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Statistical Issues in Computer Networks and Traffic
Analysis

Bowei Xi, Xiadong Yang, Vijayan N. Nair and George Michailidis∗

1 Introduction

Advancements in computer technology and storage capabilities have allowed network en-
gineers to collect very large amounts of data obtained from computer networks to address
a number of engineering tasks, including network provisioning, providing high quality-
of-service to users in advanced applications such as Internet telephony and television and
online gaming, configuring network protocols, fault diagnosis, traffic forecasting, just to
name a few [39].

Different types of network data can be collected that differ in their granularity, ac-
curacy, volume and delay [32]. We start by providing a brief high level description of
computer network operations. Networks consist of nodes (routers and switches) connected
by physical links (optical or copper wires). Data, in the form of packets, are transmitted
over the network from one node (called a source) to another node (called the destination)
on predetermined paths, or routes. A stream of packets from a particular source to a par-
ticular destination defines a flow. In many applications, flows are examined at a more
granular level, such as the protocol level (e.g. http, ftp) [39]. Data on flow-level traffic
can be obtained from NetFlow [14] or similar (tcpdump) technologies that provide very
detailed about the flow, including the application, packet and byte volumes, transmission
protocol and delays, etc. In principle, such data can be collected for all packets of all
flows. However, this is impractical in today’s high speed networks, which has led to the
implementation of sampling strategies for data collection purposes (see Section 2).

∗Bowei Xi is an Assistant Professor in the Department of Statistics at Purdue University. Xiadong Yang is
a Postdoctoral Fellow at Kansas State University. Vijayan N. Nair is D.A. Darling Professor of Statistics and
Professor of Industrial and Operations Engineering at the University of Michigan. George Michailidis (cor-
responding author) is Professor of Statistics, Electrical Engineering and Computer Science at the University
of Michigan.
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The analysis of computer network traffic on a single link has been the focus of a
number of studies over the years. Originally, the majority of traffic consisted of transfers
of files containing data. With the explosion of the Web and the introduction of new ap-
plications (audio and video streaming, etc.) most of the traffic shifted to video transfers
through new protocols such as peer-to-peer that altered its characteristics. In Section 3,
we provide a review of the evolving characteristics, focusing in particular on Voice-over-IP
(VoIP) technologies. Finally, a number of other interesting statistical issues arising from
network traffic are discussed in [17].

Another source of data is the aggregate volume on a link. Such data are of limited
resolution, since they provide information about the total number of packets (bytes) over
all flows that traverse a link over a prespecified period of time. Their temporal resolution
ranges from a few seconds (about 20-30 secs) to a few minutes (about 2-10 mins). Their
main advantage is their accuracy (no sampling required) and ease of collection and stor-
age. However, if one is interested in extracting information about individual flows, she
should solve an inverse type of problem that decomposes the aggregate data into their flow
constituent parts. This is the network tomography problem reviewed in Section 4.

Note that our goal has been to provide a brief summary of the main developments
in the area under consideration and provide pointers to references that discuss in more
technical depth particular statistical models and issues. Further, as with any overview paper,
the discussion is heavily influenced by our own research interests in this area.

2 Sampling Issues for Network Traffic

As mentioned in the introductoy section, the collection of the necessary information on
every packet traversing a computer network is prohibitive in terms of processing capacity,
cache memory and required bandwidth in today’s high speed links. Hence, packet sampling
techniques have emerged as a scalable alternative to address this problem. The Internet
Engineering Task Force working groupa have made a number of recommendations that
have been implemented in highspeed routers. Specifically, a request for comments (RFC)
was submitted [53] describing packet selection schemes and the parameters needed for
them. Another report [18] describes a framework for the packet sampling protocols to be
employed, details of the protocols and their tuning parameters are given in [15].

An overview of networking application where sampling proves useful is provided in
[19]. In addition, the basic mechanisms of systematic (deterministic) and random sampling
as applied to networks is briefly reviewed. An important application area for sampling is to
understand the characteristics of traffic flows; specifically, estimate the distribution of the
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flow lengths (in number of packets), together with the distribution of their sizes (in number
of bytes), as well as the number of active flows over a fixed time period. One issue that
arises due to the very low sampling rate (.001-.01) is that not packets from all active flows
traversing a link during a time period of interest would be observed, which introduces a
potential bias, since “small” flows would be missed. In a series of papers, Duffield and his
collaborators [20, 21] examined the problem of estimating the length of a single flow and
proposed an estimator that scales-up (multiplies) the sampled flow length by the inverse of
the sampling factor (e.g. if one employs systematic sampling and selects one out of 100
packets, then the multiplier is 100). They also introduced a model for inferring the flow
length distribution that was refined in [49]. In [35], a Bayesian approach for addressing
this problem is introduced. We follow the presentation in [49] to introduce the model.

Suppose that there are M active flows on a link, comprised of Nm,m = 1, · · · ,M
packets each. The number of packets in each flow gives the flow length. In addition, a
Bernoulli sampling mechanism is employed; namely, each packet is selected with proba-
bility p, independent of its characteristics (e.g. origin, protocol, application, etc.). Each
sampled packet can be uniquely assigned to a particular flow, by observing its flow key
obtained from information available in the packet header. Hence, the available data are
sampled flow length n1, n2, · · · , nr, where r is the number of sampled flows over a pre-
specified time interval.

Let φ = {φi} with φi denoting the probability that a flow contains i packets. Further,
let gj, j = 0, 1, · · · , J be the frequency of sampled flows of size j, with J being the total
number of different sampled flow sizes in all the observed flows. The unobserved quantity
g0 corresponds to the frequency of unsampled flows. An estimate of the total number of ac-
tive flows is then given by M =

∑J
j=0 gj , while the observable quantity r =

∑J
j=1 gj gives

the total number of sampled flows. Letting cij denote the probability of having j packets
sampled, given that the true flow length is i packets, we get that pij = φicij represents the
probability that an original flow contains i packets and j ≤ i of them have been sampled.
Finally, denoting by fij the frequency of flows of length i with j packers sampled we get
the following relationship: gj =

∑
i fij . We can then postulate the following joint model

for the number of original flows and the probability that they contain i packets:

L(φ,M) = (
M

g0, g1, ...gJ
)
∏
j≥0

(
∑
i≥j

φicij)
gj (1)

where M =
∑J

j=0 gj . The objective becomes to maximize this likelihood function subject
to the following constraints:

∑
i φi = 1, and φi ≥ 0, where i ∈ SI = {i(0), i(1), ..., i(J)},

with i(j) denoting the length of a flow being i packets when j of them have been sampled.
In [49], i(0) was set to 1

2p
instead of 0, since an original flow containing 0 packets is rather

meaningless. Also, the possible flow lengths values are restricted to integer values closest
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to j/p.

In [20] two different likelihood functions were considered, one for φ (the flow length
distribution) and a separate one for the total number of flows M . However, as noted in
[49], the proposed estimate of M in [20] given by the number of observed flows divided by
the sampling probability (i.e. r/p) is not the maximum likelihood estimate. The integrated
framework for this joint estimation problem that treatsM as a nuisance parameter discussed
in [49] gives maximum likelihood estimates based on the EM algorithm for both quantities
of interest, namely φ and M .

In subsequent work [50], an extension of the above framework is provided for esti-
mating the size of the flow distribution in terms of bytes. Specifically, the estimation of the
flow sizes (in bytes) is accomplished through a random effects regression model that uti-
lizes the flow length information {̂φ} previously obtained. This problem is also addressed
in [43]. Extensive empirical evidence from real network traffic traces suggests that flow
length distributions and consequently flow size ones are bimodal, with one mode corre-
sponding to the short flows and the second one to long flows. An adaptation of the likeli-
hood framework presented in (1) is introduced in [50] for this scenario. Finally, two-stage
sampling strategies are introduced and their properties discussed. Under such a scheme, in
the first stage flows are sampled uniformly with probability pf irrespective of their lengths,
while in the second stage, packets are sampled uniformly with probability pp from the
selected during the first stage flows. Such a mechanism has recently become technically
feasible to deploy and it shown that this two-stage sampling scheme overcomes the diffi-
culty posed by length biased sampling, since each flow has an equal probability of being
selected.

In [22], trajectory sampling is introduced, where a sampled packet is followed at all
the routers on the path it travels and its properties examined. In [24], the spectral properties
of the sampled packets are studied and an algorithm to reconstruct the spectrum of network
traffic proposed. Finally, in [1] flow sampling is used for addressing efficient anomaly
detection issues.

3 Traffic Characteristics and Statistical Modeling of Net-
work Traffic

Since the early 1990s it has been well established that the traffic over a single link exhibits
intricate temporal dependence, known as burstiness, which could not be explained by traf-
fic models developed for telephone networks [31]. To account for these empirical facts,
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network researchers, statisticians and probabilists introduced models that exhibited long–
range dependence and self–similarity [23], which in turn are affected by the presence of
heavy tails in the distribution of file sizes [37]. Further, a mechanistic model was presented
in [42]. A competing model based on queueing ideas was studied in [33]. These works led
to further developments; see eg [25].

We give a brief overview of the main features of such models. Suppose on a fixed
network route there are M independent users. Let {X(t)}t≥0 denote the traffic intensity of
one such user in bytes per unit time. Thus

∫ b
a
X(t)dt is the total traffic (bytes) generated by

the user during the time interval (a, b). It is assumed that {X(t)}t≥0 is a strictly stationary
stochastic process with finite mean. Further, let {(Tj, Zj)}j∈ be a stationary marked point
process of arrival times Tj’s in with marksZj’s. At time Tj , the user initiates a transmission
at constant unit rate, which lasts for a time Zj . Thus, the traffic intensity at time t equals:

X(t) =
∑
j∈

I(Tj ≤ t < Tj + Zj), (2)

where · · · ≤ T0 ≤ 0 ≤ T1 ≤ · · · . The process X(t) comes about from two popular
traffic models: (1) an M/G/∞ model, where the Tj’s are arrival times of a Poisson point
process with constant intensity, independent of the marks Zj’s or (2) an On/Off model,
where the Zj’s and the Tj’s are dependent and the durations of the user activity Zj’s are
modeled with heavy tailed distributions with finite mean but infinite variance, due to the
agreement with a large body of empirical work; see e.g. [16]. The heavy tailed nature of the
durations, implies that the process X(t) of user activity is long–range dependent (LRD).
For our presentation, we focus on the On/Off model and suppose that the tails of the On and
Off durations are heavy.

Let now {X(i)(t)}, 1 ≤ i ≤ M be independent and identically distributed stationary
processes modeling the traffic intensities of M users sharing a given route. Then, the
cumulative traffic over the route generated by the users is:

X∗(T,M) :=

∫ T

0

M∑
i=1

X(i)(t)dt.

We are interested in the asymptotic behavior of the cumulative traffic fluctuations about the
mean:

X∗0 (T,M) := X∗(T,M)−X∗(T,M).

As shown in [42], if the X(i)(t)’s are On/Off processes, then

L lim
T→∞

1

TH

{
L lim
M→∞

1√
M
X∗0 (Tt,M)

}
t≥0

= {BH(t)}t≥0, (3)
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where BH = {BH(t)}t≥0 is a fractional Brownian motion (fBm) with self–similarity pa-
rameter H and ’L lim’ denoting finite–dimensional distributions convergence.

Relation (3) shows that the fluctuations of the cumulative traffic about its mean be-
have asymptotically like the fractional Brownian motion, as the number of users M and the
time scale T are sufficiently large. The increments G(k) := BH(k) − BH(k − 1), k =
1, 2, . . . , of fBm can then serve as a model for the traffic traces of the number of bytes
transmitted over the network at certain, sufficiently large time scales.

The order of the limits in (3) is important. If one takes T → ∞ first and then
M →∞, as shown in [42], one obtains:

L lim
M→∞

1

M1/α

{
L lim
T→∞

1

T 1/α
X∗0 (Tt),M

}
t≥0

= {Λα(t)}t≥0. (4)

Now the limit process Λα = {Λα(t)}t≥0 has independent and stationary increments with
α−stable distributions, with α denoting the tail index of the heavy tailed marginal distri-
bution. It is the Lévy stable motion – the infinite variance counterpart to the Brownian
motion.

Relations (3) and (4) show two different regimes for the network. The first involves
many users relative to the time scale and the second, just a few users relative to the time
scale. Similar results were shown to hold for the M/G/∞ and other activity rate models
(see e.g. [34]).

In [?], an integration of the above presented single-link flow models together with the
underlying routing mechanism is employed to come up with a network wide global traffic
model. The proposed model arises from a limit approximation of the traffic fluctuations as
the timescale and the number of users sharing the network grow. The resulting probabilistic
model is comprised of a Gaussian and/or a stable, infinite variance components, depending
on the growth regime. It can be succinctly described and handled by certain spacetime
random fields.

We discuss next an interesting application related to network traffic modeling, that
is becoming prevalent due its cost advantages over classical telephony. Three decades ago
nearly all voice communication was carried by the Public Switched Telephone Network
(PSTN). Voice communication over the Internet is rapidly gaining popularity nowadays.
Voice over IP (VoIP) technology offers less expensive and flexible telephone service to
the end users. It is also cost effective for the service providers to maintain one network
that transmits both voice and data traffic. To ensure the quality of a VoIP call, stringent
Quality of Service (QoS) criteria are imposed. Statistical models and methods prove crucial
in understanding the properties of network traffic induced by this new application and in
determining the different engineering factors for efficient network resource allocation.

6



In [48], data were collected on a 100 megabits/sec link of the Global Crossing (GBLX)
network in Newark, New Jersey over 48 hrs, resulting in 1.315 billion VoIP packet times-
tamps and headers. This specific link is between an IP-PSTN gateway and an IP network
edge router. The VoIP traffic consists of multiple applications, such as voice calls, faxes,
and credit card processing [27]. A VoIP call produces two semi-calls, transmitted over two
separate cables. For this data, signals are captured at 64 kilobits/sec and the bits accumu-
lated over 20 ms intervals, resulting in packet sizes of 200 bytes including the headers. As
with most other applications, VoIP traffic exhibits strong diurnal patterns, ranging from 2
to 11 megabits/sec. Detailed call records provide additional information, such as whether a
call was successfully connected or merely an attempt. Finally, note that VoIP packets have
priority over those from other, less time sensitive applications and there is regular packet
transmission only when an algorithm detects a signal. Consequently a semi-call consists of
alternating transmission (on) intervals and silence (off) intervals.

There have been few studies of live VoIP traffic in the past; see e.g. [7, 13, 52], focus-
ing on estimating Hurst parameters for VoIP traffic. In [48],5 successive subsets of the data,
each being a subset of the previous one, to study the properties of the VoIP traffic. They
are labeled as full, processed, arrival, complete-call, and detail-augmented. The full data
contain 1.315 billion packets from 332018 calls (664036 semi-calls). The processed data
consist of 144185 calls. Calls that have few packets or large gaps are removed. Although
there are a large number of small calls, they contribute little to the traffic bit-rate and have
negligible impact on QoS study. The arrival data have 144046 calls that arrived during
the data collection period. Calls that were in progress at the beginning of the data collec-
tion period are removed. The complete-call data have 138770 calls that were concluded
by the end of the data collection period with an estimated probability 0.9999. The detail-
augmented data contain 78050 complete calls from the first day, for which the call detail
records are available. 50% of the calls in the complete-call data with call duration greater
than the median duration contribute 97.15% of the bits. 16.50% of the longest calls with
call duration greater than 128 sec contribute 87.90% of the bits. Due to the massive size of
the data no model assumption is true. We can tolerate deviations from model assumptions
for the shorter calls since they have insignificant impact on QoS.

The modeling is for the IP inbound traffic as it is first seen on the network, the offered
load not altered by network processing. The measured VoIP traffic is employed as the
IP inbound traffic. This assumption is validated by examining the timestamp accuracy
and the delay jitter. The hardware timestamp accuracy is reported to be ±0.1µs [2]. The
measured packet inter-arrival times confirm the level of the accuracy. Further, examination
of the delay jitter of the calls in the processed data is undertaken. The voice packets in a
transmission interval are generated at a constant rate – 20 ms. The difference between the
actual voice packet inter-arrival times and 20 ms is the delay jitter. The measured jitter is
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small and shows a 9-jitter cycle. A regression model is fitted to the jitter of the semi-calls
that have at least 25 transmission intervals and 20 cycles within each transmission intervals.
We use the bisquare robust estimator and 9 explanatory variables, cos(2πki/9), i = 0, ..., 4
and sin(2πki/9), i = 1, ..., 4. The amplitude of the waveform fit does not depend on
the sample size of each transmission interval. Both inbound and outbound traffic show
similar amplitude of the fitted waveforms. It is highly likely that the gateway packetization
algorithm produces the cycle in both directions. Hence the residuals are the variation of
the packet inter-arrival times caused by network processing. The 0.999 quantiles of the
residuals from both inbound and outbound directions are smaller than 0.4 ms. End-to-end
delay jitter should be less than 30 ms [27]. The observed jitter is very small compared with
the QoS requirement, confirming that the measured data is a good approximation of the
IP-bound traffic.

Due to the presence of diurnal effects, the data were further subdivied to 15 minute
intervals where the call-rate is relatively stable for studying the call arrival process. Note
that the call arrival process of the full data is not a Poisson process, which is a well estab-
lished model for telephone calls [3]. It is bursty with positively auto-correlated call inter-
arrivals due to rapid dialing and other technological innovations [8]. By removing very
short calls, leads to an approximately exponential inter-arrival process for the 15 minute
interval; hence, a non-homogeneous Poisson process is an accurate approximation of the
arrival process over longer time periods.

As noted above, silence suppression is a prevalent feature in VoIP, but has not been
studied in the literature. To examine its effect, 1000 calls from the detail-augmented data
with durations from 28 sec to 210 secs are sampled, equally spaced on a logarithmic scale.
In addition, a holdover of transmission is imposed when a silence interval is shorter than
25 ms and the interval lengths for a low frequency trend are adjusted and a 0 origin for
modeling purposes is used. Let tr be the adjusted transmission interval length and sr be the
adjusted silence interval length. tr and sr of one semi-call form an uncorrelated bivariate
time series.

√
tr and

√
sr are well approximated by a gamma distribution. It was noted that

different calls show different interval properties because the live VoIP traffic is a mixture
of various VoIP applications. The past studies did not involve live traffic carried by an
operational network and did not take the effect of the mixture into consideration [6, 9, 11,
26, 30, 36]. The varying interval properties is modeled through a random effect model for
the square-root gamma distribution parameters and the sampling variability is estimated by
bootstrapping.

Both the complete-call data and the detail-augmented data for the call duration dis-
tribution were examined. The call duration distribution is complex and can not be fitted
by a simple standard parametric distribution. The detail-augmented data revealed that the
calls can be categorized as attempts and connects. The attempt duration and the connect
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duration can be successfully modeled as piece-wise linear Weibull and the overall duration
distribution as a mixture of piece-wise linear Weibull distributions. It is likely the linear
pieces are caused by the mixture of different applications in the traffic, such as voice calls
and various machine-to-machine connections. The call duration cumulative distribution
function D is a critical statistical aspect of the VoIP traffic because it affects the time de-
pendence of the packet arrival process. Assume the call arrival rate is a constant C. Then,
the auto-correlation function of the number of simultaneous active calls at time lag τ is
ρ(τ) = C

∫∞
τ

(c − τ)d(c)dc. When
∑

τ ρ(τ) = ∞ the process is long range dependent.
Different from the best effort traffic models for file transfers [4, 38, 45], the VoIP traffic is
not formally long range dependent, because it duration distribution does not have a suffi-
ciently heavy tail. Packet counts in 20 ms intervals of the measured data were examined,
which are adjusted for non-stationarity. Further analysis of packet counts of a 96 hour
synthetic stationary series was undertaking. The spectra plots and variance time plots [5]
of the measured and synthetic series confirm the above conclusion. Nevertheless the VoIP
traffic is strongly persistent over a long period of about 75min/cycle (99.8% of the calls end
within 75 minutes). Such strong persistence has a major impact on QoS.

This detailed analysis of VoIP traffic undertaken in [48] provided valuable insight
for modeling purposes. Specifically, two models were considered that use a superposition
of sampled or synthetic semi-calls to generate the multiplexed traffic. One model is a
semi-empirical model: 1) The call arrivals are generated from a non-homogeneous Poisson
process where the arrival rate is determined by the target traffic bit-rate; 2) A semi-call
is sampled from the complete-call data; 3) The packet arrivals from the semi-calls are
superposed to generate the simulated VoIP traffic. The second model is a mathematical
model. Instead of sampling semi-calls from the complete-call data, different components
of a semi-call are generated from parametric models: 1) Call duration is generated from the
mixture of piecewise Weibull distributions for attempts and connected calls; 2) Generate
the shape and scale parameters of the square-root gamma distributions for the transmission
and silence intervals; 3) Generate alternating transmission and silence interval lengths until
we reach the generated call duration, and insert packets. The independent and identical
distribution assumptions needed for the proposed models are verified from the data. No
distinction between the two semi-calls of the same VoIP call occurs, because they have
similar bit-rate distributions except for the very short calls. The proposed models can be
used for QoS simulation studies for both wireless and wireline networks.
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4 Network Tomography

It can be seen that a major effort has been undertaking in collecting network traffic data,
understanding its properties and modeling them for a single link. However, understanding
the impact of traffic on the whole network in terms of QoS, as well as estimating customers
demand are two important network-wide problems. Network tomography techniques are
designed to address such problems.

As pointed out in [28], there are types of tomography methods: (i) link-oriented
methods that collect passively packet and network flow information at network devices
and (ii) path-oriented methods that collect information about connectivity and latency in a
network by actively sending probe packets through the network from nodes located on its
periphery. The first type of methods help address primarily capacity planning and network
routing issues, while the second type of methods are geared towards addressing QoS issues.

The first problem originated in the work of Vardi [44], who also coined the term net-
work tomography, while the second one in [10]. Both types of problems have received a lot
of attention in the engineering and statistical literature. Two comprehensive reviews, sum-
marizing the work in the area up to 2004 and 2006, are given in [12] and [28], respectively.
We provide a brief introduction to the two tomography problems and provide a summary
of some recent developments, past 2006.

We present next the link-oriented problem of network tomography. Let Yt denote
the vector containing the total number of packets traversing all network links over a fixed
period of time t. Let A denote the routing matrix of the network; i.e. it is a binary (0/1)
matrix with rows corresponding to links and columns to the origin-destination flows. A
column of A indicates the path that a flow takes from its origin to its destination. Finally,
let Xt denote the vector containing the total number of packets belonging to all the flows.
We can then relate Xt and Yt through the following relationship:

Yt = AXt, t = 1, 2, · · · (5)

The goal of network tomography is to infer the distribution of the flows (X) from the
observed data (distribution of Y ). A moment of reflection shows that this is an ill-posed
linear inverse problem, since in general there are many more flows than link measurements,
or in other words the routing matrix A is not of full column rank.

To overcome this technical difficulty special statistical parametric models were in-
troduced; specifically, a mean-variance relationship that generates a full rank system of
linear equations was used, where flow volumes are assumed independent of each other and
were modeled either as Poisson or as normally distributed with flow variances proportional
to their means. The proportionality assumption leads to identifiability of means through
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identifiability of variances (details given in the review papers of [12, 28]). Another class
of models motivated by ideas from transportation networks, aims to introduce enough con-
straints to regularize the inverse problem, so as to obtain a unique solution. For example,
gravity models [12], assume that a flow fj between two nodes k and ` is proportional to the
total amount of traffic departing from node k and that entering the node `.

In [40], the identifiability problem is examined in considerable generality. Specifi-
cally, models that allow a limited degree of dependence between flows (forward and reverse
flows between pairs of nodes) are introduced, as well as models that incorporate measure-
ments for both packets and bytes. It is shown that under mild assumptions on the charac-
teristic function of flow volume distribution all n−th order cumulants for n ≥ 2 of X are
estimable (uniquely identifiable) from the observed data Y if a particular matrix B which
is a function of the routing matrix A is of full rank. Further, utilizing a linear isometry
relatinship between the Gaussian and the symmetric α-stable distribution the parameters of
the latter are also identifiable (since stable distribution do not have finite variances). Fur-
ther, it is shown that the matrix B is provably of full rank, if shortest path routing is used
for obtaining the routing matrix A. The results in [40] are the most general for to date
for addressing the identifiability problem for this version of network tomography. It is of
considerable interest to extend them to more general dependence structures amongst flows.

We now turn our attention to the path-oriented version of network tomography. Most
of the literature has dealt with tree topologies, as opposed to general graphs. In this instance
of the problem, packets are injected on the root node of the tree and routed to its leaf nodes.
The data collected in the Y vector correspond to average delays (or losses) of a sequence
of such packets destined for all the leaf nodes. It can be seen that a similar relationship,
namely Y = AX , holds, where A again denotes the routing matrix used (for an example
see [28]). It can easily be seen that a unique solution could be obtained if A is of full
column rank.

It turns out that for this problem one can design the injection of the packets in a
particular way so as to achieve identifiability. Specifically, a collection of multicast packets
must be used, such that each internal node of the tree is used as a splitting node for the
multicast packet and all the leaf nodes are used as receiver nodes of such packets. As
shown in [29, 47] this is a necessary and sufficient condition for identifiability for tree
topologies. A multicast packet is one that travels as a single packet up to an internal node
of the tree and then duplicates itself with different copies destined for different leaf nodes.
It can be seen that this mechanism induces correlations between the copies of the multicast
packet that prove useful in resolving the identifiability problem. In [47] and [17] it is shown
that multicast packets that duplicate are sufficient for the task at hand. Maximum likelihood
estimates are developed based on the EM algorithm for packet losses [47] and delays [29],
respectively. Further, in [17] a log-linear formulation of the problem for estimating the
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loss rates is introduced that leads to fast to compute estimates. Finally, the problem of
identifiability for this version of the newtork tomography problem on directed acyclic graph
topologies is still open, although some partial results are given in [46].

Given that one needs to inject multicast packets to estimate the parameters of inter-
est in path-oriented tomography, an interesting question is how to design the collection,
so as to minimize interference with the network operations. In [51] this problem is exam-
ined for particular directed acyclic graph network topologies that correspond to collections
of rooted trees. The underlying design problem is formulated as a set covering problem
with constraints corresponding to a sufficient condition for identifiabilty postulated in [46].
An integer program formulation of the set covering problem is introduced and fast greedy
heuristic algorithms are developed and evaluated (since the set covering problem is prov-
ably NP-hard). The proposed algorithms work well and produce good designs for topolo-
gies involving dozens of root nodes and hundreds of leaf ones.

Path-oriented network tomography techniques can be used to monitor the link of
a large network for congestion and anomalous behavior. This would require monitoring
hundreds of links parameters (e.g. loss rates or mean delays). An alternative approach is
to monitor similar path parameters that can be easily estimated (without requiring solving
the inverse tomography problem). In [51] this problem is comprehensively studied and it
concluded that a two-stage strategy is economical and efficient; namely, path parameters
are continuously monitored using a variety of statistical process control techniques, until an
alert is detected. Once an alert is raised, one solves the tomography problem and identifies
the problematic link.
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