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Abstract

This paper is concerned with asymptotic behavior of the normalized sums of
functionals of a variety of continuous semimartingales where observations are sam-
pled at stochastic times. Several laws of large numbers and a major central limit
theorem are proved after an appropriate normalization. These results are connected
to the needs of financial econometrics in that they provide future foundation for
redefinition of the realized kernel estimation of integrated volatility. Realized kernel
method is currently one of the most popular methods for estimation of integrated
volatility of a price process for high-frequency financial data. The classical definition
is based on equispaced data; however, it has to be redefined in cases where the trad-
ing times are stochastic. The stochastic trading duration assumption is typically
true whenever the tick-by-tick trading data are recorded. Our results provide the
foundation of asymptotic theory of the redefined realized kernel estimator which is
the subject of our second (forthcoming) article.

Keywords: realized kernel, continuous semimartingale, high-frequency financial data,
law of large numbers, central limit theorem

1 Introduction

Over the past decade, the field of volatility modeling and analysis for high-frequency
financial data has developed optimistically. The class of realized kernel estimators was
first introduced by (Barndorff-Nielsen et al., 2008) to estimate the quadratic variation of
a price process from high-frequency data. The idea of realized kernel estimator extends
an older kernel estimator proposed by (Zhou, 1996). (Barndorff-Nielsen et al., 2009)
conducted an extensive empirical study of realized kernel estimators using real data.
The method has been shown to be successful in applications; moreover, it has improved
significantly our understanding of time-varying volatility of stochastic processes as well
as the ability to predict future volatility. It also became clear that the realized kernel
approach is closely related to the Two Scales Realized Volatility (TSRV) idea of (Zhang
et al., 2005) and its extension to multiple scales known as MSRV; for details about the
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latter, see (Zhang et al., 2006) and (Ait-Sahalia et al., 2011). A comprehensive review
of this literature was given by (Wang and Zou, 2014).

In this setting, it is usually assumed that the ex post variation of log prices over
arbitrary fixed time period is of interest. Such a process is commonly assumed to be
a Brownian semimartingale with the spot volatility σt. For simplicity, a fixed interval
[0, T ] for some T > 0 is considered. Let k(x) be the non-stochastic weight function
defined on [0, 1] and δ > 0 the time gap. The number of observations over the interval
[0, T ] is then n = bTδ c. Define the integer bandwidth H > 0; then, for a continuous
time log price process Xt and a time gap δ > 0, the realized autocovariance of order h,
h = −H,−H + 1, . . . ,H − 1, H is

γh(Xδ) =
n∑
j=1

(Xδj −Xδ(j−1))(Xδ(j−h) −Xδ(j−h−1).

Note that, in this setting, the difference (Xδj −Xδ(j−1)) represents jth high frequency
return. Based on the above, the realized kernel estimator in its classical form is defined
as

K(Xδ) = γ0(Xδ) +
H∑
h=1

k

(
h− 1

H

)
{γh(Xδ) + γ−h(Xδ)} . (1.1)

In a sense, the realized kernel estimator performs smoothing of autocovariances of the
process similar to how they are smoothed to obtain a consistent estimator of the spectral
density in the discrete time series process. This setting has been later generalized in
(Barndorff-Nielsen et al., 2011) to the situation where the price process is d-dimensional
with d > 1. In so doing, (Barndorff-Nielsen et al., 2011) have had to overcome the
synchronicity problem between various assets while still taking into account market
microstructure effects that may not be independent of the price process.

The classical setting assumes that the interval between successive observations is
deterministic. This may not be the most realistic assumption since returns are commonly
measured in tick time. Already (Barndorff-Nielsen et al., 2008) posted a question on what
may happen if the duration times are, in fact, stochastic. To illustrate the situation,
(Barndorff-Nielsen et al., 2008) assumes that the log return process Xt is a Brownian
semimartingale; moreover, the measurement times are taken to be Tδj , j = 1, 2, . . . , n

with T =
∫ t

0 τ
2
u du where τ has strictly positive cádlág paths. Under these assumptions,

one can construct a new process Zt = YTt such that Zδj = Xtδj and one can now
work with the process Zt observed at equally spaced times. The result, however, is
an inconsistent estimator of the quadratic variation over [0, T ]. More specifically, let
vt = σTtτt. Then, direct application of the realized kernel approach to the process Zt
produces an estimate of the quantity

∫ t
0 v

2
u du rather than that of the original quadratic

variation
∫ t

0 σ
2(u) du.

To the best of our knowledge, a possibility of the truly stochastic duration times
between adjacent observations has not been considered before. In particular, we again
consider a finite interval [0, T ] with n transactions observed within that interval. The
observation times t1, . . . , tn are stochastic. The durations τi = ti − ti−1 , i = 2, . . . , n
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are assumed to be iid with a continuous cumulative distribution function and with both
expectation and variance going to zero as n→∞. In order to obtain a sensible realized
kernel type estimator, we redefine realized autocovariances of the log return process Xt.
To do this, consider first the realized cross-covariance between two distinct processes Zt
and Xt with common measurement times {ti}1≤i≤n. For simplicity, we use the notation
∆n = E τi for any 1 ≤ i ≤ n. We define the realized cross-covariance as γh(Z,X)t =

∆n
∑n

j=1

(Ztj−Ztj−1 )
√
τj

·
(Xtj−h−Xtj−h−1

)
√
τj−h

. If Xt = Zt, the above definition provides the new

definition of the realized autocovariance:

γh(Z)t = ∆n

n∑
j=1

(Ztj − Ztj−1)
√
τj

·
(Ztj−h − Ztj−h−1

)
√
τj−h

. (1.2)

Now, the realized kernel estimator can be redefined by substituting (1.2) instead of the
classic autocovariance definition into (1.1).

Although this definition seems rather sensible in the case of stochastically spaced
measurement times, we need to establish a number of new asymptotic results of prob-
abilistic nature first if we ever hope to characterize the large sample behavior of our
new realized kernel estimator. In particular, one has to establish the law of large num-
bers and a central limit theorem for several functionals of increments of continuous
semimartingales with observations being sampled stochastically with duration times τi,
i = 2, . . . , n. The current manuscript is dedicated specifically to these results while the
second manuscript in our series will concentrate on the properties of the new estimator.
The manuscript is structured as follows. Section (2) is concerned with the detailed model
set-up. Section (3) discusses relevant laws of large numbers while section (4) covers a
very important central limit theorem.

2 Model Set-up

1. Price model:
Assume that we have a probability space (Ω, P,F) and an assigned filtration {Ft}t≥0

containing all the information about market prices St up to time t; also, let {Wt} be a
Brownian Motion defined on this space. Let Xt = ln(St) be the log price process such
that dXt = btdt+σtdWt with a drift process bt and the volatility process σt. We assume
that the drift process bt and the volatility process σt are adapted to Ft. For brevity, we
denote the integrated volatility IV =

∫ T
0 σ2

t dt.
Throughout this manuscript, we will use several important assumptions on the nature

of the process Xt. For convenience, we start with enumerating all of them in one location.

1. Assumption A:
Given any finite T > 0, we assume that the spot volatility σ2

t , 0 ≤ t ≤ T can be
bounded with probability 1:

P{σ2
t ≤MT , 0 ≤ t ≤ T} = 1
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where MT is a random variable with finite fourth moment:

E(M4
T ) <∞

2. Assumption B:
P{|bt| ≤ AT , 0 ≤ t ≤ T} = 1

for any fixed T > 0 where AT is a random variable with finite fourth moment:

E(A4
T ) <∞

Assumption H:
Let Xt be a continuous Itô semimartingale with the representation

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs

where Wt is a standard Wiener process and bt, σt are locally bounded. Moreover,
the volatility process σt is also an Itô semimartingale of the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃dWs + κ̃(δ̃) ? (µ− ν)t + κ̃′(δ̃) ? µ

t

where µ is a Poisson random measure on (0,∞) × E with intensity measure
ν(dt, dx) = dt⊗ λ(dx), where λ is a σ-finite and infinite measure without atom on
an auxiliary measurable set (E, E). κ̃ is a truncation function and κ̃′(x) = x−κ̃(x).
δ̃(ω, t, x) is a predictable function on Ω×R+ × E. Moreover, we assume that

(a) Let γ̃ be a (non-random) nonnegative function such that
∫
E(γ̃(x)2∧1)λ(dx) <

∞. Then, the processes b̃t(ω) and supx∈E
‖δ̃(ω,t,x)‖
γ̃(x) are locally bounded, and

(b) All paths t → bt(ω), t → σ̃t(ω), t → δ̃(ω, t, x) are right-continuous with left
limits (càdlàg).

Remark 2.1. Recall that being locally bounded in this context means that a stopped
version of a process is bounded. In other words, there exists a sequence of stopping
times {Tn}, with Tn →∞, such that stopped process bt∧Tn is bounded by a constant
that may depend on n but not on (ω, t).

In what follows we will also use another, much stronger definition of what it means
to be locally bounded.
Assumption SH:
In addition to the assumption (H) we have, for some constant Λ and all (ω, t, x):

‖bt(ω)‖ ≤ Λ, ‖σt(ω)‖ ≤ Λ, ‖Xt(ω)‖ ≤ Λ

‖b̃t(ω)‖ ≤ Λ, ‖σ̃t(ω)‖ ≤ Λ, ‖δ̃(ω, t, x)‖ ≤ Λ(γ̃(x) ∧ 1).
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3. Trading time model: Assumption T
For a finite time interval [0, T ], define ∆n = T

n . We assume that n transactions
occurred until the time T and that the transaction times t1, . . . , tn are stochastic.
More specifically, the durations τi = ti − ti−1 , i = 2, . . . , n are assumed to be i.i.d.
with some continuous cumulative distribution function, the mean

E[τi] = ∆n (2.1)

and variance
V ar(τi) = ∆2+ε

n , for some ε > 0 (2.2)

.

Remark 2.2. The Assumption T implies the following useful representation. If
we select a random sequence ξni such that Eξni = 0 and V ar ξni = ∆ε

n for some
small ε > 0, the duration time τi satisfying (2.1)-(2.2) can be represented as τi =
∆n(1 + ξni ). By Chebyshev’s inequality, we also have ξni = op(1).

Remark 2.3. Note that this assumption excludes, for example, the exponential
distribution that is commonly used to model duration times since in that case the
variance is equal to the mean. Historically, the assumption of exponential distri-
bution for duration times was quite popular. As an example, a well known model
of (Cont et al., 2010) models the trading times as a simple Poisson process which
means that the trading durations are i.i.d. exponentially distributed with some pa-
rameter λ. Our assumption is of purely technical nature; as ε→ 0, the exponential
model can be thought of as a limiting case of our model. Other alternative models
of trading times may assume that the trading durations are correlated over time as
in, for example, the autoregressive conditional duration (ACD) model introduced
by (Engle and Russell, 1998). Moreover, (Bouchaud et al., 2002) offer a compre-
hensive study on the empirical properties of the whole order book. Since our main
interest lies in estimation of realized volatility of the data, we are going to start
with a simple assumption of independent duration times first. We will consider
possible generalization to the ACD model as a next step in our research.

Finally, the last assumption concerns the relationship between transaction times
ti and the price process Xt.

4. Independence Assumption C:
Let {Nt}t≥0 be the filtration generated by transaction times 0 ≤ t1, . . . , tn ≤ t for
some 0 ≤ t ≤ T . We assume that Nt is independent of Ft.

3 Laws of large numbers (LLNs) for increments of functions of semi-
martingales

In this section, we consider two continuous semi-martingale data processes. The first
is a very simple constant volatility process X̃t = σWt. The second is more compli-
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cated semimartingale process Xt = X0 +
∫ t

0 bsds +
∫ t

0 σsdWs. We also assume that
all of the durations {τi}ni=2 satisfy Assumption T. The increments of the first process
are denoted ∆n

i X̃ = X̃ti − X̃ti−1 while those of the second are ∆n
i X = Xti − Xti−1 .

For an arbitrary function f , functions of the increments of the simplified process X̃t

are Ṽ (f,∆n)t = Σn
i=1f(∆n

i X̃). We also consider these same increments in the nor-
malized form as Ṽ ′(f,∆n)t = Σn

i=1f(∆n
i X̃/
√
τi). Analogously, for the more compli-

cated process Xt we have V (f,∆n)t = Σn
i=1f(∆n

i X) and, in the normalized form,
V ′(f,∆n)t = Σn

i=1f(∆n
i X/
√
τi). Finally, we also define the so-called approximate vari-

ation of the pth order for both processes Xt and X̃t as B(p,∆n)t = Σn
i=1|∆n

i X|p and
B̃(p,∆n) = Σn

i=1|∆n
i X̃|p for some positive integer p. Of course, if p = 2, these become

approximate quadratic variations. Our ultimate goal is to derive certain laws of large
numbers (LLN) and central limit theorems (CLT) for the functions of increments of Xt.
As an intermediate step, both will be proved first for the functions of increments of X̃t.

We begin with a simple lemma concerning the asymptotic behavior of the size of the
time grid.

Lemma 3.1. Under assumption T, max τi
p−→ 0 as n→∞.

Proof. Denote τ(n) = max1≤i≤n τi. Since τ(n) ≥ 0, we have for any a > 0, by Markov
inequality

P (τ(n) ≥ a) ≤
E(τ(n))

a

Then, by Hartley-David Inequality (see (Hartley et al., 1954)), we have E(τ(n)) ≤ ∆n +√
∆2+ε
n (n−1)√

2
= O

(
n−

1+ε
2

)
if 0 < ε < 1 and O(n−1) if ε ≥ 1. In either case, clearly,

E(τ(n))→ 0. Thus we have as n→∞,

lim
n→∞

P (τ(n) ≥ a) = 0

which means that τ(n)
p→ 0.

Next, we will need the fact of asymptotic convergence of B(2,∆n)t. In other words,
we need to see whether

B(2,∆n)t
p−→
∫ t

0
σ2
sds.

For the fixed time grid this has been done in the literature earlier; see, for example,
Theorem 2.10 of (Kessler et al., 2012)) and references therein. For convenience, we cite
this result in full.

Theorem 3.2. Let the grid of transaction times be

G = {t0, t1, · · · , tn = T};

define the maximum size of the grid to be ∆(G) = max{ti − ti−1} and assume that
∆(G)→ 0 as n→∞. We also define

[X,Y ]Gt = Σti+1<t(Xti+1 −Xti)(Yti+1 − Yti)
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for any two processes Xt and Yt. Then, for any two semi-martingales Xt and Yt, there
is a process [X,Y ]t such that

[X,Y ]Gt
p→ [X,Y ]t

for all t ∈ [0, T ] as ∆(G)→ 0. Moreover, for an Itô process,

[X,X]t =

∫ t

0
σ2
sds

The resulting limit is independent of the sequence of grids G.

Note that the theorem is still be true even when ti’s are stochastic, as long as they
are stopping times and

∆(G) = max1≤i≤n(ti − ti−1)→ 0

is still satisfied. The details can be found in (Jacod and Shiryaev, 2003), Theorem 4.47,
page 52.

3.1 The first simple law of large numbers

As a first step, we establish a simple law of large numbers for functions of increments
of an Itô semimartingale. It will serve as a stepping stone for later, more complicated
results.

Lemma 3.3. Let f be a continuous function: Rk → R and let Xt be a continuous Itô
process defined as above. Then

a) If f(x) = o(‖x‖2) as x→ 0, then

V (f,∆n)t
p−→ 0

b) If there exists a neighborhood of 0 such that the function f(x) ≡ g(x) = γx2 for
some constant γ, then

V (f,∆n)t
p−→ γ

∫ t

0
σ2
sds

Proof. a) If f(x) = o(‖x‖2) as x→ 0, then for any η > 0, there is an ε > 0 such that
function f can be represented as

f(x) = fε(x) + f ′ε(x)

where the first term is a continuous function fε(x) such that fε(x) = 0 when

‖x‖ ≤ ε while ‖f ′ε(x)‖ ≤ η‖x‖2 for all x. Since ∆(G)
p−→ 0 as n → ∞ and Xt

is continuous, then for each ω, there exists an integer N(ω) such that for all
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n ≥ N(ω), max‖∆n
i X(ω)‖ ≤ ε. Thus for each ω we have V (fε,∆n)t → 0.

Moreover, we have

‖V (f ′ε,∆n)t‖ ≤ ηΣ
t/∆n

i=1 ‖∆
n
i X‖2

p−→ η

∫ t

0
σ2
sds

by Theorem (3.2).
Thus

‖V (f,∆n)t‖ ≤ ‖V (fε,∆n)t‖+ ‖V (f ′ε,∆n)t‖
p−→ η

∫ t

0
σ2
sds

Since η can be arbitrarily small, the first statement is true.

b) Let f ′ = f − g, which is o(‖x‖2) on a neighborhood of 0, then from the results of
(a), we obtain that

V (f ′,∆n)t = V (f,∆n)t − V (g,∆n)t
p−→ 0

And

V (g,∆n)t = γΣ
t/∆n

i=1 (∆n
i X)2 p−→ γ

∫ t

0
σ2
sds

Thus we obtain the result (b) by combining these two equations together.

The LLN we just obtained in Lemma (3.3) is slightly weaker than what is needed. Be-
fore formulating a more general LLN, we need to define the idea of uniform convergence
in probability.

Definition 3.4. A sequence of jointly measurable stochastic processes ξnt is said to con-
verge locally uniformly in probability to a process ξt if limn→∞ P

(
sups≤t |ξns − ξs| > K

)
=

0 for any K > 0 and any finite t. This convergence is commonly denoted ξnt
u.c.p.→ ξt.

Now, armed with the new ideas, we can obtain a much stronger uniform law of large
numbers.

Theorem 3.5. Assume (H) and (T). Let f be a continuous function on Rk for some
k ≥ 1, which satisfies

|f(x1, · · · , xk)| ≤ K0

k∏
j=1

(1 + ‖xj‖p)

for some p > 0 and K0. Define

V
′
(f, k,∆n)t =

[t/∆n]∑
i=1

f
(

∆n
i X/

√
∆n, · · · ,∆n

i+k−1X/
√

∆n

)
Then we have

∆nV
′
(f, k,∆n)t

u.c.p.−−−→
∫ t

0
ρ⊗kσu (f)du.

In the above, ρ⊗kσ (f) = E[f(X)] where X = (x1, x2, · · · , xk) ∼ N(0, σ2I) and I is a k×k
identity matrix.
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Proof. To prove this theorem, we will use the so-called localization procedure described
in detail in (Kessler et al., 2012). Essentially, it is a very useful approach for proving
limit theorems for discretized processes over a finite time interval. Our main tool in this
undertaking is the following Lemma from (Kessler et al., 2012) that we show here in full
for ease of exposition.

Lemma 3.6. If X satisfies assumption H we can find a sequence of stopping times Rp
increasing to +∞ and a sequence of processes X(p) satisfying assumption SH and with
volatility process σ(p), such that

t < Rp → X(p)t = Xt , σ(p)t = σt

Clearly, the assumptions of (3.6) are true in our case for the process Xt. Suppose
that Theorem (3.5) has been proved when (SH) is satisfied. Let X now satisfy (H) only,
and (X(p), Rp) be as defined in the Lemma (3.6). If the process used in V

′
(f, k,∆n)t is

X(p)t, we use the modified notation V
′
(X(p); f, k,∆n)t. We then know that for all p, T

and all appropriate functions f ,

supt≤T

∣∣∣∣∆nV
′
(X(p); f, k,∆n)t −

∫ t

0
ρ⊗kσ(p)u

(f)du

∣∣∣∣ P−→ 0

On the set {Rp > T+1} we have, for any ∆n such that k∆n ≤ 1, that V
′
(X(p); f, k,∆n)t =

V
′
(X; f, k,∆n)t and σ(p)t = σt for all t ≤ T by Lemma (3.6). Since P (Rp > T + 1)→ 1

as p → ∞, it readily follows that ∆nV
′
(f, k,∆n)t

u.c.p.−−−→
∫ t

0 ρ
⊗k
σu (f)du. This proves The-

orem (3.5) under (H).
Thus, the only task remaining is to prove that the statement of the Theorem (3.5) is
true when X satisfies (SH). For convenience purposes, from now on we denote tni the
time of the ith transaction within the interval [0, T ]; the superscript n refers to the
total number of transactions in this interval. Under SH, σt is a piecewise constant
function equal to σtni−1

on each of the intervals [tni+l−1, t
n
i+l] for 1 ≤ l ≤ n − i. Define

∆n
i+lW = Wtni+l

−Wtni+l−1
. Then, defining

βni,l = σtni−1
∆n
i+lW/

√
τi+l,

and

xni,l =
1
√
τi+l

∫ tni+l

tni+l−1

(
bsds+ (σs − σtni−1

)dWs

)
we obtain

∆n
i+lX =

√
τi+l(x

n
i,l + βni,l).

Assuming (SH), note that we have ∆n = T
n = O(n−1) and based on Assumption T, we

have lim
n→∞

τi
∆n

= 1 in probability. Then, it’s easy to check that, for any q > 0, there

exists a constant Kq such that

Eni+l−1(‖βni,l‖q) ≤ Kq
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where
Eni+l−1(·) = E

(
·|Ftni+l−1

∨
Ntni+l−1

)
Using Doob’s and Burkholder-Davis-Gundy inequalities (see (Burkholder et al., 2011))
repeatedly we obtain a sequence of inequalities. All of them are true for every ω and so
can be interpreted in the almost sure sense. First, the direct application of the above
cited inequalities gives us

E (‖σt+s − σt‖q|Ft) ≤ Kqs
1∧(q/2);

this, in turn, lets us claim that

Eni+l−1

(
|xni,l|

)
≤ KqE

n
i+l−1(

√
τi+l)→ 0

On the other hand, we have for function f satisfying the assumptions in Theorem (3.5),
and any A > 0,

GA(ε) = sup
{xj ,yj :‖xj‖≤A,‖yj‖≤ε}

‖f(x1 + y1, · · · , xk + yk)− f(x1, · · · , xk)‖
ε→0−−→ 0

Then we have

sup
i≥0,ω∈Ω

Eni−1

(∣∣∣∣f (∆n
i X√
τi
, · · · ,

∆n
i+k−1X√
τi+k−1

)
− f

(
βni,0, · · · , βni,k−1

)∣∣∣∣)
= sup

i≥0,ω∈Ω
Eni−1

(∣∣f(xni,0 + βni,0, · · · , xni,k−1 + βni,k−1)− f(βni,0, · · · , βni,k−1)
∣∣)→ 0

Let’s denote
V
′′
(f, k,∆n)t = Σ

[t/∆n]
i=1 f(βni,0, · · · , βni,k−1)

Then we have
∆n

(
V ′(f, k,∆n)t − V

′′
(f, k,∆n)t

)
u.c.p.−−−→ 0

by the result above. Therefore it is enough to show the convergence for ∆nV
′′
(f, k,∆n).

Denote ηni = ∆nf(βni,0, · · · , βni,k−1). Then we have

Eni−1(ηni ) = ∆nρ
⊗k
σtn
i−1

(f) = (τi + ∆n − τi) ρ⊗kσtn
i−1

(f) = τiρ
⊗k
σtn
i−1

(f) + (∆n − τi)ρ⊗kσtn
i−1

(f)

First of all, we show that

[t/∆n]∑
i=1

(∆n − τi)ρ⊗kσtn
i−1

(f)
u.c.p.−−−→ 0

because the conditions of Lemma 3.4 in (Kessler et al., 2012) are satisfied:

[t/∆n]∑
i=1

Eni−1

(
(∆n − τi)ρ⊗kσtn

i−1

(f)

)
= 0
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[t/∆n]∑
i=1

Eni−1

(
|(∆n − τi)ρ⊗kσtn

i−1

(f)|2
)

=

[t/∆n]∑
i=1

(
ρ⊗kσtn

i−1

(f)

)2

V ar(τi) ≤ K
[t/∆n]∑
i=1

V ar(τi)
P−→ 0

Note that we also have Eni−1(|ηni |2) ≤ K∆2
n, thus by Riemann integration, we have

Σ
[t/∆n]
i=1 Eni−1(ηni ) =

[t/∆n]∑
i=1

∆nρ
⊗k
σtn
i−1

(f)
u.c.p.−−−→

[t/∆n]∑
i=1

τiρ
⊗k
σtn
i−1

(f)
u.c.p.−−−→

∫ t

0
ρ⊗kσv (fv)dv

which concludes our proof.

4 Main central limit theorem

4.1 A simple CLT for increments of the simplified process

To show the “flavor” of results we need to obtain, we state, as a first step, a simple
central limit theorem for the normalized increments of the simplified process X̃t. This
CLT will not be used in the future to prove other results - it is simply an illustration
of what we would like to establish for the normalized increments of the process Xt. As
a first step, we need the following definition. A continuous function f is said to exhibit
polynomial growth (grow at a polynomial rate) if

|f(x)| ≤ K(1 + |x|p) ≤ K0|x|p (4.1)

with some constants K,K0 and some p ≥ 0.

Theorem 4.1. Let ρσ(f) = 1√
2πσ

∫
f(x) exp (−x2/2σ2) dx be an integral of the function

f(x) with respect to the Gaussian law N(0, σ2). If the function f grows at a polynomial
rate, we have

1√
∆n

(
∆nṼ ′(f,∆n)t − tρσ(f)

)
L−→ N(0, t[ρσ(f2)− ρσ(f)2])

Proof. Note that any n variables (∆n
i X̃/
√
τi : i ≥ 1) are i.i.d with law N (0, σ2). Then

the variables f(∆n
i X̃/
√
τi) when i varies are i.i.d with finite moments of all orders. An

application of the standard CLT gives us the statement of this result.

4.2 Main CLT

Now, we have to obtain the CLT for the increments of Xt. A major problem in doing
so is to be able to characterize the limit, and, more specifically, the quadratic variation
of the limiting process. As usual, we start with the necessary notation. Consider a
sequence (Ui)i≥1 of independent N (0, 1) variables. Recall that ρσ, defined before, is
actually the distribution law of σU1, and so ρσ(g) = E(g(σU1)). Also recall that a
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function of k-dimensional argument f(x1, . . . , xk) : Rk → R exhibits polynomial growth
if

|f(x1, . . . , xk)| ≤ K0

k∏
j=1

(1 + |xj |)p

for a positive constant K0 and some positive p. For such a function f on Rk we set

Rσ(f, k) =
k−1∑

l=−k+1

E
[
f2(σUk, · · · , σU2k−1)

]
− (2k − 1)E2 [f(σU1, · · · , σUk)]

Our main result is as follows.

Theorem 4.2. Assume (H) and (T). Let f satisfy either one of the two assumptions
stated below.

• (a) f is a polynomial function on Rk for some k ≥ 1, which is globally even, that
is

f(−x1, · · · ,−xl, · · · ,−xk) = f(x1, · · · , xl, · · · , xk)

• (b) f is a continuous and once differentiable function with all derivatives exhibiting
polynomial growth on Rk for some k ≥ 1, which is even in each argument, i.e.

f(x1, · · · ,−xl, · · · , xk) = f(x1, · · · , xl, · · · , xk), ∀ 1 ≤ l ≤ k

If X is continuous, then the process

1√
∆n

(
∆nV

′(f, k,∆n)t −
∫ t

0
ρ⊗kσu (f)du

)
converge stably in law to a continuous process U ′(f, k) defined on an extension (Ω̃, F̃ , P̃ )
of the space (Ω,F , P ). Such a process U ′(f, k) is a centered Gaussian R1-valued process
with independent increments that, conditionally on the σ-field F , satisfies

Ẽ(U ′(f, k)tU
′(f, k)t) =

∫ t

0
Rσu(f, k)du

where Ẽ refers to the expectation defined on an extended probability space (Ω̃, F̃ , P̃ ).
If Sσ(f, k) is the square root of Rσ(f, k), then there exists a 1-dimensional Brownian
motion B on an extension of the space (Ω,F , P ), independent of F , such that U ′(f, k)
is given by

U ′(f, k)t =

∫ t

0
Sσu(f, k)dBu
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Proof:
Firs, we define the following convenient notation:

ζni = f(∆n
i X/
√
τi, · · · ,∆n

i+k−1X/
√
τi+k−1),

ζ
′n
i = f(βni,0, · · · , βni,k−1),

ζ
′′n
i = ζni − ζ

′n
i

The basic idea of the proof is to replace each normalized increment ∆n
i+lX/

√
τi by βni,l,

and show that CLT is true for that simpler process, then justify this replacement by
showing that the simpler process converges to the original process we are really inter-
ested in. Since the proof is rather long and technical, we separate it into a sequence of
lemmas that are proved separately. Then, they are combined to produce a proof of the
general result.

Lemma 4.3. √
∆n

[t/∆n]∑
i=1

(
ζ
′′n
i − Eni−1(ζ

′′n
i )
)

u.c.p−−−→ 0

Lemma 4.4.

1√
∆n

∆n

[t/∆n]∑
i=1

ρ⊗kσtn
i−1

(f)du−
∫ t

0
ρ⊗kσu (f)du

 u.c.p−−−→ 0

Lemma 4.5. The processes

Ūnt =
√

∆n

[t/∆n]∑
i=1

(
ζ
′n
i − ρ⊗kσtn

i−1

(f)

)
converge stably in law to the process U ′(f, k) as defined in the Theorem (4.2).

Lemma 4.6. √
∆n

[t/∆n]∑
i=1

Eni−1(ζ
′′n
i )

u.c.p−−−→ 0

Once we prove these four lemmas, then our Theorem (4.2) follows rather easily.
Indeed,

1√
∆n

(
∆nV

′(f, k,∆n)t −
∫ t

0
ρ⊗kσu (f)du

)
=
√

∆nV
′(f, k,∆n)t −

1√
∆n

∫ t

0
ρ⊗kσu (f)du
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=
√

∆n

[t/∆n]∑
i=1

ζni −
1√
∆n

∫ t

0
ρ⊗kσu (f)du

=
√

∆n

[t/∆n]∑
i=1

(
ζ
′n
i + ζ

′′n
i

)
− 1√

∆n

∫ t

0
ρ⊗kσu (f)du

=
√

∆n

[t/∆n]∑
i=1

(
ζ
′n
i + ζ

′′n
i

)
−
√

∆n

[t/∆n]∑
i=1

ρ⊗kσtn
i−1

(f)du+
√

∆n

[t/∆n]∑
i=1

ρ⊗kσtn
i−1

(f)du− 1√
∆n

∫ t

0
ρ⊗kσu (f)du

= Ūnt +
√

∆n

[t/∆n]∑
i=1

(
ζ
′′n
i − Eni−1(ζ

′′n
i ) + Eni−1(ζ

′′n
i )
)

+
1√
∆n

∆n

[t/∆n]∑
i=1

ρ⊗kσtn
i−1

(f)du−
∫ t

0
ρ⊗kσu (f)du


= Ūnt +Mn

t

where Mn
t represents all the terms in the above equation besides Ūnt . Due to Lemmas

(4.3), (4.4) and (4.6), Mn
t converge to 0 uniformly in probability.

Proof of Lemma (4.3) In order to prove (4.3), we need to prove the following
proposition

Proposition 4.7. Assume (SH). Let k ≥ 1 and let q > 0. Let f be a continuous function
on Rk, satisfying the condition in (3.5) for some p ≥ 0 and K0 ≥ 0. If we further assume
that X is continuous, then as n→∞:

sup
i≥0,ω∈Ω

Eni−1

(∣∣∣∣f (∆n
i X√
τi
, · · · ,

∆n
i+k−1X√
τi+k−1

)
− f(βni,0, · · · , βni,k−1)

∣∣∣∣q)→ 0

Proof. First, for any polynomial growth exhibiting function f , we have that

GA(ε) = sup
{xj ,yj :‖xj‖≤A,‖yj‖≤ε}

‖f(x1 + y1, · · · , xk + yk)− f(x1, · · · , xk)‖
ε→0−−→ 0

for any A > 0.
Then for all A > 0, s ≥ 0 and ε > 0, we have the same inequality as given in the proof
of Lemma (3.17) in (Kessler et al., 2012); for convenience,we write it here in full:

|f(x1 + y1, · · · , xk + yk)− f(x1, · · · , xk)|q

≤ GA(ε)q +K

k∑
m=1

hε,s,A,n(xm, ym)
∏

j=1,··· ,k,j 6=m
g(xj , yj)


where

hε,s,A,n(x, y) =
‖x‖pq+1

A
+ ‖x‖pq(‖y‖ ∧ 1) +Apq

‖y‖2 ∧ 1

ε2
+
‖y‖pq+s

As

g(x, y) = 1 + ‖x‖qp + ‖y‖qp
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and K is a constant depending on K0, q, k.
As a next step, we apply this inequality with xj = βni,j−1 and yj = χni,j−1, where χni,j−1

is exactly the xni,j−1 defined in the proof of Theorem (3.5). But since here we use x
as symbol representing the general input for function f , to avoid confusion, we use
χni,j−1 instead from now on. Since we assume (SH) and X is continuous, the inequalities
obtained earlier in the proof of Theorem (3.5) are still valid. In particular,

Eni+l−1(‖βni,l‖q) ≤ Kq

Eni+l−1(‖χni,l‖) ≤ KqE
n
i+l−1(

√
τi+l)→ 0

Thus:
Eni+j−2(g(βni,j−1, χ

n
i,j−1)) ≤ K

for some constantK depending onK0, q, k. Next consider νni,j,ε,A = Eni+j−2(hε,s,A,n(βni,j−1, χ
n
i,j−1))

for s = 1. Applying Cauchy-Schwarz inequality we can obtain

νni,j,ε,A ≤ φn(A, ε) = K(1/A+ E
√
τi+j−1 + ∆nA

pq/ε2)

And
lim
A→∞

lim sup
n→∞

φn(A, ε) = 0

Taking successive downward conditional expectations, we finally get

sup
i≥0,ω∈Ω

Eni−1

(
|f
(

∆n
i X√
τi
, · · · ,

∆n
i+k−1X√
τi+k−1

)
− f(βni,0, · · · , βni,k−1)|q

)
≤ GA(ε) +Kφn(A, ε)

for all A > 1 and ε > 0. Then let ε→ 0, we obtain the result we want to prove.

Now, the combination of this result and the Lemma (3.4) from (Kessler et al., 2012)
brings the needed conclusion.

Proof of Lemma (4.4)
As before, it is possible to establish this result under the assumption (SH). Recall that
under (SH) ||σt|| ≤ Λ and denote by M′ the interval (0,Λ]. Consider the function
g(σ) = ρ⊗kσ (f), defined on the set M′ and denote ci = τi

∆n
. Then

1√
∆n

∆n

[t/∆n]∑
i=1

ρ⊗kσtn
i−1

(f)du−
∫ t

0
ρ⊗kσu (f)du



=
1√
∆n

∆n

[t/∆n]∑
i=1

g(σnti−1
)−

∫ t

0
g(σu)du


=

1√
∆n

[t/∆n]∑
i=1

1

ci
τig(σnti−1

)−
∫ t

0
g(σu)du


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=
1√
∆n

[t/∆n]∑
i=1

1

ci

∫ ti

ti−1

g(σnti−1
)du−

[t/∆n]∑
i=1

∫ ti

ti−1

g(σu)du


= − 1√

∆n

[t/∆n]∑
i=1

(∫ ti

ti−1

(
g(σu)− 1

ci
g(σnti−1

)

)
du

)

= − 1√
∆n

[t/∆n]∑
i=1

(∫ ti

ti−1

(
g(σu)− g(σnti−1

) + g(σnti−1
)− 1

ci
g(σnti−1

)

)
du

)

= − 1√
∆n

[t/∆n]∑
i=1

(∫ ti

ti−1

(
g(σu)− g(σnti−1

)
)
du

)
− 1√

∆n

[t/∆n]∑
i=1

∫ ti

ti−1

g(σnti−1
)

(
1− 1

ci

)
du

= −
[t/∆n]∑
i=1

ηni −
[t/∆n]∑
i=1

εni

where

ηni =
1√
∆n

∫ ti

ti−1

(
g(σu)− g(σnti−1

)
)
du

and

εni =
1√
∆n

∫ ti

ti−1

g(σnti−1
)

(
1− 1

ci

)
du

So we only need to show

[t/∆n]∑
i=1

ηni
u.c.p.−−−→ 0,

[t/∆n]∑
i=1

εni
u.c.p.−−−→ 0

The proof of
∑[t/∆n]

i=1 ηni
u.c.p.−−−→ 0 is very similar to the proof of (3.7.3) in (Kessler et al.,

2012). Let ηni = η
′n
i + η

′′n
i , where

η
′n
i =

1√
∆n

g′(σnti−1
)

∫ ti

ti−1

(σu − σnti−1
)du

η
′′n
i =

1√
∆n

∫ ti

ti−1

[
g(σu)− g(σnti−1

)− g′(σnti−1
)(σu − σnti−1

)
]
du

And we can further decompose η
′n
i as η

′n
i = µni + µ

′n
i , where

µni =
1√
∆n

g′(σnti−1
)

∫ ti

ti−1

du

∫ u

ti−1

b̃sds,

µ
′n
i =

1√
∆n

g′(σnti−1
)

∫ ti

ti−1

du

(∫ u

ti−1

σ̃sdWs +

∫ u

ti−1

∫
δ̃(s, x)(µ− ν)(ds, dx)

)
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On the one hand, we have |µni | ≤ Λ
τ2i√
∆n

(recall that g is C1
b and b̃ is bounded), so

[t/∆n]∑
i=1

|µni | ≤ Λ

∑
τ2
i√

∆n

Note that based on the Assumption T, we have

V ar(ξni ) =
V ar(τi)

∆2
n

→ 0

Thus, E(τ2
i ) = O(∆2

n), then we have

[t/∆n]∑
i=1

Eni−1(‖µni ‖)
P−→ 0

Then, by Lemma (3.4) in (Kessler et al., 2012), we have

[t/∆n]∑
i=1

µni
u.c.p.−−−→ 0

On the other hand, we have Eni−1(µ
′n
i ) = 0 and Eni−1((µ

′n
i )2) ≤ ΛEni−1(τ2

i ) by a similar
arguments and through the use of Doob and Cauchy-Schwarz inequalities. Therefore,
by Lemma (3.4) in (Kessler et al., 2012) again, we have

[t/∆n]∑
i=1

µ
′n
i

u.c.p.−−−→ 0

So we have already shown that
∑[t/∆n]

i=1 η
′n
i

u.c.p.−−−→ 0.
As for η

′′n
i , since X is continuous and f is assumed to have polynomial growth, we

further know that g is C2
b on the compact set M. Then by Taylor expansion, we have

|g(σ′)− g(σ)− g′(σ)(σ′ − σ)| ≤ Λ‖σ′ − σ‖2 for all σ, σ′ ∈M. Therefore,

η
′′n
i ≤

K√
∆n

∫ ti

ti−1

|σu − σnti−1
|2du

Due to the inequality (3.73) from (Kessler et al., 2012) we have

E(‖σs+t − σt‖q|Ft) ≤ Kqs
1∧(q/2)

for a constant Kq that may depend on q. Threfore, for some K > 0, we have

Eni−1(|η′′ni |) ≤
Λ · E(τ2

i )√
∆n

≤ K∆3/2
n
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So
∑[t/∆n]

i=1 Eni−1(|η′′ni |)→ 0. Then we have showed that

[t/∆n]∑
i=1

ηni
u.c.p.−−−→ 0

At this point, it only remains to prove that

[t/∆n]∑
i=1

εni
u.c.p.−−−→ 0

First of all, εni can be further simplified:

εni =
1√
∆n

∫ ti

ti−1

g(σnti−1
)(1− 1

ci
)du

=
1√
∆n

g(σnti−1
)

(
τi −

τi
ci

)
=

1√
∆n

g(σnti−1
) (τi −∆n)

Thus, obviously we have
[t/∆n]∑
i=1

Eni−1(εni ) = 0

since E(τi) = ∆n. And

Eni−1(‖εni ‖2) ≤ Λ
V ar(τi)

∆n
= Λ∆1+ε

n

for some ε > 0 by Assumption T. Then

[t/∆n]∑
i=1

Eni−1(‖εni ‖2)
P−→ 0, ∀t > 0

Again, by Lemma (3.4) in (Kessler et al., 2012), we have

[t/∆n]∑
i=1

εni
u.c.p.−−−→ 0

which marks the end of the proof of Lemma (4.4).

Proof of Lemma (4.5)
To make this proof simpler, we only consider the case k = 2. There are no conceptually
new ideas needed to prove the case k ≥ 3 but the derivations are much more involved
and tedious.
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Let gt(x) =
∫
ρσt(dy)f(x, y), we have

Ūnt =

[t/∆n]+1∑
i=2

ηni + γ
′n
1 − γ

′n
[t/∆n]+1

where ηni = γni + γ
′n
i and

γni =
√

∆n

(
f(βni−1,0, β

n
i−1,1)−

∫
ρσtn

i−2
(dx)f(βni−1,0, x)

)

γ
′n
i =

√
∆n

(∫
ρσtn

i−1
(dx)f(βni,0, x)− ρ⊗2

σtn
i−1

(f)

)
Recall that βni,l = σtni−1

∆n
i+lW/

√
τi+l. We use the localization procedure again, and,

therefore, work under the assumption (SH). Note that this implies that all of the fol-
lowing integrals are taken on a closed interval of finite length. Also, recall that, while
proving Theorem (3.5), we concluded that Eni+l−1(|βni,l|q) ≤ Kq for some constant Kq

that depends on q; this makes it easy to show that

E(|γ′ni |) ≤ K
√

∆n

for some large enough constant K. For brevity, define Ū
′n
t =

∑[t/∆n]+1
i=2 ηni ; now, it is

enough to show that Ū
′n
t converges stably in law to the process U ′(f, 2)t.

Note that ηni is Ftni measurable. Combining the conclusion of Theorem (3.5) and Lemma
(4.4), we show that

Eni−1(ηni ) = 0

And based on the assumption (SH) and the polynomial growth of function f , it is also
easy to check that

Eni−1(|ηni |4) ≤ K∆2
n

Before calculating Eni−1((ηni )2), we first list several simple facts that can be used later:

Eni−1(βni−1,0) = βni−1,0

βni−1,1|Ftni−1
∼ N(0, σ2

tni−2
) = ρσtn

i−2

βni,0|Ftni−1
∼ N(0, σ2

tni−1
) = ρσtn

i−1

We only need to calculate
∑[t/∆n]+1

i=2 Eni−1((ηni )2) for the variance term in order to apply
Lemma (3.7) from (Kessler et al., 2012).

We have
Eni−1

(
(ηni )2

)
= ∆nφ

n
i

where φni = g(tni−2, t
n
i−1, β

n
i−1,0), and

g(s, t, x) =

∫
ρσs(dy)f2(x, y)−

(∫
ρσs(dy)f(x, y)

)2
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+

∫
ρσt(dy) (ρσt(dz)f(y, z))2 −

(
ρ⊗2
σt (f)

)2 − 2ρ⊗2
σt (f)

∫
ρσs(dy)f(x, y)

+2

∫
ρ(dy)ρ(dz)f(x, σsy)f(σty, σtz)

Then if we can show the two properties:

[t/∆n]+1∑
i=2

Eni−1(∆n
i Nη

n
i )

P−→ 0 (A)

for any N which is a component of W (in the 1-dimensional case the W itself) or is a
bounded martingale orthogonal to W , and

∆n

[t/∆n]+1∑
i=2

φni
P−→
∫ t

0
Rσu(f, 2)du (B)

then the Lemma (3.7) from (Kessler et al., 2012) will yield the stable convergence in law
of Ū

′n
t to U ′(f, 2).

Let’s first prove property (A). Recall ηni = γni + γ
′n
i , and observe that

γni =
√

∆nh(σtni−2
,∆n

i−1W/
√
τi−1,∆

n
iW/
√
τi)

γ
′n
i =

√
∆nh

′(σtni−1
,∆n

iW/
√
τi)

where h(σ, x, y) and h′(σ, x) are continuous functions with polynomial growth in x and
y, uniform in σ ∈M′. Then the property (A) will be a direct conclusion of the following
Proposition. In the statement of this Proposition (and occasionally afterwards as well),
we sometimes use the notation βni to replace βni,0 since the second index is always zero.

Proposition 4.8. Under (SH), for any function (ω, x) 7→ g(ω, x) on Ω × R which is(
Ftni−1

∨
Ntni−1

)
⊗R-measurable and even, and with polynomial growth in x, we have

Eni−1(∆n
i Ng(., βni )) = 0

where N can be either the process W itself or any bounded martingale orthogonal to both
W and {τi}i≥1.

Proof. Assume that N is bounded and orthogonal to W . We consider the martingale

Mt = E
(
g(., βni )|Ft

∨
Ntni−1

)
, for t ≥ tni−1. Since W is an (Ft)-Brownian motion, and

since βni is a function of σtni−1
and of ∆n

iW , we see that (Mt)t≥tni−1
is also, conditionally

on Ftni−1

∨
Ntni−1

, a martingale w.r.t. the filtration which is generated by Wt −Wtni−1
.

By the martingale representation theorem the process M is thus of the form Mt =



21

Mtni−1
+
∫ t
tni−1

υsdWs for an appropriate predictable process υ. It follows that M is

orthogonal to the process N ′t = Nt −Ntni−1
for t ≥ tni−1. Hence

Eni−1

(
∆n
i Ng(.,

√
∆nσtni−1

∆n
iW )

)
= Eni−1(∆n

i N
′Mtni

)

Eni−1

[
∆n
i N
′

(
Mtni−1

+

∫ tni

tni−1

υsdWs

)]
= 0

Next assume that N is W itself. Then we have ∆n
i Ng(βni )(ω) = h(σti−1n

,∆n
iW )(ω) for

a function h(ω, x, y)which is odd and with polynomial growth in y, so obviously we have

Eni−1(∆n
i Ng(., βni )) = 0

in this case.

To prove the property (A), we just need to show that

Eni−1(∆n
i Nγ

n
i ) = 0

and
Eni−1(∆n

i Nγ
′n
i ) = 0

The part involving γ
′n
i is a direct consequence of Proposition (4.8). Furthermore, while

N is a martingale orthogonal to W , we can derive Eni−1(∆n
i Nγ

n
i ) = 0 following similar

arguments as in the proof of Proposition (4.8). So it only remains to prove that while
N is W itself,

[t/∆n]+1∑
i=2

ξni
P−→ 0,where ξni = Eni−1(γni ∆n

i N) = Eni−1(γni ∆n
iW )

Since f is globally even and ρs is a measure symmetric about the origin, it is not hard
to see that h(σ, x, y) is globally even in (x, y), and thus

∫
ρσ(dy)h(σ, x, y)y is odd in x.

Further note that σtni−2
∈ Ftni−1

and ∆n
i−1W ∈ Ftni−1

, then it is obvious that

ξni = Eni−1(γni ∆n
iW ) = Eni−1(

√
∆nh(σtni−2

,∆n
i−1W/

√
τi−1,∆

n
iW/
√
τi)∆

n
iW ) = 0

Thus we finish the proof of property (A).

In order to finish the proof of Lemma (4.5) we only need to verify the property (B):

∆n

[t/∆n]+1∑
i=2

φni
P−→
∫ t

0
Rσu(f, 2)du (B)

Recall that Eni−1

(
(ηni )2

)
= ∆nφ

n
i . We have

φni = g(tni−2, t
n
i−1, β

n
i−1)
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where function g(s, t, x) is as defined before. Observe that φni is Ftni−1

∨
Ntni−1

-measurable
and

Eni−2,i−1(φni ) = E
(
φni |Ftni−2

∨
Ntni−1

)
= h(tni−2, t

n
i−1), Eni−2,i−1(|φni |2) ≤ K

where h(s, t) =
∫
ρσs(dx)g(s, t, x).

Then by Lemma (3.4) from (Kessler et al., 2012), the property (B) would follow if we
can show that

∆n

[t/∆n]∑
i=1

h(tni−1, t
n
i )

P−→
∫ t

0
Rσu(f, 2)du.

Since, due to Lemma (3.4) from (Kessler et al., 2012),

∆n

[t/∆n]∑
i=1

h(tni−1, t
n
i )

P−→
[t/∆n]∑
i=1

τih(tni−1, t
n
i )

we only need to verify that

[t/∆n]∑
i=1

τih(tni−1, t
n
i )

P−→
∫ t

0
Rσu(f, 2)du. (4.2)

To verify (4.2), we only have to show that

[t/∆n]∑
i=1

τih(tni−1, t
n
i )

P−→
∫ t

0
h(u, u)du (4.3)

since

h(t, t) = ρ⊗2
σt (f2)− 3

(
ρ⊗2
σt (f)

)2
+ 2

∫
ρσt(dx)ρσt(dy)ρσt(dz)f(x, y)f(y, z)

which is exactly Rσt(f, 2).
To show that (4.3) is true, we do Taylor expansion of function h(tni−1, y) at the point
y = tni−1:

τih(tni−1, t
n
i ) = τih(tni−1, t

n
i−1) + τ2

i hy(t
n
i−1, t

n
i−1) +O(τ3

i )

Thus
[t/∆n]∑
i=1

τih(tni−1, t
n
i ) =

[t/∆n]∑
i=1

(
τih(tni−1, t

n
i−1) + τ2

i hy(t
n
i−1, t

n
i−1) +O(τ3

i )
)

By Riemann sum approximation, we know that

[t/∆n]∑
i=1

τih(tni−1, t
n
i−1)

P−→
∫ t

0
h(u, u)du
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So we just need to show

[t/∆n]∑
i=1

(
τ2
i hy(t

n
i−1, t

n
i−1) +O(τ3

i )
) P−→ 0

Since it is easy to check that function h has bounded second and third derivatives, we
only need to show

[t/∆n]∑
i=1

τ2
i

P−→ 0

which is obviously true - just apply the Lemma (3.4) from (Kessler et al., 2012) one
more time:

[t/∆n]∑
i=1

Eni−1(|τ2
i |) =

[t/∆n]∑
i=1

∆2+ε
n

P−→ 0

This finishes the proof of Lemma (4.5).

Proof of Lemma (4.6)

Define for l = 0, · · · , k − 1 the following functions:

gni,l(x) =

∫
f

(
∆n
i X√
τi
, · · · ,

∆n
i+l−1X√
τi+l−1

, x, xl+1, · · · , xk−1

)
ρ⊗(k−l−1)
σtn
i−1

(dxl+1, · · · , dxk−1)

As a function of ω this is Ftni+l−1

∨
Htni+l−1

-measurable. As a function of x it is C1. Based
on the assumptions on price process Xt and the assumption (SH), we further have

|gni,l(x)|+ | 5 gni,l(x)| ≤ KZni,l(1 + |x|r)

where r ≥ 0, Eni−1(|Zni,l|p) ≤ Kp ∀p > 0, for some random variable Zi,l that is
Ftni+l−2

∨
Htni+l−2

-measurable.
For all A ≥ 1 there is also a positive function GA(ε) converging to 0 as ε→ 0, such that
with Zni,l as above:

|x| ≤ A,Zni,l ≤ A, |y| ≤ ε =⇒ |5 gni,l(x+ y)−5gni,l(x)| ≤ GA(ε)

Defining is the sum over l from 0 to k − 1 of

ζ
′′n
i =

k−1∑
l=0

f

(
∆n
i X√
τi
, · · · ,

∆n
i+lX√
τi+l

, βni,l+1, · · · , βni,k−1

)
−f
(

∆n
i X√
τi
, · · · ,

∆n
i+l−1X√
τi+l−1

, βni,l, · · · , βni,k−1

)
we have

Eni−1(ζ
′′n
i ) =

k−1∑
l=0

Eni−1

(
gni,l(∆

n
i+lX/

√
τi+l)− gni,l(βni,l)

)
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Therefore it is enough to prove that for any l ≥ 0 we have

√
∆n

[t/∆n]∑
i=1

Eni−1

(
gni,l(∆

n
i+lX/

√
τi+l)− gni,l(βni,l)

) u.c.p.−−−→ 0

If we define ξni,l = ∆n
i+lX/

√
τi+l − βni,l, we only need to show that

√
∆n

[t/∆n]∑
i=1

Eni−1

(
gni,l(β

n
i,l + ξni,l)− gni,l(βni,l)

) u.c.p.−−−→ 0

By Taylor expansion, the left side above can be further written as

√
∆n

[t/∆n]∑
i=1

Eni−1

(
gni,l(β

n
i,l + ξni,l)− gni,l(βni,l)

)

=
√

∆n

[t/∆n]∑
i=1

Eni−1

[
5gni,l(βni,l)ξni,l +

(
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

]

=
√

∆n

[t/∆n]∑
i=1

Eni−1

(
5gni,l(βni,l)ξni,l

)
+
√

∆n

[t/∆n]∑
i=1

Eni−1

((
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

)
Thus we only needs to show

√
∆n

[t/∆n]∑
i=1

Eni−1

(
5gni,l(βni,l)ξni,l

) u.c.p.−−−→ 0 (AA)

and √
∆n

[t/∆n]∑
i=1

Eni−1

((
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

)
u.c.p.−−−→ 0 (BB)

separately.

Proof of BB:

|
(
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l|

≤ GA(ε)|ξni,l|+KZni,l
(
1 + |βni,l|r + |ξni,l|r

)
|ξni,l|

(
1{Zni,l>A} + 1{|βni,l|>A} + 1{|ξni,l|>ε}

)
≤ GA(ε)|ξni,l|+KZni,l

(
1 + |βni,l|r + |ξni,l|r

)
|ξni,l|

(
|Zni,l|
A

+
|βni,l|
A

+
|ξni,l|
ε

)
Note that

E(|ξni,l|) ≤ KE(
√
τi+l) ≤ K

√
E(τi+l) = K

√
∆n
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then

Eni−1

((
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

)
≤ K

√
∆n

(
GA(ε) +

1

A
+

√
∆n

ε

)
Thus we have

√
∆n

[t/∆n]∑
i=1

Eni−1

((
5gni,l(β

′n
i,l)−5gni,l(βni,l)

)
ξni,l

)
≤ Kt

(
GA(ε) +

1

A
+

√
∆n

ε

)
which will go to zero as n goes to infinity (choose A big and then ε small). Then we
complete the proof of BB.

Proof of AA:

To prove (AA), following the same scheme as in (Kessler et al., 2012), we first further
decompose ξni,l into two parts as below:

ξni,l =
(
ξ̂ni,l + ξ̃ni,l

)
/
√
τi+l

where

ξ̂ni,l =

∫ tni+l

tni+l−1

(bs − btni+l−1
)ds

+

∫ tni+l

tni+l−1

[∫ s

tni+l−1

(
b̃udu+ (σ̃u − σ̃tni+l−1

)dWu

)
+

∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

]
dWs

ξ̃ni,l = btni+l−1
τi+l+

∫ tni+l

tni+l−1

[
σ̃tni+l−1

∫ s

tni+l−1

dWu +

∫ s

tni+l−1

∫
δ̃(ti+l−1, x)(µ− ν)(du, dx)

]
dWs

Then (AA) amounts to the following two claims:

√
∆n

[t/∆n]∑
i=1

Eni−1

[
1
√
τi+l
5 gni,l(β

n
i,l)ξ̃

n
i,l

]
u.c.p.−−−→ 0 (A1)

√
∆n

[t/∆n]∑
i=1

Eni−1

[
1
√
τi+l
5 gni,l(β

n
i,l)ξ̂

n
i,l

]
u.c.p.−−−→ 0 (A2)

Proof of A1:

Note that the restriction of µ to (ti+l−1,∞)×E and the increments of W after time ti+l−1

are independent, then conditional on Mtni+l−1
= Ftni+l−1

∨
σ(Wt : t ≥ 0)

∨
σ(τi : i ≥ 0),

we get

E(ξ̃ni,l|Mti+l−1
) = bti+l−1

τi+l + σ̃tni+l−1

∫ ti+l

ti+l−1

(∫ s

tni+l−1

dWu

)
dWs
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which is even in W .
Thus for a function h which is odd with polynomial growth, we deduce

Eni+l−1(ξ̃ni,lh(βni,l)) = 0

Thus, if

• (a) function f is even in each argument, then gni,l(β
n
i,l) is even and 5gni,l(βni,l) is odd.

Then it is obvious that (A1) is true.

• (b) function f is a globally even polynomial function, then we follow the proof of
(A1) as shown right below.

Define

h (∆i,lX,x) = gni,l(x) =

∫
f

(
∆n
i X√
τi
, · · · ,

∆n
i+l−1X√
τi+l−1

, x, xl+1, · · · , xk−1

)
ρ⊗(k−l−1)
σtn
i−1

(dxl+1, · · · , dxk−1)

where ∆i,lX =
(

∆n
i X√
τi
, · · · , ∆n

i+l−1X√
τi+l−1

)
Obviously we have function h is globally even in (∆i,lX,x) since f is globally even and
the Gaussian law is symmetric.
Since f is a continuous function with at most polynomial growth, we can decompose the
function h as below:

h(∆i,lX,x) = a(∆i,lX) + bi,l(x) + c(∆i,lX,x)

where function a only contains constant and terms with no x involved, bi,l only contains
terms with only x (no any part of ∆i,lX) involved, and function c contains the rest, i.e.
those terms with both x and part of ∆i,lX involved.
Denote 5x as partial differential w.r.t x, then obviously we have

5xa(∆i,lX) = 0

Since h is globally even, for those parts only contain x, they must be even in x, i.e.
bi,l(x) is even is x. Thus 5xbi,l(x) is odd in x and we have

Eni−1

(
1
√
τi+l
5x bi,l(x)ξ̃ni,l

)
= 0 , while x = βni,l

from the arguments above.
For function c, based on the fact that function f is a polynomial function, we are able
to write function c as the format below:

c(∆i,lX,x) =

l−1∑
j=0

(
∆n
i+jX√
τi+j

)pj
xqj

Since function c should still be globally even in (∆i,lX,x) (because function h is globally
even), we must have, for any j, pj + qj to be an even number. Thus 5xc(∆i,lX,x) is
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globally odd in (∆i,lX,x). Now we treat function 5xc(∆i,lX,β
n
i,l) as a function of dW

and τi+j as below:
5xc(∆i,lX,β

n
i,l) = c1(τ, dW ) + c2(dW )

where τ here represents the vector (τi, · · · , τi+l−1) and dW represents any terms contain
integral w.r.t the Brownian motion. Recall

E(ξ̃ni,l|Mti+l−1
) = bti+l−1

τi+l + σ̃tni+l−1

∫ ti+l

ti+l−1

(∫ s

tni+l−1

dWu

)
dWs

then

Eni−1

(
1
√
τi+l
5x c(∆i,lX,β

n
i,l)ξ̃

n
i,l

)
= Eni−1

((
1
√
τi+l

c1(τ, dW ) +
1
√
τi+l

c2(dW )

)
ξ̃ni,l

)
Since function 5xc(∆i,lX,β

n
i,l) is globally odd, then it is easy to check that c2 is of odd

power of dW and

Eni−1

(
c2(dW )ξ̃ni,l

)
= 0

As for the term Eni−1

(
1√
τi+l

c1(τ, dW )ξ̃ni,l

)
, after simple calculations it is easy to check

that those terms are all, at least, of order O(n−
3
2 ). (since Eni−1

(
1√
τi+l

τ2
i+j

)
= O(n−

3
2 )).

Thus we still have

√
∆n

[t/∆n]∑
i=1

Eni−1

(
1
√
τi+l
5x c(∆i,lX,β

n
i,l)ξ̃

n
i,l

)
u.c.p.−−−→ 0

Thus, finally recall that

gni,l(x) = h(∆i,lX,x) = a(∆i,lX,x) + bi,l(x) + c(∆i,lX,x)

we have already proved (A1) by showing it converging to zero for each of the functions
above in the decomposition.

Proof of A2:

To make our notation more convenient, denote E (·|Fi+l−1 ∨HT ) = E∗i+l−1. Then,
in order to establish the result needed, the following two Lemmas has to be proved.
Lemma A2A:
Assuming (SH), we have

E∗i+l−1

(
|ξ̂ni,l|2

)
≤ Kτi+l

(
τ2
i+l + αni,l

)
where

αni,l = E∗i+l−1

(∫ tni+l

tni+l−1

(
|bs − bti+l−1

|2 + |σ̃s − σ̃tni+l−1
|2 +

∫
|δ̃(s, x)− δ̃(tni+l−1, x)|2λ(dx)

)
ds

)



28

Proof of Lemma A2A:
Recall

ξ̂ni,l =

∫ tni+l

tni+l−1

(bs − btni+l−1
)ds

+

∫ tni+l

tni+l−1

[∫ s

tni+l−1

(
b̃udu+ (σ̃u − σ̃tni+l−1

)dWu

)
+

∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

]
dWs

Thus we have

E∗i+l−1

(
|ξ̂ni,l|2

)
= E∗i+l−1

(∫ tni+l

tni+l−1

(bs − btni+l−1
)ds

)2

+E∗i+l−1

(∫ tni+l

tn
i+l−1

[∫ s

tn
i+l−1

(
b̃udu+ (σ̃u − σ̃tn

i+l−1
)dWu

)
+

∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

]
dWs

)2

Firstly, we have

E∗i+l−1

(∫ tni+l

tni+l−1

(bs − btni+l−1
)ds

)2

≤ E∗i+l−1

(√∫ tni+l

tni+l−1

(bs − btni+l−1
)2ds

)2

·E∗i+l−1

(√∫ tni+l

tni+l−1

1ds

)2

= E∗i+l−1

(∫ tni+l

tni+l−1

(bs − btni+l−1
)2ds

)
· τi+l

Secondly, we have

E∗i+l−1

(∫ tni+l

tn
i+l−1

[∫ s

tn
i+l−1

(
b̃udu+ (σ̃u − σ̃tn

i+l−1
)dWu

)
+

∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

]
dWs

)2

= E∗i+l−1

(∫ tni+l

tn
i+l−1

[∫ s

tn
i+l−1

(
b̃udu+ (σ̃u − σ̃tn

i+l−1
)dWu

)
+

∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

]2
ds

)

= E∗i+l−1

∫ tni+l

tni+l−1

[∫ s

tni+l−1

b̃udu

]2

ds

+E∗i+l−1

∫ tni+l

tni+l−1

(∫ s

tni+l−1

(
σ̃u − σ̃tni+l−1

)
dWu

)2

ds


+E∗i+l−1

∫ tni+l

tni+l−1

(∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

)2

ds


There are three terms in the equation above, for the first one, we have

E∗i+l−1

∫ tni+l

tni+l−1

[∫ s

tni+l−1

b̃udu

]2

ds

 ≤ KE∗i+l−1

∫ tni+l

tni+l−1

[∫ s

tni+l−1

du

]2

ds

 ≤ K · τ3
i+l
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For the second one and third one, we apply the Burkholder-Davis-Gundy inequality.

More specifically, define Ms =
∫ s
tni+l−1

(
σ̃u − σ̃tni+l−1

)
dWu, whose quadratic variation is

[Ms] =

∫ s

tni+l−1

(
σ̃u − σ̃tni+l−1

)2
du

Let M∗T = sups≤T Ms, then we have

E∗i+l−1

∫ tni+l

tni+l−1

(∫ s

tni+l−1

(
σ̃u − σ̃tni+l−1

)
dWu

)2

ds

 = E∗i+l−1

(∫ tni+l

tni+l−1

M2
s ds

)

≤ E∗i+l−1

(∫ tni+l

tni+l−1

M∗2T ds

)
= E∗i+l−1

(
M∗2T

)
· τi+l ≤ KE∗i+l−1 ([MT ]) · τi+l

= Kτi+lE
∗
i+l−1

(∫ tni+l

tni+l−1

(σ̃u − σ̃tni+l−1
)2du

)

Similarly, define Ns =
∫ s
tni+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ − ν)(du, dx), which is also a

martingale. Then we can apply the Burkholder-Davis-Gundy again and obtain:

E∗i+l−1

∫ tni+l

tni+l−1

(∫ s

ti+l−1

∫
E

(
δ̃(u, x)− δ̃(tni+l−1, x)

)
(µ− ν)(du, dx)

)2

ds


≤ Kτi+lE∗i+l−1

(∫ tni+l

tni+l−1

∫
|δ̃(s, x)− δ̃(tni+l−1, x)|2λ(dx)ds

)
Combining these inequalities together and add the up we can get the result of Lemma
A2A.

Lemma A2B: Under the same assumptions as the previous Lemma,

√
∆n

[t/∆n]∑
i=1

√
E(αni,l)→ 0

Proof of Lemma A2B:
Denote

bsc = max{tni : tni ≤ s}

By Cauchy-Schwarz inequality, the square of the left side of the sum is smaller than

t

[t/∆n]∑
i=1

E(αni,l) = tE

(∫ tnn

tnl

(
|bs − bbsc|2 + |σ̃s − σ̃bsc|2 +

∫
|δ̃(s, x)− δ̃(bsc, x)|2λ(dx)

)
ds

)
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which goes to zero as n goes to infinity. (This is because bsc → s as n → ∞. Then
by the bounds given in (SH),

∫
(γ̃(x) ∧ 1)λ(dx) < ∞ and the dominated convergence

theorem, we can achieve the conclusion.)

Now we can finally prove the statement A2. Combining Lemma A2A and A2B, we
can show that

√
∆n

[t/∆n]∑
i=1

Eni−1

[
1
√
τi+l
5 gni,l(β

n
i,l)ξ̂

n
i,l

]
≤
√

∆n

[t/∆n]∑
i=1

Eni−1

(
K
√
τi+l

Zni,l(1 + |βni,l|r)|ξ̂ni,l|
)

≤
√

∆n

[t/∆n]∑
i=1

Eni−1

(
KZni,l√
τi+l

√
Eni+l−1(1 + |βni,l|r)2 ·

√
E∗i+l−1|ξ̂ni,l|

2

)

≤
√

∆n

[t/∆n]∑
i=1

Eni−1

(
KZni,l(τi+l +

√
αni,l)

)

≤
√

∆n

[t/∆n]∑
i=1

K
(

∆n +
√
Eni−1(αni,l)

)
u.c.p.−−−→ 0

Thus we finished the proof of (A2). Combining this with the proof of (A1) and (BB),
the result of Lemma (4.6) is immediately obtained.

Note that in Theorem (4.2) the function f is a 1-dimensional function on Rk. How-
ever, it is easy to check that the CLT should still be true even when f is a q-dimensional
function on Rk as long as every assumption in Theorem (4.2) still holds true. Such a
version may be more useful in many applications since it offers us more flexibility when
constructing function f . We will state such a q-dimensional version as a Corollary here.
Since its proof is almost the same as that of (4.2) but with an added layer of technical
complexity, it will be omitted here.

Corollary 4.9. Assume (H) and (T). Let f = (f1, · · · , fq) be a q-dimensional function
on Rk satisfying any one of the two cases below

• (a) a polynomial function which is globally even, that is

f(−x1, · · · ,−xl, · · · ,−xk) = f(x1, · · · , xl, · · · , xk)

• (b) a C1 function with derivatives having polynomial growth on Rk, which is even
in each argument, i.e.

f(x1, · · · ,−xl, · · · , xk) = f(x1, · · · , xl, · · · , xk), ∀ 1 ≤ l ≤ k

If X is continuous, then the process

1√
∆n

(
∆nV

′(f, k,∆n)t −
∫ t

0
ρ⊗kσu (f)du

)
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converge stably in law to a continuous process U ′(f, k) defined on an extension (Ω̃, F̃ , P̃ )
of the space (Ω,F , P ), which conditionally on the σ-field F is a centered Gaussian Rq-
valued process with independent increments, satisfying

Ẽ(U ′(fi, k)tU
′(fj , k)t) =

∫ t

0
Ri,jσu(f, k)du

where for i, j = 1, · · · , q we set:

Ri,jσ (f, k) =
k−1∑

l=−k+1

E (fi(σUk, · · · , σU2k−1)fj(σUl+k, · · · , σUl+2k−1))

−(2k − 1)E (fi(σU1, · · · , σUk))E (fj(σU1, · · · , σUk))

The proof of this Corollary is essentially the same as the proof of the Theorem (4.2).
Thus we will not show it again.

5 Conclusion

In this paper, we study the asymptotic behavior of the normalized sums of functionals of a
variety of continuous semimartingales where observations are sampled at stochastic times
for financial assets based on high-frequency financial data. Unlike the usual assumptions
of regularity or deterministic irregularity for trading times in realized kernel estimators
suggested in (Barndorff-Nielsen et al., 2008), we allow the asset return observations to be
nonequally spaced in time with stochastic (random) duration times τi between the two
successive trading times ti−1 and ti. This has practical advantages in the case of tick-
by-tick high-frequency financial data, since the direct application of the realized kernel
method then produces a biased estimator of the true underlying quadratic variation.
Through delicate treatment of the functionals of the increments of the stochastic process
for asset returns and duration times, we proved some important asymptotic results for
the new estimator including the law of large numbers and the central limit theorem.
This work builds the theoretical foundations for our redefined realized kernel estimator,
and the subsequent statistical inferences for nonequally-spaced high-frequency financial
data with random duration time.

There is also a large open field of research problems remaining for future researchers.
As mentioned earlier, our next immediate project is dedicated to large sample asymp-
totics of the redefined realized kernel volatility estimator. Also, in our current work, we
assumed that the stochastic trading times ti are independent of the log price process
Xt. This is fairly restrictive from the application viewpoint; thus, another step ahead
would be to obtain a similar law of large numbers and the central limit theorem under
a reasonable dependence assumption between the two. This will have to be followed
by the re-consideration of the large sample asymptotics of the realized kernel volatility
estimator in the dependence case.
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