arises from the
discovery that a monotone nonlinear transformation, z,, = T'(Z,), is a long-range de-
pendent Gaussian process that we call a Gaussian fractional sum-difference (GFSD)
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model. z, is a linear combination of a near-fGn process and white noise. Details are in
Section 3. The properties of ¢,, — long-range dependent, non-Gaussian, changing sta-
tistical properties with the traffic rate — when addressed without benefit of the model,
appear immensely complex, requiring complex summary statistics to characterize their
behavior.

MFSD and GFSD models were first put forward by Cao et al. [2002]. Model pa-
rameter estimates were used as summary statistics to demonstrate changing statistical
properties of the arrival process as the arrival rate increases. The work described here
adds the following three additional sets of results to this initial work.

1.3.1. A New Statistical Foundation for the Arrival Process

The simple structure of the GFSD and MFSD make them readily interpretable. They
are mathematically tractable. Derivations based on them in coming sections provide a
new foundation for the understanding of the statistics of ¢,,. For example, we see that
as « increases, the variance of the white noise relative to that of the fGn increases; z,,
gets noisier in a simple way.

1.3.2. Simple and Fast Traffic Generation

One derivation provides a simple and fast mechanism for generation of arrivals for
simulation. It is simple because only the traffic rate needs to be specified. It is fast,
not because it is a fast algorithm, but rather an approximate model based on sums of
m consecutive values of ¢,, in non-overlapping blocks. As we have emphasized, simple
and fast generation is very important for network engineering studies. This is illustrated
here by describing one simulation study using the approximation of the MFSD.

1.3.3. Validation

We carried out an extensive validation of the MFSD model using live packet traces for
traffic in both directions of 3 Internet links. The total number of arrival measurements is
715,665,213. We divided the traces into segments whose time span was short enough
to guarantee stationarity within the segment, that is, a constant rate «. Section 4 has
detailed descriptions about the traffic data used in validation.

Segments whose packet rates are less than about 1000 packets/sec, which is a very
low rate, are not readily modeled statistically. If there are a small number of ongoing
connections, properties of the protocol that manages most of the connections can create
cycles in the interarrivals at a number of frequencies of the form of 1/k where k is a
small integer greater than or equal to 2. So the outcome is that the MFSD model fits
extremely well with Internet traffic at rates above 1000 packets/sec. Once above this
rate, the statistical multiplexing erases the application footprints.

In the interest of space, we show the validation results for one of the links, for which
there were 144 segments. The validation used the derived mathematical expressions de-
scribed here. The MFSD has 4 parameters, including «, that appear in the expressions.
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For each expression and each trace segment, we estimate the parameters involved, sub-
stitute the estimates in the expression, and evaluate the expression. We compare these
model values of the expression with nonparametric estimates of the expression. For ex-
ample, the GFSD has a formula for the power spectrum with two parameters. We com-
pare the model power spectrum estimate with a nonparametric estimate of the power
spectrum based on the periodogram.

2. Past Statistical Foundations and Modeling: Self-Similarity and fGn

In the earliest papers, packet arrival counts were described as self-similar and fractional
Gaussian noise (fGn) was put forward as a model [Csabai, 1994; Leland et al., 1994;
Paxson and Floyd, 1995; Willinger et al., 1995, 1996; Paxson, 1997; Taqqu et al., 1997b].
Using this f{Gn model, Norros [1994] derived a number of statistical properties, and in-
vestigated queueing properties as a part of network engineering study.

fGn is a tractable model and allows mathematical investigations, for example, the
above work of Norros [1994]. The problem, however, is that more traffic analysis re-
sulted in subsequent articles showing that fGn is not an adequate model; the arrival
process is not self-similar across all time scales, and arrival counts for small inter-
val lengths are non-Gaussian [Abry et al., 2002; Riedi and Vehel, 1997; Ribeiro et al.,
2005].

The inadequacy of fGn led to intensive study of time scaling properties and the
development of new models based on scaling. Work focused on m-sums and m-means,
defined as follows. Foru = 1,2, .. ., let w,, be a time series. For positive integer m, the
m-sum process consists of every m-th value of a moving sum of length m:

w§m> = Zw(“_l)m_m v=12,....
i=1

The m-mean process is wém) = wl(,m) /m. In a very large literature, the statistical prop-
erties of these m-statistics and how they change with m were studied in many ways
[Riedi and Vehel, 1997; Taqqu et al., 1997a; Feldmann et al., 1998a; Gilbert et al., 1999;
Riedi et al., 1999; Veres and Boda, 2000; Yuan et al., 2000; Hannig et al., 2001; Abry et al.,
2002; Erramilli et al., 2002; Figueiredo et al., 2002; Mikosch et al., 2002; Willinger et al.,
2002; Dang et al., 2003; Liu and Baras, 2003; Maulik and Resnick, 2003; Resnick et al.,
2003; Karagiannis et al., 2004; Gong et al., 2005; Jiang and Dovrolis, 2005; Ribeiro et al.,
2005; Stoev et al., 2005; Veitch et al., 2005; Masugi and Takuma, 2007; Roughan and Veitch,
2007; Ashoura and Le-Ngoc, 2008].

Multifractal wavelet models based on the statistics were developed [Riedi et al.,
1999; Gao and Rubin, 2001a,b; Riedi, 2002; Resnick et al., 2003]. In almost all cases,
w, was taken to be arrival counts. In a few cases, the w,, were taken to be interarrival
sequences [Riedi et al., 1999; Gao and Rubin, 2001a]. The time scaling analyses and
modeling formed a foundation for intuition about the statistical properties of the arrival
time process.

One widely-used method of scaling analysis is the variance-time plot [Leland et al.,
1994; Erramilli et al., 1996; Riedi et al., 1999; Fraleigh et al., 2003; Gong et al., 2005]:



D. Anderson et al./MFSD and GFSD Models 5
the log of the sample variance of wé’”) is plotted against log m. Another example is
autocorrelation-time analysis in which the standard nonparametric estimate of the au-
tocorrelation function of the m-means is studied as a function of log m [Hannig et al.,
2001].

Another method is multifractal moment analysis, a study of the moments of normal-
ized values of wf,m). This was closely associated with the multifractal wavelet models
in the above citations. Observed properties of the moments of the m-sums of packet
arrivals show the arrival process is multifractal [Riedi, 2002]. The multifractal con-
cept is an enlargement of self-similar processes, which have a certain uniformity in the
moments that make them monofractal.

Multifractal wavelet models reproduce the statistical properties of packet arrival
times, fixing the shortcoming of f{Gn. However, there are drawbacks. The wavelet mod-
els are fundamentally nonparametric, based on m-sums, which formally means a de-
scription involving many parameters. This makes them complex, resulting in a mathe-
matical tractability that does not readily facilitate derivations to study mathematically
the many statistical quantities that provide insight into the arrival process. In addition,
the models do not readily lead to a simple mechanism for synthetic traffic generation
at a pre-specified packet arrival rate « for traffic engineering simulations.

In contrast to this previous work, the simple MFSD model is mathematically tractable,
is an excellent fit to the arrival process at all traffic rates above 1000 packets/sec, and
leads to a fast traffic generator that needs only the packet rate to be specified in carrying
out simulations for traffic engineering.

2.1. Section Contents

The contents of the next sections are the following: Section 3 introduces the MFSD
and GFSD models. Section 4 describes the live and multiplexed packet trace segments
that were used for validating the models. Section 5 provides validation for the marginal
distribution of the MFSD. Section 6 examines the power spectrum of the GFSD and
provides validation for the GFSD. Section 7 provides validation for the MFSD through
the m-sum moment-statistics. Section 8 derives equations for the parameters \(«) and
O(«) in terms of .. Section 9 examines the autocorrelation function of the GFSD and
provides validation for the GFSD. Section 10 examines the autocorrelation functions
of h,, s, and their m-scaled-sums, and discusses the near-self-similarity of h,, and s,,.
Section 11 conducts a rate-time analysis of variance and autocorrelation for the GFSD.
Section 12 examines the autocorrelation function of the MFSD and shows the second
moment properties of the GFSD apply to the MFSD as well. Section 13 introduces
a fast traffic generation method. Section 14 contains a VoIP queueing study which
illustrates how the traffic generated using the MFSD model can be used in such studies.
Section 15 concludes the paper.
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3. GFSD and MFSD Models
3.1. h, and s,

Let h,, be fractionally differenced white noise, the Hosking discrete analog of fractional
Gaussian noise (fGn) [Hosking, 1981],

(I = B)%hy, = €.

B is the backward shift operator, Bh, = h,_1;0 < d < 0.5 is the fractional exponent;
(I —B)% is defined by expanding in a power series in B; and ¢,, is Gaussian white noise
with mean 0, and variance 062. We take

, (1—d)r?*1—ad)

of = ——F—————

€ 2I'(1 — 2d)

for purposes stated below; the resulting variance of h,, is 07 = (1 — d) /2.
Let s, be a moving sum of length 2 of h,,,

Sy = hu + hufl.
S, can be written in another form,
d _
(I — B)%sy = €y + €41,

so s, is a fractional moving-average process [Hosking, 1981]. The above value of U?
makes the variance of s, equal to 1.

3.2. z,, the GFSD, and t,,, the MFSD

Let n,, be Gaussian white noise with variance 1. A Gaussian fractional sum-difference
(GFSD) model for a time series z,, has the form

zu =+ (1 —0)s, + \/anu,

where s,, and n,, are independent processes and 0 < 6 < 1. 6 is the mixture coefficient
of the GFSD. The mean of z, is 0. The variance is 1 for notational convenience, and
does not limit modeling.

A multifractal fractional sum-difference model (MFSD), ¢,,, is a stationary discrete-
time series that is a nonlinear strictly monotone transformation of a GFSD, z,. Let
the cdf of ¢,, be T'(t). Let Z(z) be the cdf of a Gaussian distribution with mean 0 and
variance 1. Then

tu =T H(Z(2)),

and
Zy = Z’l(T(tu)).

zy, 1s the Gaussian image of ¢,,, and ¢,, is the multifractal image of z,,.
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Suppose the marginal distribution of ¢,, is a Weibull with shape parameter \. Let
the arrival rate be o = 1/E(t, ), measured in packets/sec (p/s). Our parameterization
of the Weibull is somewhat different than usual, replacing the usual scale parameter
with the rate o, which is more meaningful for packet interarrivals. The cdf for this
parameterization is

T(ty) = W(tw Aya) = 1 — e~ 1oP0FA D0,
The transformation to the multifractal image is

{—log(1 — Z(2,))}*/*
o4 1)

ty =W HZ(2u); M\, ) =

t, 18 a Weibull MFSD.

For a multiplicative MFSD, the Weibull marginal is replaced by the log normal. x4
is the mean of log(t,) and 72 is its variance. The cdf is T'(t,) = L(t.;u,72). The
transformation to the multifractal image,

ty = LN (Z(z)i 1, 7%) = e7VIPowemVomeen,
has a simple multiplicative form.

It is the Weibull MFSD that is the validated model for ¢,,. Section 5 discusses the
observed marginal distribution of the interarrival process of the Internet traffic data, and
the estimates of the Weibull parameter A\. However, for certain problems the log normal
MESD is used as an approximation because its simpler structure enables closed-form

derivations. The approximation is the log normal whose first two moments match those
of the Weibull.

4. Model Validation: Live Packet Trace Segments

Validation was carried out by analyzing live packet traces for traffic in both direc-
tions of 3 Internet links: Auckland, Leipzig, and Bell. The total number of arrivals is
715,665,213. Bell was the Internet gateway link for a Bell Labs research location with
about 500 users. Leipzig was the gateway link for the University of Leipzig campus.
Auckland was a link near the edge of the University of Auckland network. All collec-
tion used Endace cards [http://www.endace.com/] to provide highly accurate, hardware
timestamps, which is essential to the modeling. The collected data consist of network
and transport headers, and timestamps of packet arrivals, but our analysis used only the
packet size field and the timestamp.

The Bell live traces were obtained as a result of one author of this article being a
part of the collection operation. The Leipzig live traces were obtained from the Center
for Applied Internet Data Analysis (CAIDA) [http://caida.org/tools]. The Auckland live
traces were obtained from the Waikato Internet Traffic Storage [http://www.wand.net.nz/wits/catalogue.php].

In coming sections, in the interest of space, we use just Auckland traces in our vi-
sual displays and numeric information. However, statistical properties and modeling
conclusions were the same for all links. The Auckland traces available for these links
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were broken into trace segments of 15 min or 1 hr, and each segment analyzed indi-
vidually. Not all available segments were appropriate for analysis for reasons given
below. Table 1, discussed in more detail later in this section, gives information about
the analyzed Auckland segments.

TABLE 1
Information about analyzed packet trace segments.

[ Factor [ Auckland 15-min [ Auckland 1-hr ]

link speed (megabits/sec) 1000 1000
transmission technology Ethernet Ethernet

lab timestamp accuracy (p sec) 0.030 0.030
collection duration (days) 2.25 2.25

collection date March 2008 March 2008

number live 96 24

number live-multiplexed 24 0

max utilization live 5.24% 4.95%

min packet rate live (p/s) 1193 1268

max packet rate live (p/s) 7674 7712

min packet rate live-multiplexed (p/s) 2537 NA
max packet rate live-multiplexed (p/s) 137884 NA

4.1. Stationarity

To accurately study changes in statistical properties with o, we need each trace segment
to have a nearly constant expected rate for the duration of the segment. We insure this,
first, by taking segments with small lengths, and second, by checking each segment
for stationarity by visualization of measures of the packet rate such as the number of
packets in 10 sec intervals. We found that 15 min segments were typically quite close
to stationary, and discarded any segments that showed more than minor nonstationarity.
We also found that certain 1 hr traces were close to stationary.

4.2. Packet Rate Above 1000 packets/sec (p/s)

Segments whose packets rates are too small, less than about 1000 p/s, are not readily
modeled statistically. If there are a small number of ongoing connections, properties
of the TCP protocol that manages the communications on each of the two hosts of the
large majority of Internet connections can create cycles in the interarrivals at a number
of frequencies of the form of 1/k where k is a small integer greater than or equal to
2. These peaks are readily seen in estimates of the power spectrum; their frequencies
change across the trace segments, likely due to changes in the Internet application that
is dominant. If modeling is needed for very small rates, then a better strategy is to use
simulation models that run TCP. This means the MFSD model is not appropriate for
packet rates less than about 1000 p/s. We do not model directly trace segments less
than this rate, but as discussed below, we can use them in other ways for modeling.
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4.3. Modeled Arrivals, Measured Arrivals, and Timestamps

The MFSD model applies to ¢,, = a,, — a,—1 Where a,, is the arrival time at the queue
of an output link of a router. The measured arrival a/, is the exit time from the queue,
and t), = a, — a/,_ are the measured interarrivals.

If packet u arrives when there is no packet in service, then a,, = a,. If packet u
arrives when packet v — 1 is in the queue or in service, its transmission begins as soon
as packet u — 1 has finished, so /, is the service time of packet u — 1. Let p,, be the
size of packet u (bits), and let ¢ be the speed (bits/sec) with which the router writes
a packet to the link. Then we have ¢/, = p,_1/¢. We refer to the ¢, as a “back-to-
back interarrival”. It is the smallest possible ¢!, when packet v — 1 has size p,,_;. The
timestamps, @,,, are the a/, plus measurement error, and the timestamp interarrivals are
ty = Gy — Gy—1.

4.4. Timestamp Accuracy and Identifying Packets with Queuing Delay

The accuracy of timestamps is critical to the validity of the MFSD modeling. The
prediction of timestamp accuracy from laboratory tests of the Endace card used for the
Auckland trace segments is +¢ where ¢ = 15 nanosec. This is excellent if it is valid.
We investigate ¢ empirically.

Identifying queued packets is also important for the trace segment selection upon
which modeling is based. We selected live trace segments for analysis that have a small
percent of delayed packets, less than about 10%, because modeling is for the ¢, and
not the t,. We need trace segments where the ¢/, reflect the properties of the ¢,,. These
segments are those with lower packet rates. We determine empirically the percent of
queued packets as part of the same method that investigates accuracy.

For all delayed packets u, we have ¢, = p,_1/¢. Measurement errors, however
result in timestamps £,, of these delayed packets that lie in the interval p// 4 2¢. Fur-
thermore, we expect that the density of the #,, will have a noticeable drop just above
t!,+2¢. This can lead to a revision in the value of ¢, and allows identification of packets
that experience delay.

An accuracy and delay-identification plot is shown in Figure 1 for the Auckland live
trace segment that has the largest bitrate, 33.5 megabits/sec. On the plot, £, —p,,_1 /£ is
graphed against p,,_; /¢ for u with £,, less than 100 nanosec. Because there are 690,239
such u, just a sample of the values are plotted. The horizontal lines above and below
0 are drawn at +30 nanosec, the laboratory values of +2¢. There is a dense band of
points contained within the accuracy limits, and a sharp cutoff in density above the
band. This verifies ¢ = 15 nanosec, and packets within the band can be taken as the
queued packets.

4.5. Numerical Multiplexing

To study the changing statistical properties with the packet arrival rate v, we need trace
segments with a wide range of observed traffic rates, not just the live 15-min and 1-
hr traces whose rates are kept small to ensure a low percent of delayed packets. To
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FIG 1. Accuracy and delay-identification plot for one live Auckland 15-minute trace segment.

achieve larger-rate segments, we multiplexed on the computer 15-min live trace seg-
ments to produce numerically-multiplexed 15-min trace segments (as opposed to phys-
ically multiplexed). The numerically multiplexed trace segments are actually somewhat
more realistic than our raw segments in that the former have interarrivals that are arbi-
trarily small as the actual interarrivals at the queue, but the latter have interarrivals with
lower bounds varying by packet size. Table 1 gives information about the Auckland
segments, 120 live and 24 numerically-multiplexed. Figure 2 graphs the log packet
rates of the segments.

4.6. Visual Displays of 4 Traces

Data visualization played a critical role in the validation process. There were many
types of displays and each was applied to each analyzed trace segment. A number of
these display types are shown in coming sections for 4 15-min Auckland trace segments
to convey results. The packet rates of the 4 segments range from small to large, and are
as close to equally spaced on a log scale as possible. The 2 with the smallest rates are
live segments, and the 2 with the largest rates are numerically-multiplexed segments.
The packet rates in packets/sec (p/s) are 1771 = 21079 5634 = 21246, 17928 =
21413 "and 66913 = 216:03,



D. Anderson et al./MFSD and GFSD Models 11

Multiplexed 15 min

Live 1 hr 0% o 800 O%ooooeoo

Live 15 min o;éaoﬁ% og%t?%&’ ﬁ%o

I I I I I I I I
10 11 12 13 14 15 16 17

Log Base 2 Packets/Sec

FIG 2. Log base 2 observed packet rates of 144 Auckland trace segments.

5. MFSD Model Validation and Properties: Marginal Distribution
5.1. Validation of the Marginal Distribution

Visualization methods were a critical part of modeling the marginal distribution of the
interarrival process t,,. Quantile plots were used to check how well standard paramet-
ric distributions — Weibull, log-normal, and gamma — fitted the observed marginal
distributions of the trace segments. The segments are well approximated by a marginal
Weibull distribution, as illustrated below.

Let « be the packet arrival rate, the inverse of the mean of ¢,, and let A be the
shape parameter. Note that rather than using the usual scale parameter for the Weibull
distribution, we are using one that works well for modeling Internet traffic. For each
trace segment, A and o were estimated by the method of moments. & is the inverse of
the sample mean of the ¢,,. ) is the value for which a Weibull with rate é& has a variance
equal to the sample variance of the ¢,,.

The Weibull quantile plot is illustrated in Figure 3 for the 4 Auckland trace segments
described in Section 4.6. For each segment, the fourth root of the quantiles of the ob-
served t,, at frequencies 0.00005 to 0.99995 in steps of 0.0001 are plotted against the
fourth root of the quantiles of a fitted Weibull using the above estimates. Fourth roots
are taken because the resulting transformed distribution is close to symmetric for val-
ues of \ in the range of the trace segments. The vertical lines are drawn at the quantiles
with probabilities 0.01, 0.05, 0.25, 0.75, and 0.95, and 0.99. The oblique line has slope
1 and intercept 0.

If the observed ¢,, are well approximated by a Weibull, then the pattern of the points
on the plot follows the oblique line. In Figure 3, and for almost all other analyzed
trace segments, the Weibull provides an excellent fit, taking sampling variability and
queueing artifacts into account.

There are small departures, atoms in the observed sample distributions of the live
segments in the top 2 panels. The artifacts result from a small fraction of back-to-
back measured interarrivals, fu, which are not the same as the modeled interarrivals,
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t,,, because of queueing delay; this is discussed in Section 4. The artifacts are nearly
eliminated in the bottom two panels due to the numerical multiplexing, which tends to
break up atoms.

5.2. The Change in X\ with o

Let A\, k = 1,...,144, be the estimate of the shape A for the kth Auckland trace
segment, and let &; be the estimate of the packet arrival rate . Figure 4 graphs e
against log, (&) where log, is log base 2. The smallest values of Aj, are close to 0.6;
they tend to 1 as log,(dy) increases, which means the marginal distribution tends to
exponential.



D. Anderson et al./MFSD and GFSD Models 13

1.0 [o] o L

o
0.9 o%, o -

0.8 | ol

Estimates of Shape Parameter

o)
&
o}
0.7 (% -
[
00
\ \ \ \
10 12 14 16

Log Packet Rate (log base 2 p/s)

FIG 4. 5\k is plotted against logo (&, ) for the 144 Auckland trace segments.

Section 8 presents a derivation of A as a function of v using the MFSD model. Equa-
tions are solved that yield numeric values, leading to a model A(«) for the dependence
of A on a.. The theoretical model agrees with the empirical pattern in Figure 4. This de-
pendence of A on «v is a critical aspect of the statistical properties of the packet arrival
process, so we switch notation from A to A(«) in coming sections.

6. GFSD Model Validation and Properties: Power Spectrum

The four time series considered in the GFSD, which are defined in Section 3, are h,,,
Su» My, and z,,. This section presents formulas for their power spectra, which provides
insight into statistical properties. Validation study is also carried out for the observed
z,, of each trace segment by comparing nonparametric estimates of the power spectrum
with that of a GFSD model fitted to the z,,.
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6.1. Formulas and Statistical Properties

Let 0 < f < 0.5 denote frequency in units of cycles/interarrival. The power spectra are

(1—d)2(1—d)

plf) = 9T (1 — 2d){2sin(rf)}24
ps(f) = 4dcos*(wf)pn(f)

pn(f) =1

p=(f) = (1—=0)ps(f)+0.

pr(f), ps(f), and p.(f) decrease strictly monotonically as f increases, and all go to
infinity to order f~2¢ at the origin, a signature property of the long-range dependence
amply observed empirically in many previous studies. Let £, (f) = 10log,o{p.(f)}
where log is log base 10. In visual displays of the power spectra, we use this decibel
scale because it shows properties more effectively.

There are an infinite number of ways of decomposing z,, into a long-range depen-
dent component plus a white noise component. The decomposition of the GFSD,

Zy = 1—95u+\/§nu,

is the one that maximizes the variance of the white noise because p,(0.5) = 0. This
means p,(0.5) = 6, which is used below in the estimation of 6.

Figure 5 graphs 3 power spectra, ¢ (f), on the decibel scale. For each of the 3, d =
0.31. The values of @ are different: 0.6 (—), 0.8 (—), 0.975 (—). They span the range
of the estimates of 6. £, (f) is evaluated at equally-spaced values of f from 2716 to 1/2.
The vertical line on each panel is drawn at frequency fy = 0.129 cycles/interarrival for
reasons we explain next.

For fixed f and d, p.(f) is linear in @ with derivative 1 — p,(f). Let fo be the
frequency where 1 — ps(fo) = 0, which means p,(fo) and £.(fo) do not change with
0. fo depends only on d, and for d = 0.31, fy = 0.129 cycles/interarrival, which has
a period of 7.75 interarrivals. This is the value at which the vertical line is drawn in
Figure 5, illustrating the constancy at fo. It is easy to see that p,(f) and £, (f) decrease
with 0 for f > fj, and increase for f < fo; this is also illustrated in Figure 5.

6.2. Estimation of Parameters d and 6

To carry out estimation and model checking for the GFSD model for each trace seg-
ment, the observed t,, for each segment were transformed to observed z,, by the func-
tion z, = Z{T'(t,)}, where T'is the empirical cumulative distribution function of
the ¢,,, and Z is the normal cumulative distribution function with mean O and vari-
ance 1. Let n be the number of ¢,, in the segment. Let r(u) be the rank of ¢,. Then
2y = Z7H(r(u) — 0.5)/n}.

The reason for using the empirical function, rather than a Weibull distribution func-
tion fitted to the t,, was to have a portion of the model checking methods for z, not
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depend on the validity of the specification of the marginal distribution of ¢,. In Sec-
tion 5, model checking of the marginal of ¢,, does not depend on the validity of the
specifications for z,,. In a number of other sections, model checking depends jointly on
specifications for the GFSD and the MFSD.

Estimation of the parameters d and 6 of the GFSD are based on the periodogram of
the observed z,. In addition, the periodogram and the estimate of the power spectrum
using the estimated parameters are a part of our model checking for validation of the
GFSD. To enable subsequent study of the m-means and m-sums with exactly the same
observations, we use just the first 2° observations of each trace segment where b is
the greatest integer in log base 2 of the number of z, in the segment. For the 144
Auckland trace segments, the minimum value of b is 20 and the maximum is 26. The
periodogram is computed at the Fourier frequencies f; = i/2° fori = 1,2,3,...2°7%
These frequencies are divided into 2'® non-overlapping blocks of equal length, so each
has 20716 values. For j = 1,...,21%, let f; be the mean of the frequencies in block
4, and let I( fj) be the mean of the periodogram values in the block. Estimation and
model checking proceed with f; and I(f;).

Our parameter estimation method for each trace segment is designed to be robust to
minor departures of the patterns in the I( fj) from the general form of the GFSD power
spectrum. Some departures can adversely affect the estimation of d [Hurvich et al.,
2002]. For example, minor low-frequency trends can remain because the detrending
methods described in Section 4 cannot entirely remove the diurnal variation in the
packet rate o.

Because p.(0.5) = 0, the estimate § of 6 is taken to be the mean of the I(f;) for
fj > 0.48. This insures that the estimated power spectrum fits the pattern of the I( fJ)
for the highest frequencies. d is estimated from another frequency band: 0.01 < fj <
0.06. d is the estimate arising from a nonlinear least squares fit of 101log;,(p.(f;))

20 1 ~

i
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|
T
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|
T

10 Log 10 Spectrum (decibels)

I I I
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Frequency (cycles/interarrival)

FIG 5. Log power spectra £ () for d = 0.31 and 3 values of 6.
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FIG 6. Estimates of the GFSD mixture coefficient 6 and fractional exponent d for the 144 Auckland traces.
Ok (left panel) and dy, (right panel) are plotted against logy (&y,), the log base 2 estimates of the packet
rates. The horizontal line in the right panel show the median, 0.31, of the dj.

with = 6 to 101ogyo(I(f;)) for f; in the band. This is a variation of the method
of [Geweke and Porter-Hudak, 1983] where the frequency band is 0 < f < a for a
small a. The averaging of the periodogram before taking the log in the least-squares
fitting falls in the category of an ATS method [Cleveland et al., 1993]; averaging before
moving to a log scale results in efficient least-squares estimation.

6.3. The Change in 0 and d with o

For the 144 Auckland trace segments and k = 1, ..., 144, let ék be the estimates of the
mixture coefficient 6, let cik be the estimates of the fractional exponent d, and let &
be the estimates of the packet rate o described in Section 3, the inverse of the sample
mean of the interarrivals. Figure 6 graphs 0y, and dj, against log, (&) where log,, is log
base 2. The smallest values of 6, are close to 0.6; they tend to 1 as log, (d) increases,
which means that z,, tends to white noise. Except for two large outliers, values of dp,
vary from about 0.28 to 0.35, a narrow range. The median, shown by the horizontal
line, is 0.31. This suggests that d does not change appreciably with « so that a fixed d
of 0.31 is reasonable in our mathematical study of traffic statistics based on the MFSD
model.

Section 8 presents a derivation of € as a function of a using the MFSD model. Equa-
tions are solved that yield numeric values, leading to a model 6(«) for the dependence
of 6 on . The theoretical model agrees with the empirical pattern in Figure 6. This de-
pendence of # on « is a critical aspect of the statistical properties of the packet arrival
process, so we switch to the notation 6(«) in coming sections.
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6.4. Model Validation: Properties of the Power Spectrum

The validity of the GFSD model — its ability to account for the statistical time-series
properties of z, — was explored by studying power spectra, one description of the
properties. Other descriptions are studied in later sections.

We study validity by comparing 10log;(Z(f;)), which is a (noisy) nonparametric
estimate of the log power spectrum, and 101og;,(p.(f;)) the GFSD model estimate
with 0(«) = 0, and d = d. Figure 7 show the results for the 4 Auckland traces
described in Section 4.6. Each panel of the top row graphs 10log;,(Z(f;)) (e) and
101ogo(p=(f;)) (—) against f;. The bottom row is similar, except that values are
graphed against 10log;(f;). Performance of the model fits is excellent; their depar-
tures from the nonparametric estimates are minor. This was the case for almost all of
the packet trace segments of our validation study.

7. MFSD Model Validation: m-Sum Moment-Statistics

This section addresses the nonlinearity of ¢,, through a moment-statistic study of the
the m-sum process tg,m) as defined in Section 2. Normalized estimates of E{( S,m))q}
are studied as a function of ¢ and m, which is a time scaling study for each ¢. This mul-
tifractal analysis is a standard in the Internet traffic literature [Riedi and Vehel, 1997;
Feldmann et al., 1998b; Riedi et al., 1999; Gao and Rubin, 2001a; Abry et al., 2002;
Maulik and Resnick, 2003; Masugi and Takuma, 2007; Shanga et al., 2008; Vieira and Lee,
2010]. For each trace segment we compared nonparametric moment-statistics of the ¢,,
with the theoretical moment-statistics from both the Weibull and multiplicative MESD
models fitted to the ¢,,. This provides an important look at nonlinear properties to aid
validation, which very much justifies the analysis. However, it does not provide the
foundational insights that arise from analyses in other sections.

For each trace segment, we estimated moments using the first n = 2" observations
of t,, where b is the largest integer in the log base 2 of the number of interarrivals.
This was the same data selection method used in Section 6. Let t. = >_"'_, t,. The
nonparametric ¢g-th sample moment for the m-sum is

2b—7‘ (m) q
(m) ty
Sim = z< ; ) . (1)

v=1

Values of m were m, = 2" for r = 0,...,b — 1, and the moments were ¢ =
—10,—-5,-2,2,5,10.

The Weibull MFSD t,, has 4 parameters. Two are for the Weibull marginal of ¢,,: the
shape A\(«) and the packet rate . Two are for the associated Gaussian image z,: the
fractional exponent d and the mixture coefficient 6(«). The fitted Weibull MFSD for
each trace segment is the MFSD with parameter values equal to the estimates described
in Sections 5 and 6: &, A, d, and 6. The multiplicative MFSD ¢, has 4 parameters. Two
are for the log normal marginal: the mean j(c) and variance 72(c) of log(t, ). Their
estimates /1 and 72 are the values for which the first and second moments of the log
normal match the two moments of the Weibull with parameters & and . Two are for the
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FIG 7. 10logyo(I(f;)) (e) and 10logo (5= (f;)) (—) for 4 trace segments.

associated Gaussian image z,: d and 6(«). Their estimates are also those of Section 6:
d and 6, which are the same as those for the Weibull MFSD. We proceed with these
estimates as if they were the true values.

We are unable to mathematically derive MFSD moment-statistics for the Weibull
and multiplicative MFSD models, so simulation “derivations” were carried out for each
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FIG 8. Moment-statistic m-plot for one Auckland trace.

trace segment. Each run for a trace segment consisted of generation of 2 values of the
interarrivals from the fitted model, which is the same number of values used for the
nonparametric moment-statistics. Moment statistics for the run are computed using
Equation 1. Final values, S,gm), are means across 100 runs.

Figure 8 is a moment-statistic m-plot for one of the four trace segments described
in Section 4, the one with packet rate & = 2'*! p/s. (The other 3 segments of the
section are not shown in the interest of space.) For this trace segment, b = 23. Each
panel plots logQ{S’(g"w} against log,{m, } for each value of ¢ for one of three cases:
nonparametric, Weibull MFSD, and multiplicative MESD. Successive values for each
q on a panel are connected by line segments. The resulting 6 curves, one per value of
g, increase with ¢ for fixed log, {m, }.

Forr=0,...0—2,let

logy {$5™ "} — logy {55} ; ;
rr = =1 S(mr+1) —1 S(mT) R
Kr, +1(q) logg{mfr-i-l} — 10g2{m7.} Og2{ q } ng{ q }

the slopes of the line segments shown in Figure 8. Figure 9 is a moment-statistic m-
slopeplot. Each panel of the figure plots the following: %, ,+1(q) against ¢ for the case
shown in the upper strip label of the panel and for the [r,r + 1] values shown in the
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FIG 9. Moment-statistic m-slopeplot for one Auckland trace.

lower strip label. This is done just for » = 0 to 7. The line on each panel goes through
the first two points to help judge linearity.

The most important aspect of Figures 8 and 9 is that the patterns for the nonpara-
metric, Weibull MFSD, and multiplicative MFSD moment-statistics are similar, and
agree with patterns of nonparametric moment-statistics seen in previous publications
[Feldmann et al., 1998a; Riedi et al., 1999; Gao and Rubin, 2001a]. The two MFSD
models are consistent with the data for this model checking method.

The nonlinearity of %, »11(q) as a function of ¢ shown in the panels of Figure 9 is an
indicator of multifractal behavior [Riedi et al., 1999; Gilbert et al., 1999]. The patterns
are concave for [0, 1] and tend toward linear as [r, 4 1] increases. Patterns for [8, 9]
and above, not shown, are very close to linear.

8. Modeling the Changing Statistical Properties with the Packet Rate

We have seen in Sections 5 and 6 that A(«) and @(«) increase toward 1 with increasing
«. The statistical properties of t,, change in a profound way with an increase in the
traffic rate o because the expected number of active connections tends to increase with
. The parameters of the Weibull MESD — the Weibull shape parameter \(«) and the
Gaussian image mixture parameter 6(«) — reflect this change. Sections 5 and 6 show
that each tends to 1 with «; the fractional exponent d does not change appreciably with
« and is taken to be 0.31. The limit of \(«) means that the marginal distribution of
the Weibull MFSD ¢, tends to exponential. The limit of §(«) means the z, tend to
Gaussian white noise. So the ¢,, tend to the interarrivals of a Poisson process. This is a
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critical property that has an immense impact on queueing delay, and therefore on the
network engineering.

Using the Weibull MFSD model, we can also study theoretically the change in A(«)
and 0(«) with o. We do this in two ways. The first is a derivation by simulation in
which traffic is generated using the Weibull MFSD model. The second is a heuristic
mathematical derivation whose detail is described in the Appendix (Section 16). For
both, we fix d = 0.31 and use initial values Ao = 0.70 and 6, = 0.55 at the traffic rate
ag = 210-22 p/s, the smallest rate for the Auckland trace segments. The initial values
were chosen so that the derivations provide the best fit to the estimates 5\1@ and ék of
Sections 5 and 6 as functions of the packet rate estimates &.

For the simulation, we generated 2 Weibull MFSD series, each with parameters
Ao and 6 for the rate «g. The two MFSD series were then numerically multiplexed,
forming a series with rate 21122 p/s. A(c) and 6(«r) were estimated using the methods
employed in Sections 5 and 6 for the live and numerically multiplexed data, but with d
fixed at 0.31. Then two series were generated at rate 2'1-22 p/s using the estimated pa-
rameters, these two series were multiplexed, and then the parameters again estimated.
This process continued up to rate 2'7-22 p/s. The result is 8 values of A(a) and 6(«)
including the initial values, and 8 associated values of «.

For the mathematical derivation, the process proceeds in a similar way, but with a
different multiplexing method. » Weibull MFSD series with rates g and parameters
Ao and 0y were assumed to be multiplexed. Then values of A(«) and 6(«) for the
multiplexed series were derived. The values of r were 2, 3, 4, 5, 7, 10, 14, 20, 28 39,
55,78, 110, 155. The rates for the derived parameters range from 222 p/s to 2175 p/s.
The result is 15 values of A(«) and 6(«) including the initial values, and 15 associated
values of o

Figure 10 graphs logit transformations of the derived values of the parameters,
logit,(\(a)) = logy{A()/(1 — A(a))} and logity(6(a)) = log,{8(a)/(1 — 8())},
against log,(«). Each panel shows the simulation derived values (+) and the mathe-
matically derived values (o) for one parameter. For both parameters, the two derivations
are very close. This provides a necessary validation of the mathematically derived val-
ues because they use certain assumptions that are not true for a Weibull MFSD model,
but that are believed not to affect the results. The logit transformation results in a nearly
linear dependence on log, («). The line on each panel is the least squares fit to the sim-
ulated values. The equations are

logit,(A(o)) = —5.36 + 0.63logy ()
logit,(A(ar)) = —7.21+0.75log, ().
The equations on the scales of the parameters are
9—5.36,0.63
Ma) = 5 1 9 536,,063" )
9—7.21,,0.75
fla) = — & 3)

1+ 92-7.2150.75"

For arrival process generation for simulation, all parameters are now accounted for. «v
is specified as part of the simulation, A(«) and 0(«) are computed by the above models,
and d = 0.31.
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FIG 10. Logit transformations of () (left) and 0(cv) (right), derived by simulation (+) and derived math-
ematically (o), are plotted against logs (cv).

Figure 11 graphs M and 6y, against &y, for the 144 Auckland traces. The curves
are an evaluation of Equations 2 and 3 plotted against log,(«). There is substantial
statistical variability in 5\;6, ék, and d&y; the reason is that measured segments must be
short to insure stationarity. The curves do a reasonable job of fitting the patterns of the
estimates considering this variability.

9. GFSD Model Validation and Properties: Autocorrelation

The four time series considered in the GFSD, which are defined in Section 3, are h,,,
Su» Ny, and z,,. This section presents formulas for their autocorrelations, which sets the
stage for Sections 10 and 12, where approximations of the autocorrelations are derived
for both 2, and t,, that provide important insight about statistical properties.
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FiG 11. 5\k (upper panel o) and ék (lower panel o) are plotted against log, (G, ). Derived equations A(cv)
(upper panel —) and 0(cx) (lower panel —) are plotted against against logs ().

This section also describes results of the validation study carried out for the ob-
served z,, of each trace segment by comparing the standard nonparametric estimates of
the autocorrelation function with that of a GFSD model fitted to the z,,. This parallels
the analysis of Section 6 that used the power spectrum for model checking. Mathemat-
ically, the autocorrelation function is equivalent to the power spectrum in that each is a
Fourier transform of the other, but both are used for validation since a small consistent
departure across lags or frequencies of one can translate to a large departure locally at
certain frequencies or lags of the other.

The autocorrelation function for n,, for k& > 1is p,(k) = 0. The 3 other series,
which are long-range dependent, have formulas that are easily derived from results of
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FIG 12. Nonparametric estimates () and GFSD model estimates (— ) of autocorrelation are plotted against
square root lag for 4 Auckland trace segments.

Hosking [1981]. The autocorrelation at lag £ > 1 for h,,, s,, and z,,, respectively, are

I'(1-d) T(k+d) M (d+i—1)
k) = TR Te—d+ 1) 1;[1 i—d “@
_ _ 2
pll) = 2O )
pz(k) = (1—9(04))p5(k). (6)

p-(k) > 0 and p.(k) goes to 0 with k to order k?¢~1, a signature property of the
long-range dependence amply observed empirically in many studies.

The validation process for each trace segment begins, as described in Section 6, with
a transformation to the observed Gaussian image z, from the observed multifractal
image t,, for7 = 1, ..., n. The nonparametric estimate of autocorrelation at lag % for a

segment is
n—k

—1
n g Zutk -
u=1

The GFSD model estimates of the autocorrelations are an evaluation of Equation 6 with
d and 6(«) equal to the estimates dj, and 6y, from Section 6.

Figure 12 graphs the nonparametric estimates (o) and the fitted GFSD estimates (—)
against \/k for the 4 Auckland trace segments described in Section 4. The square-root
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lag is used because it allows better assessment of the autocorrelations for small lags.
The fitted GFSD estimates provide an excellent fit to the nonparametric estimates. This
is the case for almost all trace segments.

10. GFSD Model Properties: Near-Self-Similarity of h,, and s,,

The continuous time fGn process, which is the stationary increment of self-similar
fBm, has an autocorrelation function approaching d(2d + 1)k??~! as k — oo, a simple
mathematical form that allows much insight and tractable mathematics [Norros, 1994].
It has the attractive property that the log of the autocorrelation is linear in the log of the
lag. Hosking proposed h,, as a discrete-time analog of continuous-time fGn [Hosking,
1981].

The two independent components of the GFSD, s, and n,, are dependence ex-
tremes. One is white noise and the other is long-range dependent. The properties of n,,
are easy to understand. The question is how we conceive of the long-range dependence
of s,, as an aid to our foundational understanding of the properties of z,,. How close
is Sy, a moving two-sum of h,, to self-similar? This depends on how close h,, is to
self-similar.

Following the notation of Section 2, the m-sums of s, and h, are 5™ and B{™,

The m-scaled-sums are these m-sums divided by m+0-5,
55}7”) _ m_d_0'585)7rb)7
iLgm) _ mfdfo.ShSJm).

The m-scaled-sums of a self-similar process are identical processes. We study close-
ness to self-similarity by studying how close the m-scaled-sums of s, and h,, are to
being identical processes. Since h, and s, are Gaussian processes, closeness is de-
termined by the closeness across values of m of the autocovariance function of each
m-sum.

Throughout this section we denote the fractional exponent as d. However, as in
previous sections, we take d = 0.31 when the values of expressions including d are
enumerated to check approximations. Of course this means the results apply only to
d = 0.31, sufficient for our purposes here.

10.1. Approximating the Autocorrelation Functions of h,, and s,,

A first question is whether the autocorrelation function of h,,

I'(1—d) T(k+d)

k) = Th—dz 1)

is well approximated by a constant times k2%~ 1. From Stirling’s formula,

L(h+d)/T(k—d+1) _,

lim 12d1 ,

k—o0




D. Anderson et al./MFSD and GFSD Models 26

-0.5 ~

-1.0 Q -

Log Base 2 Autocorrelation

-2.0 — [

Log Base 2 Lag

FIG 13. Log base 2 autocorrelation with d = 0.31 vs. log base 2 lag. Left: py (k) (o), pn (k) (—). Right:
po(k) (0), s (k) (—).

so we approximate by
ph(k) = F(Fl(d)d) deil'

This is not the only possibility; for example, we could attempt an approximation in
which the constant is chosen so that jj, (1) = pp(1).

The left panel of Figure 13 plots log,(pn(k)) (o) and log, (pr(k)) (—), both with
d = 0.31, against log,(k) for k = 1,...8. pp(k) is an excellent approximation for
these 8 lags. The largest discrepancy is at k = 1: p,(1)/pn(1) = 1.012, which is very
small. For £ = 2, .. .8, the discrepancy decreases, and continues decreasing for k > 8.

For s, the approximation of ps(k) uses that for p, (k) and then takes another step.
Since sy, = hy + hy—1,

pelk) = =5 onlk — 1)+ 2pn (k) + pulh + 1)),

The first step approximates by substituting gy, (k) for pp (k),

1-dT(1-4d)

QF(d) {(171/]?)%71+2+(1+1/k)2d71}k2d71,

The second approximation simplifies by replacing each of the two terms (1 —1/k)24~1
and (1 + 1/k)?=1 by 1 to get

Bu(k) = QF(FQ(d_)d)k?d—l — 21— d)jn (k).

The approximation is exact in the limit,

lim ps(k)

=1
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In the right panel of Figure 13, log,(ps(k)) (o) and log,(ps(k)) (—), again with
d = 0.31 are plotted against log, (k) for ¥ = 1,...8. For k = 1,...,4, values of
ps(k)/ps(k) are 1.235, 1.034, 1.014, and 1.007. For k > 4, the differences are neg-
ligible. ps(k) as an approximation is reasonably close at lag k¥ = 1 and excellent for
k> 2.

10.2. Autocovariances of m-Sums

This section examines how close the autocovariance functions of §£m) are to one an-
other across m, and similarly for ESJ”). We first determine an m beyond which the auto-
covariance functions are nearly the same. The smaller this value of m, the closer A, or
Sy 18 to self-similar. Variances are treated first and then autocovariances at positive lags.
The approximations py (k) and ps(k) are used in formulas for the autocovariances in
place of py (k) and ps (k) for two reasons. First, it aids the assessment of self-similarity.
Second, it provides simplification of formulas, both here and in later sections, which
aids mathematical investigations.

10.2.1. Variances

For m > 1, the variance of 5™ is

1 m
s = o (m +2 Z(m - k)ﬁs(k)> : (7

Replacing p, (k) with ps(k) in the right side of this equation, we have

# <m + W Z(m — k)k2d_1> .

k=1

Replacing the summation by an integral in this last expression we get

20(2 — d) (1 AR d>/r<d>> o2 LQ=d)/T@) s
I'd+1)(2d+1) d 2d+1 '

For d = 0.31, the first term dominates quickly as m increases, so we drop the other
two terms, which results in the final approximation

. 2(2-d)
Vigm = T(d+1)2d+1) ®)

Following the same line of reasoning for &, results in an approximation for the

variance of A{™,

o __ara-d iV o
YT DA+ 1)(2d+1)  2(1—d)’

where o7 = (1 — d)/2 is the variance of h,.
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FIG 14. Plotted against m for d = 0.31 are ‘/E(m)/o'i (o) and VE(,,,L)/U,QL (—) in the left panel, and

Vg(m) (o) and Vg(m) (—) in the right panel.

The approximations of V§<m> and Vﬁm) in Equations 8 and 9 are constants for all m,
the result for a self-similar process. So we judge the self-similarity of &, and s, by the

closeness of the approximations. Figure 14 graphs both the true (o) and the approximate
(—) variances against m for d = 0.31. For fl,(,m) /on, the true variances are very close
to constant. The largest deviation of the approximation, at m = 1, is 8%; the remaining
deviations fall quickly toward O as m increases. Thus h,, is very close to satisfying the
variance property of self-similarity. For 55;7"'), the deviation of the approximation is a
moderate 25% at m = 1, but falls quickly to 8% at m = 2 and 4% at m = 3. Thus s,
is very close to satisfying the variance property of self-similarity for m > 2.

The results of Equations 8 and 9 are consistent with Theorem 2.2 of Beran [1994]
on asymptotic behavior, derived using the power spectrum. The theorem states that if
the autocorrelation function of a long-range dependent series with fractional exponent
d converges to ck??~! as k gets large, then the m-scaled-sum variance converges to
c(d(2d+1))~*. In our case, ¢ = 2I'(2 — d) /T'(d) for s, and ¢ = o2'(1 — d)/T(d) for
Py
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10.2.2. Autocovariances for Lags Greater Than 0

For k£ > 1, the autocovariance function of éq(jm) is

m

Coom (k) = — | D2 (m =il ps(km + )

j=—m

We approximate using an approach similar to that for the variance. j; (k) approximates
ps(k), and an integral from —m to m approximates the resulting summation. This
results in the final approximation of C_ () (k) fork > 1,

. 2I'(2 —d
Coom (k) = (F(d))kz“ = ps(k). (10)

The same line of reasoning is used for approximating C; (m) (k),

- ri—-d
Crgm (k) = oi(r( 7 L2t = o2 (). (1)

The approximations of C’§<m> and CE“”) in Equations 10 and 11 are constants for
all m, the result for a self-similar process. So we judge the self-similarity of h,, and s,,
by the closeness of the approximations. The top row of Figure 15 graphs C' (m) (k) (o)
and C’ggm) (k) (—) against m for d = 0.31 and 6 values of lag: k = 1,2, 3,10, 30, 100.

The bottom row does the same for Cj m) (k)/o? and Com (k)/o2. For h{™ | the ap-
proximation is excellent for all values of m and k£ shown, becomes more accurate as
either m or k increase. The same is true of 57(,7”) for k > 2; for k = 1 the approximation
deviates somewhat for m < 5.

10.3. Near-Self-Similarity of h,, and s,

The above results show £, is very close to self-similar for d = 0.31. The term “discrete
fGn” is certainly appropriate. s, is not as close to self-similar, but is not far off; this
would be expected since s, is a moving 2-sum of h,,. However, s, is certainly close
enough to self-similar to allow it be thought of as such for the purpose of foundational,
intuitive reasoning for the Gaussian image, z,. z, 1S a mixture of a near-self-similar
series and a white noise series where the mixture parameter 6(«) increases toward 1 as
a — oo. As we will see in later sections, we can also apply this intuition for the second
moment properties of the multifractal image ¢,,.

11. GFSD Model Properties: Rate-Time Analysis of Variance and
Autocorrelation

This section treats the variances of the m-statistics of z,, and how they change with
increasing m, which is time scaling.
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FIG 15. Each panel plots true (o) and approximate (—) autocovariances against m for the scaled sum
shown in the top strip label of the panel (h for h., and s for s,,) and for the lag shown in the lower strip
label.

An m-statistic study is a time scaling analysis that has been widely used as a basis
for understanding traffic statistical properties. The variance time plot is one of most
used methods of such study. It consists of a display of the log m-mean variance against
log m [Paxson and Floyd, 1995; Leland et al., 1994; Crovella and Bestavros, 1997;
Riedi et al., 1999; Fraleigh et al., 2003; Karagiannis et al., 2004; Gong et al., 2005;
Tutsch et al., 2008; Park et al., 2011]. The common pattern of the log variance with
increasing log m is decreasing, convex, and a slope tending to 2d — 1.

Time scaling analysis is at its base, a frequency domain concept. The m-mean is a
digital low-pass filter whose pass-band becomes more concentrated near zero as m in-
creases. However, analyses have stayed in the time domain through a study of the vari-
ances and autocorrelation properties. This classical study has been almost exclusively
empirical using nonparametric estimates of autocovariances, and with little guidance
from theory. In this section, with the benefit of the structure of the GFSD model for z,,,
we add much insight into the statistical properties of m-statistics. The model provides
more fundamental drivers of the properties.
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FIG 16. Four variance rate-time plots for 4 Auckland trace segments. The log model variance, log, Vz("”

(—), and the log nonparametric variance, logy \A/f(m) (®), are graphed against logy m.
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11.1. Variance
11.1.1. GFSD Model Validation

We use a variance time plot for validation of the GFSD model as done using the power
spectrum in Section 6 and the autocorrelation function in Section 9. This follows the
same initial procedures as in Section 6. The first 2° values of the n observations of t,,
are analyzed, where b is the greatest integer in log,(n), and log, is log base 2. The
2% values are transformed to observed z,, using the empirical cumulative distribution
function of the selected t,,. The values of m are taken to be m,. = 2" forr =0,...,b—
5.

The classical nonparametric estimate of the variance for the variance time plot for
each m,. is the sample variance, Vzm,,.), of the values of 21(,"“'), v=1,..., 2b/mr. Fig-
ure 16 is a variance rate-time plot that compares the nonparametric and model values.
On each panel, logQ{VZ(UmH} (—) and logQ{XA/Zg,,LT)} (o) are plotted against log, (m,-)
for each one of the 4 Auckland trace segments described in Section 4. The packet rates
of the segments are shown in the strip labels at the tops of the panels. The model vari-
ances are very close to the nonparametric variances for the 4 segments, as they are for
almost all trace segments, providing another validation of the GFSD modeling of z,,.

11.1.2. Time and Rate Scaling Analysis of Variance

The driver of the effects of m and o on V_m) is the changing relative contributions of

the independent Gaussian components of z,, \/énu and v/1 — s, ,to Vz“’” as m and
« change. The two components are dependence extremes, white noise and near-self-
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similar, respectively.

2™ = /(1= 0(a)si™ + VB(a)al™,

V. = (1=0(a)V.om +0()V,om)
= ([1=0(@)Vm + O(a)ym™". (12)

We see that m and « influence the variance by changing the relative importance of the
first and second terms. Figure 16 is close to the classic plotting method. It becomes a
rate-time plot simply because four traces are displayed with different rates. This was
fine for validation purposes. While we can see certain properties as « and m change,
other alterations in methodology increase substantially the effectiveness of the analysis.

The form of the GFSD makes clear that it is not sufficient to study just time scaling
in isolation. Time scaling and the packet rate, ¢, interact. So we replace the classical
method with a time-rate analysis method, taking both m and « into account. In addition,
we change the classical m-statistic, the m-mean, replacing it by the m-scaled-sum,
2m) = =d=05.{™) which is used in Section 10. This change, while it might seem
minor, has a very big impact on the effectiveness of visual assessment of the patterns
on the time-rate visual display because a self-similar process now has constant variance
and autocorrelation across m for fixed rate o.

The m-scaled-sums of z,, s, and n,, are related by

2 = V(1= 0(a)3™ + Vo)™,
so their variances are related by
VZ,E,M') = (1 — 9(0[))‘/55)7”) + H(Oé)vﬁgn) = (1 — 9(0[))‘/55)7”) + H(Oé)mfl.

The effects of m and « are determined by the changing relative contributions of 6(c)m !
and (1 — 0(a))V m) to V.om . In other words, the simple structure of the GFSD leads
toa straightforwa;d assessment.

We approximate ng()m) using the approximation of Vggym) given in Equation 8, which

results in
2I'(2 — d)

(2d + DT(d + 1)

For d = 0.31, the estimate of d described in Section 8, Equation 13 becomes

Voo = (1 6(a)) + 0(a)m =24, (13)

Vo = 1.25(1 — 6(a)) + (a)m™"%. (14)

We do not, as in the classical approach, take the log of V2<m> since it would make the
simple additive structure non-additive and thus harder to assess. Instead, assessment is
aided by letting m = 2" and studying the variance as a function of r and «.

Overall, the accuracy of the approximation is excellent. For m = 1, Vggum) =1,
but Vz(m) =14 0.25(1 — 6(«)). At () = 0.6, close to the smallest value observed
in the “data, the error is 0.1, off by only 10%; as 6(«) goes to 1 from 0.6, the error
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FIG 17. Variance rate-time plot for 3 values of logy (). The exact Vg(m) (®) and the approximate Vg(m>

(—) are plotted against .

decreases to 0. As r increases, the error for fixed 6(«) monotonically decreases with 7.
The approximation is, in fact, the asymptotic value
lim —— =1
m— oo V~(m)
2y

The high accuracy is illustrated in Figure 17. st,n) (o) and ‘"/Egm) (—) are plotted
against 16 values of r from 0 to 15 for 3 values of log,(«): 10.5, 13.5, and 16.5
log, (packets/sec). 10.5 and 16.5 are close to the minimum and maximum log rates
of the Auckland trace segments. The horizontal lines show the asymptotic values. The
accuracy is certainly good enough to use V5<m> for study of general properties of time
and rate scaling. ’

So far, the discussion has shown the rate effect through 6(«), which increases to 1
with increasing «e. However, Section 8 derives a logistic model for 6(«). We substitute
the expression for 6(«), Equation 3, into Equation 14 to relate Vz(m) directly to . We
could study the relative contributions of the two additive terms in TEquation 14 through
the ratio of the second term to the sum, which is the fraction of variance due to the
white noise component. Instead, because of the logistic model for 6(«), we study the

“log odds”,
_ 0(a)m70'62
¢(aym) = log; {1.25(1 “9(a)) } '

Substituting for 6(«) yields a very simple equation,

C(a,m) = =7.53 4+ 0.751og, () — 0.621og,(m). (15)
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Equation 15 gives much insight into the time-rate scaling of z,. If log, («/) increases
by 1 for fixed m, which means the packet rate doubles, then ((«, m) increases by
0.75 and the variance ratio by a factor of 2°-75 = 1.68. For a given m = my, let
mg > myo be the value of m that makes up for the increase in the variance of the
white noise term and brings the ratio back to the original value, that is ((«, m() =
¢(2a,mgp). This achieved by m(, = 2.31my, which means a time scale increase must
“over-compensate” to equalize the effect of rate scale increase. This is a different in-
stance of the concept of “multiplexing gains” from rate increase discussed in the liter-
ature [Sriram and Whitt, 1986; Duffield, 1996; Erramilli et al., 1996; Krishnan, 1996;
Cao et al., 2002; Karagiannis et al., 2004], but just qualitatively, without the form and

quantification of Equation 15.

Equation 15 also shows quantitatively the progression of 21(,7”) to white noise as «

increases for any fixed value of m, and the progression of él(,m) to near-self-similar as
m increases for any fixed value of «. This is illustrated in Figure 18. {(a, m) is plotted
against log, (m) for each of four values of log,(«): 10.5, 13.5, 16.5, and 19.5 log base
2 p/s. The points for each value of log,(«) lie on a line; the intercepts of the lines
increase with log, (). The lowest rate is close to the value of 1000 p/s below which
the MFSD model is not valid, as discussed in Section 1. To help the interpretation of
the quantitative information on the display, the horizontal dashed lines show values of
¢(c,m) for which the percentages of the variances of the white noise term are, from

top to bottom, 99%, 95%, 5%, and 1%.

For log,(m) = 0 and log,(a) = 19.5, \/a(a)ﬁfﬁ) = +/0(«)n, accounts for a little
more than 99% of the variance of 2750) = 2y, SO 2z, 1S very close to white noise. It takes
an m of 222 to get to a point where /(1 — 0(04))557”) is about 99% of the variance
of 275"‘), making qum) very close to self-similar. By contrast, for log,(m) = 0 and
log, (a) = 10.5, \/0(c)n,, accounts for just 56% of the variance of z,. In this case, an

m of only 2! is sufficient to get to a point where /(1 — 0(a))§£m) is about 99% of

the variance of Zf,m), because the initial z,, is closer to self-similar than when the rate
« 1s larger.

11.2. Autocorrelation

In the past, little time scaling analysis of autocorrelation has been carried out directly,
compared with that for variance. In one instance, a very informative work, Hannig et al.
[2001] observed empirically that the autocorrelations of m-means of arrival counts in
fixed intervals increase with increasing m. Next we carry out rate-time analysis of the
autocorrelation function, p_ () (k). The analysis proceeds in a manner very similar to
that of the above analysis of the variance, so we proceed quickly to the approximate
formulas that provide the insight.
First,

Cogm (k) (1= 0(0))Cipm (K)

omy (K) = -
psom (k) Ve Voo
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FIG 18. {(a, m) is plotted against logs (m) for each of four values of logq (): 10.5, 13.5, 16.5, and 19.5
log base 2 p/s. The points for each value of log, () lie on a line; the intercepts of the lines increase with

logs (). The horizontal dashed lines show values of {(«, m) for which the percentages of the variances of
the white noise term are, from top to bottom, 99%, 95%, 5%, and 1%.

Using approximations in Equations 10 and 13 leads to the p_(m) (k) approximation

N 1—0(x))2I'(2 —d)/T'(d _
Do) (k) _ — ( ( )) ( )/ ( ) de 1. (16)
v O(a)ym=29 + (1 — 0(«))2I'(2 — d)/[T'(d + 1)(2d + 1))
Taking d = 0.31, the overall estimate of d from our trace segments, and using Equa-
tions 14 and 15, results in

) 050 0.50 -
p5§,7”>(k) = 1+ 2(am) = ]_+277.53+0.75logQ(a)70.62log2(m)k :

a7

Equation 17 shows the driver for the rate and time properties, and our understand-
ing of them, is {(a, m). This makes conclusions for the autocorrelations remarkably
similar to those for the variance. The equation shows quantitatively the progression of
P(m) (k) to the zero autocorrelations of white noise as the rate « increases for any fixed

value of m, and the progression to the near-self-similar autocorrelations 0.5k24~1 as
m increases for any fixed value of a. Note that for m, this is in agreement with the
above results of Hannig et al. [2001]. As with the variance, the greater the value of «,
the greater m must be to bring the autocorrelation function close to that of near-self-
similar. In addition, the increase in m must “overcompensate”, a part of the concept of
multiplexing gains.
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12. MFSD Autocorrelation

In previous sections we have studied extensively the properties of z,, the Gaussian
image of ¢, as a prelude to understanding ¢,,. In this and coming sections we address
the MFSD model for ¢,,. In doing this, however, we use the multiplicative MFSD in
place of the Weibull MFSD. The increased tractability leads to important results, and
our validation process shows the approximation is excellent.

The log normal parameters are the mean and variance, ;(«) and 72(«v), of log(t,,),
the notation reflecting the fact that the mean and variance change with . The chosen
log normal is that whose first two moments match those of the Weibull. The resulting
values are

(@) = log(T'(1+2/\a)) —2log(T'(1 + 1/ (a)) (18)
pla) = —72(a)/2 —log(e) (19)
Gf(a) — m_i (20)

a’I2(1+ ﬁ) a?

As a — 00, AM(a) — 1, s0 p(a) — —oc and 72 () — log(2) = 0.693. The minimum
value of \(c) observed in our data is about 0.6 for which 7%(a) = log(4.09) = 1.41.
7()? decreases monotonically as « increases.

In this section we consider the autocorrelation function of ¢,, and its approximation.
Because t,,t,_ is also log normal, L(2u (), 27(a)?(1+ p.(k))), the autocorrelations
have a simple formula

e (@ps(k) _q

pi(k) =

There is also strong empirical validation. The log normal MFSD p, (k) with d = 0.31
and z1() and 7(v)? estimated from each of the trace segments, almost always provides
a good fit to the standard nonparametric estimate of autocorrelation for the segment.
This is illustrated in Figure 19. The nonparametric estimates (e) and the estimates from
the log normal MFSD p; (k) (—) are plotted against square root of lag for the 4 Auck-
land trace segments used in previous sections. Taking statistical variability into account,
which includes correlation in the estimates across the lags, the fit is good.

The autocorrelations of z,, p.(k), while highly persistent, are not large; almost
all values are below 0.25, and beyond the first few lags, are below 0.10. The val-
ues of 7%(a) for v above about 1000 packets/sec, range from about 1.41 to 0.693
as « increases. The resulting values of 7(a)?p. (k) are small enough that the term
exp{7(a)?p.(k)} in Equation 21 is very well approximated by a first order power
series approximation, 1 + 72(a)p. (k). Let

TP@ oy @b

o(a) = 7(a) /(7 ~1). (22)
The above first order approximation results in an even simpler autocorrelation approx-

imation of p; (k) forlag k > 1

pr(k) = d(a)p- (k) = ¢() (1 — 0())ps(k) = (1 — 0(a))ps(F) (23)
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FIG 19. Nonparametric estimates of autocorrelation () and estimates from fitted multiplicative MFSD mod-

els (—).
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FIG 20. Power series approximation (—) of multiplicative MFSD autocorrelations (o).
where

0(a) =1 = ¢(a)(1 - O(e)).

For d = 0.31, Figure 20 graphs the values of the log normal MFSD p;(k) from
Figure 19 for lags 1 to 64 (o) and the values of j:(k) (—). Except for lag 1, which
has a minor departure, the approximation is very close. Figures 19 and 20 provide an
important validation for the autocorrelation structure of the MFSD model.

The astonishing result is that the autocorrelations of the multiplicative MFSD are

(24)
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very well approximated by those of a GFSD, not the Gaussian image of the MFSD
with the value 6(«), but rather with 6(«/). We have

f(c) — 0(a) = (1 — p(a))(1 = 0(cx)),

Y («) is larger, which means the approximating GFSD has a larger white noise com-
ponent than the Gaussian image. For « increasing, starting at about 1000 packets/sec,
the lower limit of validity of the MFSD and GFSD models, we have 6(«) goes from
0.60 to 1, 7%(r) go from 1.41 to 0.693, ¢(r) goes from 0.456 to 0.693, 6'(c) goes
from 0.818 to 1, and ¢’ () — O(«) goes from 0.218 to 0. What this means is that the
second moment results for z,, in Sections 9, 10, and 11 hold for ¢,, as well.

13. Fast Traffic Generation for Network Traffic Engineering Simulation Studies

Simulation studies of network designs are critical to network traffic engineering. This
has been discussed in Section 1. We need a fast traffic generation method for simula-
tions, especially for those with large traffic rates a. We have developed a fast generation
method. The method uses the multiplicative MFSD. Next we describe the method and
the heuristic reasoning behind it.

Consider the t,(Jm) of a multiplicative MFSD. So long as m is not too large and «
is large enough, arrivals within tﬁ”) are approximately Poisson. The reason is that for
the generating GFSD, the component s,, does not contribute as much to the variation
in t{™ if m is not too big because the (1 — 6(«))s, component has most of its power
at low frequencies while the 6(«)n, component is white noise. This means that, con-
ditional on t ™) , the arrival process within the interval is approximately uniform over
the interval.

So we generate an MFSD series that serves as tEf"), and then simply generate m — 1
random uniforms for each interval to get the interarrivals. This makes traffic generation
faster by a factor of about m. m = 100 is a big saving, but yet m qualifies for all but
small «. In fact, the smallest m that works increases with increasing « because the
influence of 6(a)n,, increases and the contribution of (1 — #(«))s,, decreases. A full
quantitative study of m and « for this matter is beyond the scope of the paper.

The first step in a generation is to choose «. Next we generate t( ") as a multiplica-
tive MFSD, exp{7*(a)z} + p* () }, where z;; is a GFSD with parameters 6* («v) and d.
d = 0.31 based on results from Section 6. Next we describe how we get the parameters
(), p* (), and 6* ().

We need 0(«) and A(«v), calculated from the logistic models described in Section 11.
We need yi(a) and 7% (), calculated from A(«v) and v using Equations 18 and 19. We
then compute 6(c) from Equations 22 and 24), which is larger than 6(«). In addition,
we compute the variance of t,,, o7 () from Equation 20.

We derive an approximation of the mean, variance and autocovariance of tg, ™) The
derivation brings together results of Sections 10, 11 and 12. One derivation is for the
variance V(m), and the other for the autocovariance C' 4(m) (k) for k > 1. The success
depends on the result of Section 12 that the autocorrelatlons of t, are very well ap-
proximated by those of a GFSD (Equation 23). This allows us to apply the results in
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Section 10 for zv ™) to obtain results for t m) . It was convenient in that section to work
with m-scaled-sums, zf} ), but results hold also for z,(, ™) with obvious changes in for-
mulas to take account of the scaling factor m®*+% and the variance o2 () not being
equal to 1.

To get the approximate variance V(m> and approximate autocovariance C’t(m (k),
we simply apply the results of the appr0x1mat10ns in Section 10 for a GFSD model
(Equations 8 and 10) with d and mixture parameter 6( ), and multiply the results by the
factors m24*! and o2 (). We then have the approximate variance and autocovariance

Vi = oi(a) (é(a)m—l—(l—é(a))medH) (25)
Cyn ) = aF(a)(1 = ) 25 Dt 12, 26)

Furthermore it is straightforward to obtain the exact mean of tS,”“,

B (i) ==, 27)

«

We obtain 6*(«), 7*(«), and p*(«) by matching the mean, variance, and autoco-
variance of exp{7*(«)z} + 1*(«)} using Equations 25, 26, and 27.

«2 V(Wl)
7?(a) =log | 1+ m /a)2 (28)
oy (MY L Vi
1 (a) = log (E) + 5 log <1 + (m/a)2> (29)

d(2d + 1)I'(d) exp(7*%(a)) — 1
r'(2—d) 7*2()

0" (a) =1— (30)

The results in Equations 25 and 26 are validated using live trace segments. For val-
idation, we compared the approximate variances and autocovariances from Equations
25 and 26 to standard nonparametric estimates of the variances and autocovariances.
We are interested in reasonable values of m, since these m values achieve a significant
reduction in the number of values that describe the traffic.

We found that Equations 25 and 26 did an excellent job of fitting the nonparametric
estimates. Figures 21 and 22 illustrate the results for the 4 Auckland traces described in
Section 4. The standard nonparametric sample variances and autocovariances of t(m)
(e) are normalized by dividing by the sample variance of the t,,. The appr0x1mate vari-
ances and autocovariances (—) are normalized by dividing by the variance o2 (). As
we have done in all validation studies discussed in the paper, the base model parameters
are taken to be the estimates ;\, é, and d described in Sections 5 and 6.
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In Figure 21, the log base 2 of the normalized approximate variances and nonpara-
metric variances are plotted against log,(m). The approximation is excellent consid-
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ering that variance estimates from long-range dependent time series have large vari-
ability. In Figure 22 the normalized approximate and nonparametric autocovariances
are plotted against square root lag for m = 128. The fits are excellent, again given the
variability due to long-range dependence.

14. VoIP Traffic Engineering
14.1. Background

The MFSD model in this article applies to the superposed packet arrival process of
the many different types of applications on commodity Internet links. For example, a
core link on the Comcast or Verizon or AT&T network. One part of traffic engineering
addresses this aggregate traffic.

However, contained within this traffic are applications that need special attention
because they have more stringent QoS requirements than most applications. This is true
of certain real-time applications. VoIP, voice over the Internet is one of them. Service
providers often give priority queueing to VoIP packets. An arriving VoIP packet is
moved forward in the queue to be in front of all packets with no priority queueing.

Among the handful of studies that report on VoIP packet traces, Birke et al. [2007]
and Ciullo et al. [2008] study VoIP packet traces collected on FastWeb, where VoIP
did not get priority queueing. Xi et al. [2010] analyzed live VoIP data collected on the
Global Crossing international network, where VoIP calls received priority queueing.
They studied the statistical properties of the VoIP traffic traffic as it enters the network
on VoIP gateways. They built a generation model for this “offered load”. It operates
quite differently from the MESD. Each call consists of two semi-calls, caller-to-callee
and callee-to-caller. Individual semi-calls are modeled. To carry out generation for a
simulation, semi-calls are generated through time and multiplexed on the computer,
resulting in a single stream for simulation.

VoIP packets need to reach the destination quickly, no more than about 150 ms from
end-to-end. VoIP packets have 20 ms spacing, which must be maintained to a degree at
the destination so the codec can receive them and assemble them to provide real-time
continuous speech. Deviations from 20 ms are jitter; absolute jitter must achieve an
upper bound of 30 ms with very high probability.

One question is whether priority queueing is needed. We ran a small simulation to
illustrate one way to answer the question. A real simulation would need to be much
more expansive in investigating a very wide range of traffic rates. In our illustrative
simulation the VoIP packets are multiplexed with MFSD packets but are not given
priority queueing. We investigate how much MFSD traffic can be mixed with the VoIP
traffic before VoIP QoS problems arise.

For this simulation, we do not need to use valid VoIP traffic, for example, generated
by the above VoIP model. Simple test VoIP traffic will do because the result is dom-
inated by the queueing properties of the MFSD traffic because, as in real life, in our
simulation the VoIP traffic has a much smaller bit rate.
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14.2. Illustrative Simulation

We generated commodity multi-application traffic using our MESD model and the fast
method of Section 13. We need packet sizes, too, for this simulation. The packet sizes
were generated independently using the empirical distribution of sizes from the traffic
collection of Section 4. We set the packet rate as @ = 22 packets/sec. The aver-
age packet size is 772.22 bytes/packet. So the mean bit-rate of the synthetic multi-
application traffic is 25.3 megabits/sec.

We take the VoIP packets to be 200 bytes each, the value for the commonly used 64
kilobits/sec capture rate, take the 20 ms accumulation interval, as in [Xi et al., 2010].
We generate a constant stream of VoIP packets arriving at the queue at a rate of one per
ms. This represents a stream for multiple semi-calls. Note the VoIP traffic rate of 1.6
megabits/sec is small compared with «, that of the other traffic. The synthetic multi-
application traffic and the synthetic VoIP traffic are superposed to form the input stream
to a FIFO queue. Simulation run time was 1 hour.

We describe the three simulation runs of our study. For each, we first choose the
utilization U, the average traffic rate divided by the link speed. The three runs have
values U = 0.1, 0.3, and 0.5 respectively. The traffic packet rate is & = 22 packets/sec
= 25.3 megabits/sec, so the corresponding link speeds are L = 25.3/U megabits/sec.

Let A; be the arrival time of the ith packet and B; its packet size. The queueing
delay of the ith packet in the multiplexed packet stream is calculated as

D;=[Dj—1+ Bi—1/L — (A; — A;—1)] .

In each run, we study the distribution of the delays of the VoIP packets V. Jitter is
computed from the delays of the VoIP packets that are 20ms apart,

Jr = Vi — Vie—a0.

We study the distribution of the absolute jitter values | Jx|.

For each of the three utilizations — U = 0.1,0.3,0.5 — we compute the sam-
ple quantiles of the two distributions, delay and absolute jitter, at frequencies 0.00005
to 0.99995 in steps of 0.0001. Figures 23 and 24 graph the quantiles against the fre-
quencies. Both delay and absolute jitter increase significantly as U increases. VoIP QoS
criteria specify upper bounds, so the upper tails are of particular interest. Table 2 shows
the 0.99, 0.999, 0.9999 quantiles.

Now the simulation study is for one hop which means one queue. The criteria —
150 ms for delay and 30 ms for absolute jitter — are end-to-end, which means many

TABLE 2
Tail Quantiles of Absolute Jitter and Delay in Milliseconds

Utilization 0.1 Utilization 0.3 Utilization 0.5
Quantile || Absolute Jitter | Delay || Absolute Jitter | Delay || Absolute Jitter | Delay
0.99 0.0456 0.0431 || 0.2305 0.2085 || 0.7692 0.6980
0.999 0.0729 0.0642 || 0.3486 0.3250 || 1.8256 1.7322
0.9999 || 0.0932 0.0884 || 0.4742 0.4517 || 3.5570 4.0116
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queues. Other studies show that the number of hops has a limit of about 30. To be con-
servative we use this for planning. We simply divide the end-to-end criteria to get single
hop criteria of 5 ms for delay and 1 ms for absolute jitter. Table 2 shows that a utiliza-
tion between 0.3 and 0.5 would satisfy criteria for a traffic rate of 25.3 megabits/sec.
Simulation runs at other utilizations can, of course, find exact values. Just these values
alone are encouraging. Elimination of VoIP priority queueing might in fact be feasible.
The traffic rate of 25.3 megabits/sec is not large, and a U in the range suggested for
this rate is not unreasonable. Furthermore, higher traffic rates can be expected to give
even better results.

15. Discussion

Following the discovery of long-range dependence of Internet traffic in 1994-1995,
there was a very active 15-year period of empirical study that provided much un-
derstanding of the properties of the packet arrival process. However, what was not
achieved was the development of a mathematical, statistical model for the interarrival
process that achieved three important goals: (1) extensive validation; (2) mathematical
tractability; (3) a useable synthetic generation of packet arrivals for studies in network
engineering. Work declined over the 15-year period in model development. However,
the need for such a model for mathematical study and simulation study is as strong as
in 1994. Network traffic engineering depends heavily on both. Network traffic engi-
neering is still critical for optimal Internet performance.

The work presented here provides such a demonstration for the MFSD model. There
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are a number of surprises. One is that the model is very simple, but yet does an excellent
job of describing the statistical properties of the interarrivals, as the extensive validation
shows. The MFSD for ¢,, has a Weibull marginal, and is a nonlinear transformation of a
Gaussian GFSD, which is a mixture of a near-self-similar process and white noise. The
GFSD provides a simple foundation for understanding, and leads to straightforward
synthetic generation.

Another surprise is that while the nonlinear transformation certainly changes dra-
matically the statistical properties of the MFSD, the second moment properties of the
MEFESD are those of a GFSD; the transformation changes the second moments some-
what, but leaves their fundamental structure the same.

The GFSD and MFSD models capture the important properties of the Internet traffic.
As the traffic rate increases, the packet arrival process tends toward Poisson.

It might seem surprising that a model satisfying the above three goals did not ap-
pear much earlier. One reason is that the vast majority of traffic studies analyzed packet
counts in fixed intervals such as 10 ms, instead of the packet interarrivals. This repre-
sents a data reduction that makes computation easier through having a much smaller
dataset. However, it is not possible to discover and investigate the MFSD by analyzing
just counts. The work here addresses directly the arrival process because that is what
the routers see, and what must be addressed in studies of network engineering, and
because it is mathematically, the foundational process.

The understanding that the MFSD model brings is important in and of itself. But
more importantly, the understanding leads to a very practical result: a mechanism for
fast valid generation of the packet arrival process for simulations to aid network engi-
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neering.

16. Appendix: Derivations of A and 6 for Changing o
16.1. Heuristic Derivation of A

We present a heuristic derivation for A in this section, under the simplified assumption
of renewal processes. Assume there are 7 i.i.d renewal processes, where r is a positive
integer. Each renewal process has a Weibull marginal distribution with parameters «
and A. From the analysis of the trace segments in the previous sections, we notice the
marginal distribution for the live traffic statistical multiplexing process (superposition
process) is Weibull with parameters A(r) and «(r), where the increasing traffic rate is

a(r) = ra.

Based on the Weibull marginal distribution for the individual renewal processes, we
have the marginal density of their statistical multiplexing process [Cox, 1962]:

o r—1
g"(t) = —% (e_(tar(1+,1\))A (/ ae_(mp(H;))Adx) ) |
t

The median 8" of the distribution with density ¢”(¢) is found by solving the following

equation:
B
o= (BT a1+ (1 _ a/
0

We approximate the distribution with density ¢” (¢) by a Weibull distribution with pa-
rameters A(r) and «(r) whose median matches 5".

r

r—1
e_(mr(u;))*dx) =0.5. (€20)

(log 2) X7

= ral'(1+ 1/A(r))’

(32)
We solve Equation 32 for A(r). The right hand side of Equation 32 changes monotoni-
cally with A(r). Hence there is a unique solution for A(r).

16.2. Heuristic Derivation of 6

Assume there are 7 i.i.d MFSD source processes t,,. Each has a Weibull marginal dis-
tribution with parameters o and A. The corresponding Gaussian image 2, of a source
process t,, follows a GFSD model with parameters ¢ and d. From the analysis of trace
segments in the previous sections, we observe the values of the fractional difference
parameter d do not change appreciably under different traffic rates. We then fix the
value of d to be the median of the estimates in Section 6. Let

d(r)=d =0.31.
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For the Weibull marginal distribution of the statistical multiplexing process t7,, we have
the estimates &(r) = ra, and A(r) obtained from Equation 32.

O(r) can be obtained from the autocorrelation at lag 1 for the Gaussian image 2z, of
the statistical multiplexing process ¢, as follows:

., P2 -4
O(r)y=1- T

To estimate 6(r), we first compute pj (1) for the statistical multiplexing process ¢,
then obtain pZ (1) from pj (1), and apply Equation 33.

In order to obtain pj (1), first we examine the sources of the arrivals that lead to the
two consecutive interarrival times in the superposition process, t;, and t;, , ;. Assume
the u-th arrival @, in the statistical multiplexing process is the jth arrival from source
1. Note &3, .1 = ay,q, — ay. Let t; ; be the jth interarrival time from source ¢, and
V; be a forward recurrence time (the time from an arbitrary time point until the next
arrival) for source 7. To find the autocorrelation between t;, and t7,, ;, we examine the
following five cases:

(33)

1. The arrivals a;,_; and a;, , ; both come from source 1. Then ¢, and ¢, , ; are two
consecutive interarrival times from source 1. We have pj (1) = p;(1).

2. The arrival ay,, ; comes from source 1, but the arrival a;, ; comes from a differ-
ent source 7. We have ¢,y = t1 j11. And ], = Vi = t; ; — ), where 7 is the
sum of interarrival times and forward recurrence times from sources other than
source 1. Then as in Case 1, pj (1) = p(1).

3. The arrival aj,_; comes from source 1, but the arrival a;,, ; comes from a dif-
ferent source ¢. Then ¢;, = t;; and t;,,; = V;. Since the individual source
processes are independent, pj (1) = 0.

4. The arrivals a;,_; and ay, , ; come from different sources, and neither comes from
source 1. Assume arrival ay,,; come from source i, i # 1. Then ¢, = V; and

wi1 = Vi. We have pj (1) = Corr(Vy,V;) = 0.

5. The arrivals a;,_, and aj, ,; both come from the same source 4, i # 1. This is

exactly the same as Case 4. Again t;, = Vi and ¢}, |, = V;. pf (1) = 0.

Hence under the first two cases pj(1) = p:(1), while under the last three cases
py (1) = 0. Let the minimum forward recurrence time from all other sources be V;,;,, =
ming;—s_ ) Vi. Case 1 and 2 occur when a;, and ay, ; both come from source 1. This
implies £ j+1 < Vinin. Therefore,

Pr(Case 1 or 2) = Pr(t1 j4+1 < Vinin)-
Thus, we have
pr(1) =Pr(t1 j+1 < Vinin)Corr(t i, t1 jy1lt j+1 < Vinin)- (34)

It remains to solve for both terms on the right hand side of Equation 34. Based on the
density of a forward recurrence time from one source process [Cox, 1962], we obtain
the density for V;,,;,,, the minimum of r — 1 forward recurrence times. Since t1 ;11 is
Weibull with parameters A and «, and independent of V,,,;,,, we have

00 y r—2
P(tij41 < Vipin) =1—(r — 1)a/ e~ WY <1 — a/ emk/wda:> dy,
0 0
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where ¢ = (aT'(1 4 1)) ™.

Next we approximate the joint density of two consecutive interarrival times from
the same source process, ¢; and ¢;1, by converting the joint density of their Gaussian
images z; and 2,41, z; = Z~'(W (t;)), and ignoring the correlation between ¢; and
tj+1 in the Jacobian matrix. Let p = p.(1) = Corr(z;, zj11). We have the following
approximate density, up to a normalizing factor:

1 —1
fw(tj tjy1) o meXP{Q—Qp

20— )2 (W) Z N (T(t31)) | }
2
X it exp{=(8) 4 £,)/0).
Using fW(tjatj+1) combined with P(t17j+1 < szn), Corr(tl,j,t17j+1|t17j+1 <
Vinin) can be calculated.

There are two ways to compute pj (1), either using Equation 34 or directly using the
approximate joint density fy (¢;,%;41), because fu (t;,¢;11) can be applied to two
consecutive interarrival times t;, and t;, , | in the superposition process as well. This
provides a numerical method for us to find p% (1) from a given pj (1).

We first obtain the estimate /] (1) using Equation 34. With A(r') obtained using
Equation 32 and &(r) = ra, we evaluate fy (¢;,t,;11) over a grid of potential p7 (1)
values. For each p (1) value we compute the corresponding pj (1) directly using fiy (¢,
The estimate p% (1) is the one that provides the closest match to 57 (1) obtained from
Equation 34. Then we apply Equation 33 to have an estimate of é(r)

2

s (27 W () + 271 (W (t)
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