Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model

By
Michael Levine
Purdue University

Technical Report \#14-03

Department of Statistics
Purdue University
May, 2014

Minimax rate of convergence for an estimator of the functional component in a semiparametric multivariate partially linear model

Michael Levine

Purdue University

Abstract

: A multivariate semiparametric partial linear model for both fixed and random design cases is considered. Earlier, in Brown, Levine and Wang (2014), the model has been analyzed using a difference sequence approach. In particular, the functional component has been estimated using a multivariate Nadaraya-Watson kernel smoother of the residuals of the linear fit. Moreover, this functional component estimator has been shown to be rate optimal if the Lipschitz smoothness index exceeds half the dimensionality of the functional component domain. In the current manuscript, we take this research further and show that, for both fixed and random designs, the rate achieved is the minimax rate under both risk at a point and the L_{2} risk. The result is achieved by proving lower bounds on both pointwise risk and the L_{2} risk of possible estimators of the functional component.

Key words and phrases: Multivariate semiparametric partial linear model, minimax rate of convergence, functional component, lower bound, Fano's lemma, Varshamov-Gilbert bound.

1. Introduction

Semiparametric models have a long history in statistics and have received considerable attention in the last several decades. The main reason they are of considerable interest is that, quite often, the relationships between the response and predictors are very heterogeneous in the same model. Some of the relationships are clearly linear whereas the detailed information about others is hard to
come by. In many situations, a small subset of variables is presumed to have an unknown relationship with the response that is modeled nonparametrically while the rest are assumed to have a linear relationship with it. As an example, Engle, Granger, Rice and Weiss (1986) studied the nonlinear relationship between temperature and electricity usage where other related factors, such as income and price, are parameterized linearly.

The model we consider in this paper is a semiparametric partial linear multivariate model

$$
\begin{equation*}
Y_{i}=a+X_{i}^{\prime} \beta+f\left(U_{i}\right)+\varepsilon_{i} \tag{1.1}
\end{equation*}
$$

where $X_{i} \in \mathbb{R}^{p}$ and $U_{i} \in \mathbb{R}^{q}, \beta$ is an unknown $p \times 1$ vector of parameters, a is an unknown intercept term, $f(\cdot)$ is an unknown function and ε_{i} are independent and identically distributed random variables with mean 0 and constant variance σ^{2}. We consider two cases with respect to U : a random design case whereby U_{i} is a q-dimensional random variable and a fixed design case with U_{i} being a q-dimensional vector where each coordinate is defined on an equispaced grid on $[0,1]$. In the fixed design case the errors are independent of X_{i} while in the random design case they are independent of $\left(X_{i}^{\prime}, U_{i}\right)$. To obtain meaningful results, the function f is assumed to belong in the Lipschitz ball $\Lambda_{\alpha}(M)$ where α is the Lipschitz exponent. Of particular interest is the fact that, to be coherent, in the fixed design case when $q>1$ the model (1.1) must have multivariate indices. The version with $q=1$ was earlier considered in Wang, Brown and Cai (2011) while Brown, Levine and Wang (2014) considered the case of $q>1$ in detail. The latter defined two conceptually similar difference based estimators of the parametric component for fixed and random design cases, respectively, and showed \sqrt{n} asymptotic normality of both of these estimators. Moreover, it was also established that, in order for the estimator of the parametric component to be efficient, the order of the difference sequence must go to infinity. Brown, Levine and Wang (2014) also obtained a uniform over a Lipschitz ball $\Lambda^{\alpha}(M)$ convergence result for an estimator of the functional component, establishing the rate of convergence $n^{-2 \alpha /(2 \alpha+q)}$.

To the best of our knowledge, the optimal in the minimax sense rate of convergence for estimators of the nonparametric component of multivariate partial linear model (1.1) has not been established. Since results of Brown, Levine and

Wang (2014) amount to establishing the upper bound of that rate, the remaining task is to establish the lower bound. In this manuscript, we are doing just that for both fixed and random designs as well as for the two different functional distances. The first distance considered is the difference at a given fixed point and the second is that $L_{2}[0,1]^{q}$ distance. A number of different techniques are used to obtain these results. The next two sections present detailed results for the fixed and random design cases, respectively.

2. Optimal rates of convergence for the deterministic design case

We consider the following semiparametric model

$$
\begin{equation*}
Y_{\mathbf{i}}=a+X_{\mathbf{i}}^{\prime} \beta+f\left(U_{\mathbf{i}}\right)+\varepsilon_{\mathbf{i}} \tag{2.1}
\end{equation*}
$$

where $X_{\mathbf{i}} \in \mathbb{R}^{p}, U_{\mathbf{i}} \in S=[0,1]^{q} \subset \mathbb{R}^{q}, \varepsilon_{\mathbf{i}}$ are iid zero mean random variables with variance σ^{2} and finite absolute moment of the order $\delta+2$ for some small $\delta>0$, that is, $E\left|\varepsilon_{\mathbf{i}}\right|^{\delta+2}<\infty$. As noticed earlier in Brown, Levine and Wang (2014), the model (2.1) must have multidimensional indices $\mathbf{i}=\left(i_{1}, \ldots, i_{q}\right)^{\prime}$ to be coherent. Throughout this work, we will use bold font \mathbf{i} to refer to multivariate indices and regular font to refer to coordinates of a multivariate index. For some positive integer m, we can take $i_{k}=0,1, \ldots, m$ for $k=1, \ldots, q$; thus, the total sample size is $n=m^{q}$. Note that this assumption implies that $m=o(n)$ as $n \rightarrow \infty$. Due to the use of multivariate indices, one can also say that $\varepsilon_{\mathbf{i}}$ form an independent random field with the marginal density function $h(x)$ where x is a generic argument. We will say that two indices $\mathbf{i}^{1}=\left(i_{1}^{1}, \ldots, i_{q}^{1}\right) \leq \mathbf{i}_{2}=$ $\left(i_{1}^{2}, \ldots, i_{q}^{2}\right)$ if $i_{k}^{1} \leq i_{k}^{2}$ for any $k=1, \ldots, q$; the relationship between \mathbf{i}^{1} and \mathbf{i}^{2} is that of partial ordering. Also, for a multivariate index \mathbf{i}, we denote $|\mathbf{i}|=$ $\left|i_{1}\right|+\ldots+\left|i_{q}\right|$. In this section, we assume that $U_{\mathbf{i}}$ follows a fixed equispaced design: $U_{\mathbf{i}}=\left(u_{i_{1}}, \ldots, u_{i_{q}}\right)^{\prime} \in \mathbb{R}^{q}$ where each coordinate is $u_{i_{k}}=\frac{i_{k}}{m}$. In the model (2.1), β is an unknown p-dimensional vector of parameters and a is an unknown intercept term. We assume that X_{i} 's are independent random vectors that are also independent of $\varepsilon_{\mathbf{i}}$; moreover, we denote the non-singular covariance matrix of $X \Sigma_{X}$. For convenience, we also denote $N=\{1, \ldots, m\}^{q}$. This model requires an identifiability condition to be satisfied; more specifically, $\int_{[0,1]^{q}} f(u) d u=0$. The version of (2.1) with $q=1$ has been considered earlier in Wang, Brown and Cai (2010). The case of $q=1$ is quite different in that it only requires univariate
indices for the model to be coherent.
As a reminder, we consider functions f belonging to the Lipschitz ball $\Lambda^{\alpha}(M)$ for some positive constant M that is defined as follows. For a q-dimensional index $j=\left(j_{1}, \ldots, j_{q}\right)$, we define $j(l)=\left\{j:|j|=j_{1}+\ldots+j_{q}=l\right\}$. Then, for any function $f: \mathbb{R}^{q} \rightarrow R, \frac{D^{j(l)} f}{\partial u_{1}^{j_{1}} \ldots \partial u_{q}^{j_{q}}}$ is defined for all j such that $|j|=l$. Then, the Lipschitz ball $\Lambda^{\alpha}(M)$ consists of all functions $f(u):[0,1]^{q} \rightarrow R$ such that $\left|D^{j(l)} f(u)\right| \leq M$ for $l=0,1, \ldots,\lfloor\alpha\rfloor$ and $\left|D^{j(\lfloor\alpha\rfloor)} f(v)-D^{j(\lfloor\alpha\rfloor)} f(w)\right| \leq$ $M\|v-w\|^{\alpha^{\prime}}$ with $\alpha^{\prime}=\alpha-\lfloor\alpha\rfloor$. Here and in the future, $\|\cdot\|$ stands for the regular l_{2} norm in \mathbb{R}^{q}.

In Brown, Levine and Wang (2014), the estimator of the nonparametric component f was constructed in two stages. First, the vector coefficient β and the intercept a were estimated using the difference approach. Then, averaged residuals from that fit were smoothed using the multivariate Nadaraya-Watson kernel smoother to obtain an estimator of the unknown function f. For that estimator, Brown, Levine and Wang (2014) established a uniform upper bound on the risk at a point as well as for the $L_{2}[0,1]^{q}$ risk. More specifically, they proved that, for any Lipschitz indicator $\alpha>0$ and any $U_{0} \in[0,1]^{q}$, the estimator \hat{f} satisfies

$$
\sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}\left[\left(\hat{f}\left(U_{0}\right)-f\left(U_{0}\right)\right)^{2}\right] \leq C n^{-2 \alpha /(2 \alpha+q)}
$$

and

$$
\sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}\left[\int_{[0,1]^{q}}(\hat{f}(U)-f(U))^{2} d U\right] \leq C n^{-2 \alpha /(2 \alpha+q)}
$$

for a generic constant $C>0$ that does not depend on n. The following result establishes the respective lower bounds on the risk of that estimator, therefore proving that $n^{-\alpha /(2 \alpha+q)}$ is the minimax rate of convergence for both distances. Compared to Theorem (2.3) of Brown, Levine and Wang (2014), some extra assumptions are needed.

Theorem 2.1. Let $\varepsilon_{\mathbf{i}}$ be independent identically distributed random variables with zero mean and finite variance σ^{2}; moreover, we assume that, for some small $\delta>0, \mathbb{E} \varepsilon_{\mathbf{i}}^{2+\delta}<\infty$. Also, we assume that the marginal density function of observations $Y_{i} p\left(Y_{\mathbf{i}}\right)=\int p_{\varepsilon}\left(Y_{\mathbf{i}}-X_{\mathbf{i}}^{\prime} \beta\right) p_{X}\left(X_{i}\right) d X_{\mathbf{i}}$ satisfies the following assumption:
there exists $p_{*}>0, v_{0}>0$ such that

$$
\begin{equation*}
\int p(U) \log \frac{p(U)}{p(U+V)} d U \leq p_{*} v^{2} \text { for all }\|V\|<v_{0} \tag{2.2}
\end{equation*}
$$

Then, the convergence rate $n^{-\alpha /(2 \alpha+q)}$ is optimal

1. on $\left(\Lambda_{\alpha}(M), d_{0}\right)$ where d_{0} is the distance at a fixed point $U_{0} \in[0,1]^{q}$ and
2. on $\left(\Lambda_{\alpha}(M),\|\cdot\|_{2}\right)$ where $\|\cdot\|_{2}$ is an L_{2} distance on $[0,1]^{q}$.

Remark 2.2. Note that the condition (2.2) is fairly general; in particular, a standard Gaussian density satisfies this condition. For more information on this condition, see Tsybakov (2009).

Proof. 1. To obtain the minimax convergence rate for the first case, we will use a two-point argument going all the way back to Ibragimov and Has'minskii (1977) and Has'minskii (1978). First, we need to define an appropriate "test" function. We will use the optimal bandwidth $h_{n}=n^{-\frac{1}{2 \alpha+q}}$ in each dimension $j=1, \ldots, q$ and a bandwidth matrix $H_{n}=\operatorname{diag}\left\{h_{n}\right\}=h_{n} I_{q \times q}$ for the estimator of function $f(U)$. Next, consider a non-negative function $K \in \Lambda^{\alpha}\left(\frac{1}{2}\right)$ such that $K(U)>0$ if and only if $\|U\| \leq \frac{1}{2}$. As an example of such function, we can select $K(U)=a \exp \left(-\frac{1}{1-\|U\|^{2}}\right) I\left(\|U\| \leq \frac{1}{2}\right)$ for a sufficiently small $a>0$. Note that this function reaches its maximum when $\|U\|=0$ and that this maximum is $\exp (-1)$. A pair of functions that we will need for our problem are $f_{0, n}(U) \equiv 0$ and $f_{1, n}(U)=$ $M h_{n}^{\alpha} K\left(H_{n}^{-1}\left(U-U_{0}\right)\right)=M h_{n}^{\alpha} K\left(h_{n}^{-1}\left(U-U_{0}\right)\right)$. The following three conditions must be checked for us to conclude that the lower bound is achieved at the convergence rate $n^{-\frac{\alpha}{2 \alpha+q}}$.

- The first condition is that $f_{j, n} \in \Lambda^{\alpha}(M)$ for $j=1,2$ and sufficiently large n. For $f_{0, n} \equiv 0$ it is clearly satisfied immediately. Next, for any $l=0,1, \ldots,\lfloor\alpha\rfloor,\left|D^{j(l)} f_{1, n}(U)\right|=M h_{n}^{\alpha-l}\left|D^{j(l)} K\left(h_{n}^{-1}\left(U-U_{0}\right)\right)\right| \leq M$ for sufficiently large n since the function $K \in \Lambda^{\alpha}\left(\frac{1}{2}\right)$. Finally, since $\left|D^{(j(\lfloor\alpha\rfloor))} f_{1, n}(V)-D^{(j(\lfloor\alpha\rfloor))} f_{1, n}(W)\right| \leq h_{n}^{\alpha-\lfloor\alpha\rfloor} \mid D^{(j(\lfloor\alpha\rfloor))} K\left(h_{n}^{-1}\left(V-U_{0}\right)\right)-$ $D^{(j(\lfloor\alpha\rfloor))} K\left(h_{n}^{-1}\left(W-U_{0}\right)\right)|\leq M| \mid V-W \|^{\alpha}$ for all sufficiently large n, we can say that $f_{1, n} \in \Lambda^{\alpha}(M)$
- Next, we need to check that, for sufficiently large n, the distance between the two "test" functions $d\left(f_{1, n}\left(U_{0}\right), f_{0, n}\left(U_{0}\right)\right) \geq n^{-\alpha /(2 \alpha+q)}$. Indeed, $\left|f_{1, n}\left(U_{0}\right)\right|=\left|h_{n}^{\alpha} K(0)\right| \geq 2 A n^{-\frac{\alpha}{2 \alpha+q}}$ for e.g. $A=\frac{M}{4} \exp (-1)$. Therefore, the distance between the two "points" in the Lipschitz ball $\Lambda^{\alpha}(M)$ that we selected is, indeed, of the right order $n^{-\frac{\alpha}{2 \alpha+q}}$.
- Finally, let us define two product densities $m_{0, n}$ and $m_{1, n}$ that are densities of observations generated by (2.1) when the functional component is equal to $f_{0, n}$ and $f_{1, n}$, respectively. Using assumption (2.2), the Kullback distance between the two is

$$
\begin{aligned}
& K\left(m_{0, n}, m_{1, n}\right)=\int \cdots \int \log \prod_{\mathbf{i} \leq n} \frac{p\left(Y_{\mathbf{i}}\right)}{p\left(Y_{\mathbf{i}}-f_{1, n}\left(U_{\mathbf{i}}\right)\right)} \prod_{\mathbf{i} \leq n}\left[p\left(Y_{\mathbf{i}}\right) d Y_{\mathbf{i}}\right] \\
& =\sum_{\mathbf{i} \leq n} \int p(Y) \log \frac{p(Y)}{p\left(Y-f_{1, n}\left(U_{\mathbf{i}}\right)\right)} d Y \leq \sum_{\mathbf{i} \leq n} p^{*} f_{1, n}^{2}\left(U_{\mathbf{i}}\right) \\
& =M p_{*} h_{n}^{2 \alpha} \exp (-2) \sum_{\mathbf{i} \leq n} I\left(\left\|U_{i}-U_{0}\right\| \leq \frac{h_{n}}{2}\right) \leq p_{*} h_{n}^{2 \alpha} \exp (-2) \max \left((M / 2) n h_{n}^{q}, 1\right) \\
& \leq(M / 2) p_{*} h_{n}^{2 \alpha} \exp (-2) n h_{n}^{q}=(M / 2) p_{*} \exp (-2) n h_{n}^{2 \alpha+q} \leq C
\end{aligned}
$$

for sufficiently large n where $C=(M / 2) p_{*} \exp (-2)$. This establishes the optimality of the rate $n^{-\alpha /(2 \alpha+q)}$.
2. Next, we establish the minimax rate of convergence for the $L_{2}[0,1]^{q}$ risk.

First, recall the earlier result that, for any $\alpha>0$,

$$
\sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}\left[\int_{[0,1]^{q}}(\hat{f}(U)-f(U))^{2} d U\right] \leq C n^{-2 \alpha /(2 \alpha+q)}
$$

We will argue that the rate $n^{-\alpha /(2 \alpha+q)}$ is also the minimax rate under the $L_{2}[0,1]^{q}$ loss. In what follows, we denote $\lceil x\rceil$ the smallest integer that is larger than $x \in \mathbb{R}$. First, let us define $m=\left\lceil c_{0} n^{\frac{q}{2 \alpha+q}}\right\rceil$ where $c_{0}>0$ is some real number. As a second step, we choose the bandwidth $h_{n}=m^{-1 / q}$. Our next purpose is to define a partition of $[0,1]^{q}$ into a set of disjoint subsets and define a sequence of functions that take non-zero values on just one of these subsets. Such a multivariate partition with \mathbb{R}^{q}-valued partition points (vectors) $U_{k}=\left(u_{k}^{1}, \ldots, u_{k}^{q}\right)^{\prime}$ can be defined by selecting $u_{k}^{j}=\frac{k-\frac{1}{2}}{m}$, for $k=$
$1, \ldots, m$. Now, denote $\Delta_{k}=\left\{\left[\frac{k-1}{m}, \frac{k}{m}\right), \ldots,\left[\frac{k-1}{m}, \frac{k}{m}\right)\right\}^{\prime} \in \mathbb{R}^{q} ;$ note that the entire $[0,1]^{q}=\cup_{k} \Delta_{k}$ and that $\Delta_{k} \cap \Delta_{k^{\prime}}=\emptyset$ if $k \neq k^{\prime}$, that is Δ_{k} s are disjoint. The next step consists of selecting hypotheses based on a function $K(U)$: $[0,1]^{q} \rightarrow \mathbb{R}$ such that $K(U) \in \Lambda^{\alpha}\left(\frac{1}{2}\right)$ and $K(U)>0$ if and only if $\|U\|<$ $\frac{1}{2}$. As before, we select the function $K(U)=\exp \left(-\frac{1}{1-\|U\|^{2}}\right) I\left(\|U\| \leq \frac{1}{2}\right)$. Also, denote $\|K\|_{2}$ the $L_{2}[0,1]^{q}$ norm of the function K. To simplify the notation, let the diagonal bandwidth matrix be $H=\operatorname{diag} h_{n}=h_{n} I_{q \times q}$. Now, we can define a set of m functions $\Phi_{k}(U)=M h_{n}^{\alpha} K\left(H^{-1}\left(U-U_{k}\right)\right)$, for $k=1, \ldots, m$. Finally, denote the set of all binary sequences of length m $\Omega=\left\{\omega=\left(\omega_{1}, \ldots, \omega_{m}\right), \omega_{i} \in(0,1)\right\}=\{0,1\}^{m}$. Then, the "test functions" $f_{j n}, j=0, \ldots, J$ will be selected from the set of functions

$$
\begin{equation*}
\mathbb{E}=\left\{f_{\omega}(u)=\sum_{k=1}^{m} \omega_{k} \Phi_{k}(u), \omega \in \Omega\right\} \tag{2.3}
\end{equation*}
$$

The following three conditions now must be verified to ensure that $n^{-\alpha /(2 \alpha+q)}$ is, indeed, the minimax rate.
(a) First, we need to show that the $L_{2}[0,1]^{q}$ distance between any two of the "test functions" is bounded below by the multiple of $n^{-\alpha /(2 \alpha+q)}$. For any two functions $f_{\omega}, f_{\omega^{\prime}} \in \mathbb{E}$, the $L_{2}[0,1]^{q}$-distance between them is

$$
\begin{aligned}
& d\left(f_{\omega}, f_{\omega^{\prime}}\right)=\sqrt{\int_{[0,1]^{q}}\left[f_{\omega}(U)-f_{\omega^{\prime}}(U)\right]^{2} d U}=\sqrt{\int_{[0,1]^{q}}\left[\sum_{k=1}^{m}\left(\omega_{k}-\omega_{k}^{\prime}\right) \Phi_{k}(U)\right]^{2} d U} \\
& =\sqrt{\sum_{k=1}^{m}\left(\omega_{k}-\omega_{k}^{\prime}\right)^{2} \int_{\Delta_{k}} \Phi_{k}^{2}(U) d U}=M h_{n}^{\alpha+\frac{q}{2}}\|K\|_{2} \sqrt{\rho\left(\omega, \omega^{\prime}\right)}
\end{aligned}
$$

where $\rho\left(\omega, \omega^{\prime}\right)=\sum_{k=1}^{q} I\left(\omega_{k} \neq \omega_{k}^{\prime}\right)$ is the Hamming distance between ω and ω^{\prime}. Our next step requires the use of the so-called VarshamovGilbert Lemma that has been known for a long time in information theory (see, e.g. Gilbert (1952) as well as Ibragimov and Hasminskii (1977) for pioneering examples of the use of Varshamov-Gilbert Lemma in statistical context)). The Varshamov-Gilbert Lemma states that,
for any $m \geq 8$, there exists a subset $\left\{\omega^{(0)}, \ldots, \omega^{(J)}\right\}$ of Ω such that $\omega^{(0)}=(0, \ldots, 0)$, and $\rho\left(\left(\omega^{(j)}, \omega^{(k)}\right) \geq \frac{m}{8}\right.$ for any $0 \leq j \leq k \leq J ;$ moreover, $J \geq 2^{m / 8}$. Note that it suffices to choose the ω and ω^{\prime} such that $\sqrt{\rho\left(\omega, \omega^{\prime}\right)} \asymp h_{n}^{-q / 2}$ which is equivalent to $\rho\left(\omega, \omega^{\prime}\right) \asymp m$. In other words, to show that the rate $n^{-\alpha /(2 \alpha+q)}$ is, indeed, the minimax rate of convergence, we need to use an infinite number of "testing hypotheses" J. It is now easy to verify that, for a sufficiently large n,

$$
\begin{equation*}
d\left(f_{\omega}, f_{\omega^{\prime}}\right) \geq M h_{n}^{\alpha+\frac{q}{2}}\|K\|_{2} \sqrt{\frac{m}{16}}=\frac{M}{4}\|K\|_{2} h_{n}^{\alpha}=\frac{M}{4}\|K\|_{2} n^{-\frac{\alpha}{2 \alpha+q}} \tag{2.4}
\end{equation*}
$$

and so the rate is correct
(b) Clearly, each $\Phi_{k}(U) \in \Lambda^{\alpha}(M)$; since each $\omega_{k} \leq 1$ and the functions $\Phi_{k}(U)$ have disjoint supports for different $k, f_{\omega} \in \Lambda^{\alpha}(M)$.
(c) Finally, we also need to verify that the average Kullback-Leibler distance between the null hypothesis and others is bounded from above as follows: $\frac{1}{J} \sum_{j=1}^{J} K\left(f_{0, n}, f_{j, n}\right) \leq \alpha \log J$. Indeed, proceeding as before in the case of pointwise risk, one can find that

$$
\begin{aligned}
& K\left(f_{0, n}, f_{j, n}\right) \leq p_{*} \sum_{i \leq n} f_{j, n}^{2}\left(U_{i}\right) \leq p_{*} \sum_{k=1}^{m} \sum_{i: U_{i} \in \Delta_{K}} \Phi_{k}^{2}\left(U_{i}\right) \\
& \leq p_{*} M^{2} K_{\max }^{2} h_{n}^{2 \alpha} \sum_{k=1}^{m}\left\{\#: U_{i} \in \Delta_{k}\right\} \leq p_{*} M^{2} K_{\max }^{2} n h_{n}^{2 \alpha} \leq p_{*} M^{2} K_{\max }^{2} c_{0}^{(-2 \alpha+q) / q} m
\end{aligned}
$$

for a sufficiently large n. Since Varshamov-Gilbert result suggests that $m \leq 8 \log M / \log 2$, the claim is, indeed, true if we select $c_{0}=$ $\left(\frac{8 p_{*} L^{2} K_{\text {max }}^{2}}{\alpha \log 2}\right)^{\frac{q}{2 \alpha+q}}$.

3. Optimal rates of convergence for the random design case

In the same way as in Wang, Brown and Cai (2011), our next step is to obtain minimax convergence rates in the case of random design. For convenience purposes, we restate the assumptions of that case. Our model is again

$$
\begin{equation*}
Y_{i}=a+X_{i}^{\prime} \beta+f\left(U_{i}\right)+\varepsilon_{i} \tag{3.1}
\end{equation*}
$$

for $i=1, \ldots, n$; we also assume that U_{i} are random variables on $[0,1]^{q}$ and that $\left(X_{i}^{\prime}, U_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{q}$ are independent with an unknown joint density $g(x, u)$. The random errors ε_{i} are independent identically distributed with mean zero, variance σ^{2} and are independent of $\left(X_{i}^{\prime}, U_{i}\right)$. Moreover, we assume that the conditional covariance matrix $\Sigma_{*}=\mathbb{E}\left[\left(X_{1}-\mathbb{E}\left(X_{1} \mid U_{1}\right)\right)\left(X_{1}-\mathbb{E}\left(X_{1} \mid U_{1}\right)\right)^{\prime}\right]$ is nonsingular. As in any linear regression model, $\beta \in \mathbb{R}^{p}$ is a vector of coefficients. For any U with the marginal distribution $g(u)$, we also need to assume that $\mathbb{E}(f(U)) \equiv \int f(u) g(u) d u=0$ to ensure identifiability of the model (3.1). Finally, an individual coordinate of the vector X_{i} is denoted X_{i}^{l}, for $l=1, \ldots, p$ and an individual coordinate of the random vector U is denoted U^{r}, for $r=1, \ldots, q$. Note that, unlike the fixed design case, the indices i here are univariate.

As a first step, we obtain least squares estimates of the coefficient vector $\hat{\beta}$ and the intercept \hat{a}. The asymptotic normality and efficiency of the estimator $\hat{\beta}$ in the random case were established in the Theorem 3.4 of Brown, Levine and Wang (2014). To estimate the function $f(U)$, we apply a multivariate kernel smoother to the residuals $r_{i}=Y_{i}-\hat{a}-X_{i}^{\prime} \hat{\beta}$. In the case of $q=1$ Wang, Brown and Cai (2011) used the Gasser-Müller kernel smoother; however, generalization of Gasser-Müller kernels to the multivariate case is not very convenient and a better alternative is to use the Nadaraya-Watson smoother based on the multivariate product kernel. More specifically, let $K\left(U^{r}\right)$ be a univariate kernel function for a specific coordinate $U^{r}, r=1, \ldots, q$ satisfying $\int K\left(U^{r}\right) d U^{r}=1$ and having $\lfloor\alpha\rfloor$ vanishing moments. We choose the asymptotically optimal bandwidth $h_{n}=$ $n^{-1 /(2 \alpha+q)}$ (see, for example, J. Fan and I. Gijbels (1995)). The rescaled version of this kernel is $K_{h}\left(U^{r}\right)=h^{-1} K\left(h^{-1} U^{r}\right)$ so that the q-dimensional rescaled kernel is $K_{h}(U)=h^{-q} \prod_{r=1}^{q} K\left(h^{-1} U^{r}\right)$. Then, the Nadaraya-Watson estimator of $f(U)$ is

$$
\hat{f}_{n}(U)=\sum_{i=1}^{n} W_{i, h}\left(U-U_{i}\right) r_{i}
$$

where the weights $W_{i, h}\left(U-U_{i}\right)=\frac{K_{h}\left(U-U_{i}\right)}{\sum_{i=1}^{n} K_{h}\left(U-U_{i}\right)}$. We stress the dependence of this estimator on the sample size n by using it as a subscript. To make the notation shorter, we will also use $\|\cdot\|_{2}$ to denote the $L_{2}[0,1]^{q}$ - norm and $\|\cdot\|_{2}^{2}$ the squared norm in the same space. As a first step, we need to establish the analogue of Theorem 2.3 from Brown, Levine and Wang (2014) in the case of
random design. Since the proof of that result is almost analogous to Theorem 2.3 , we omit it and only state the final result.

Theorem 3.3. Under the assumptions of Theorem 3.4 of Brown, Levine and Wang (2014), for any Lipschitz indicator $\alpha>0$ and any $U_{0} \in[0,1]^{q}$, the estimator \hat{f}_{n} satisfies

$$
\sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}\left[\left(\hat{f}_{n}\left(U_{0}\right)-f\left(U_{0}\right)\right)^{2}\right] \leq C n^{-2 \alpha /(2 \alpha+q)}
$$

for a constant $C>0$. Also, for any $\alpha>0$,

$$
\sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}\left[\int_{[0,1] q^{q}}\left(\hat{f}_{n}(U)-f(U)\right)^{2} d U\right] \leq C n^{-2 \alpha /(2 \alpha+q)}
$$

Theorem (3.3) establishes upper bounds on the rate of convergence for the distance at a point and the $L_{2}[0,1]^{q}$ distance. In order to obtain the optimality of this convergence rate, we need to match these upper bounds with lower bounds. This is done in the following main result of this section.

Theorem 3.4. 1. Let T_{n} be an arbitrary estimator of the function f. Under the assumptions of Theorem 3.4 of Brown, Levine and Wang (2014), for any Lipschitz indicator $\alpha>0$ and any $U_{0} \in[0,1]^{q}$, the following holds:

$$
\liminf _{n \rightarrow \infty} \inf _{T_{n}} \sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}_{f}\left[n^{\frac{2 \alpha}{2 \alpha+q}}\left(T_{n}\left(U_{0}\right)-f\left(U_{0}\right)\right)^{2}\right] \geq c_{1}
$$

where c_{1} is a constant that does not depend on n. In other words, $n^{-\alpha /(2 \alpha+q)}$ is an optimal (minimax) rate of convergence when estimating the function $f(U)$ at a given fixed point U_{0}.
2. Again, let T_{n} be an arbitrary estimator of the function f. Under the assumptions of Theorem 3.4 of Brown, Levine and Wang (2014), for any Lipschitz indicator $\alpha>0$,

$$
\liminf _{n \rightarrow \infty} \inf _{T_{n}} \sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}_{f}\left[\int_{[0,1]^{q}} n^{\frac{2 \alpha}{2 \alpha+q}}\left(T_{n}(U)-f(U)\right)^{2} d U\right] \geq c_{2}
$$

where c_{2} is a constant that doesn't depend on n.

Proof. 1. As a first step, we will consider the case of estimation at a point $U_{0} \in[0,1]^{q}$. The proposed minimax rate is $\psi_{n}=n^{-\alpha /(2 \alpha+q)}$. The subscript n is used to stress its dependence on the sample size n. We also define two test functions $f_{0, n}(U) \equiv 0$ and $f_{1, n}(U)=M h_{n}^{\alpha} K\left(h_{n}^{-1}\left(U-U_{0}\right)\right)$ that are exactly the same as those used in the proof of the first part of the theorem (2.1). Recall that the distance at a point between these functions is $\left|f_{1 n}\left(U_{0}\right)\right| \geq 2 A \psi_{n}$ where the convergence rate $\left.\psi_{n}=n^{-\alpha /(2 \alpha+q}\right)$ and $A=$ $\frac{M}{4} \exp (-1)$ Denote $\mathbb{E}_{U_{1}, \ldots, U_{n}}$ the conditional expectation with respect to the joint distribution of U_{1}, \ldots, U_{n}. Also, denote the "test" function Ψ that, for a given set of data, selects either the first or the second function $f_{0, n}$ or $f_{1, n}$. Then, using Chebyshev's inequality, we have

$$
\begin{aligned}
& \sup _{f \in \Lambda_{\alpha}(M)} \mathbb{E}\left[\psi_{n}\left[T_{n}\left(U_{0}\right)-f\left(U_{0}\right)\right]\right] \geq A^{2} \max _{f \in f_{0}, f_{1 n}} P\left(\left|T_{n}\left(U_{0}\right)-f\left(U_{0}\right)\right| \geq A \psi_{n}\right) \\
& \geq \frac{A^{2}}{2} \sum_{j=0}^{1} \mathbb{E}_{U_{1}, \ldots, U_{n}}\left[P\left(\mid T_{n}\left(U_{0}\right)-f\left(U_{0} \geq A \psi_{n} \mid U_{1}, \ldots, U_{n}\right)\right]\right. \\
& =A^{2} \mathbb{E}_{U_{1}, \ldots, U_{n}}\left[\frac{1}{2} \sum_{j=0}^{1} P\left(\left|T_{n}\left(U_{0}\right)-f\left(U_{0}\right)\right| \geq A \psi_{n} \mid U_{1}, \ldots, U_{n}\right)\right] \\
& A^{2} \mathbb{E}_{U_{1}, \ldots, U_{n}}\left[\inf _{\Psi} \frac{1}{2} \sum_{j=0}^{1} P\left(\left(\Psi \neq j \mid U_{1}, \ldots, U_{n}\right)\right]\right.
\end{aligned}
$$

where the last inequality follows from the triangle inequality and the fact that the distance between the two functions at the point U_{0} is greater than or equal to $2 A \psi_{n}$. For fixed U_{1}, \ldots, U_{n} we have the distance between the two product densities $m_{0, n}$ and $m_{1, n}$ associated with functions $f_{0, n}$ and $f_{1, n} K\left(P_{0}, P_{1}\right) \leq C$ for the same finite C that was obtained in the proof of theorem (2.1). Thus, the lower bound becomes $\bar{p}_{e, 1}=$ $\inf _{\Psi} P\left(\left(\Psi \neq j \mid U_{1}, \ldots, U_{n}\right) \geq \max \left(\frac{1}{4} \exp (-C), \frac{1-\sqrt{C / 2}}{2}\right)\right.$ according to the Theorem 2.2 of Tsybakov (2009) which finishes our proof.
2. Next, we need to consider the $L_{2}[0,1]^{q}$ case. Here, yet again, we will need not just two, but $J+1$ "test" functions with $J \rightarrow \infty$ as $n \rightarrow \infty$. The needed "test" functions are defined as $f_{j n}, j=0, \ldots, J$ where $f_{j n}$ are again selected from the function set (2.3) as before in the case of fixed design. Earlier, we
proved that the L_{2} distance between any two functions from this set is

$$
\left\|f_{j n}-f_{k n}\right\|_{2} \geq \frac{M}{4}\|K\|_{2} n^{-\alpha /(2 \alpha+q)}
$$

for any $0 \leq j, k \leq J$. The basic idea we are going to use is to bound the $L_{2}[0,1]^{q}$ risk from below by the average probability of error rather than the minimax probability of error. This approach uses the so-called Fano's lemma that was originally borrowed from the information theory; see, for example, Fano (1952). Again, using Chebyshev's inequality, we obtain

$$
\begin{aligned}
& \sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}\left[n^{2 \alpha /(2 \alpha+q)}\|\hat{f}-f\|_{2}^{2}\right] \\
& \geq A^{2} \max _{f \in\left\{f_{0 n}, \ldots, f_{J n}\right\}} \mathbb{P}_{f}\left(\left\|\hat{f}_{n}-f\right\|_{2} \geq A \psi_{n}\right) \\
& \geq A^{2} \frac{1}{J+1} \sum_{j=0}^{J} \mathbb{E}_{U_{1}, \ldots, U_{n}}\left[\mathbb{P}_{j}\left(\left\|\hat{f}_{n}-f\right\|_{2} \geq A \psi_{n} \mid U_{1}, \ldots, U_{n}\right)\right] \\
& =A^{2} \mathbb{E}_{U_{1}, \ldots, U_{n}}\left[\frac{1}{J+1} \sum_{j=0}^{J} \mathbb{P}_{j}\left(\left\|\hat{f}_{n}-f\right\|_{2} \geq A \psi_{n} \mid U_{1}, \ldots, U_{n}\right)\right]
\end{aligned}
$$

Next, let Ψ be a test that based on the data, makes a choice between the $J+1$ hypotheses considered. Then, the above result means that

$$
\begin{aligned}
& \sup _{f \in \Lambda^{\alpha}(M)} \mathbb{E}\left[n^{2 \alpha /(2 \alpha+q)}\|\hat{f}-f\|_{2}^{2}\right] \\
& \geq A^{2} \mathbb{E}_{U_{1}, \ldots, U_{n}}\left[\inf _{\Psi} \frac{1}{J+1} \sum_{j=0}^{J} \mathbb{P}_{j}\left(\Psi \neq j \mid U_{1}, \ldots, U_{n}\right)\right]
\end{aligned}
$$

While proving the theorem (2.1), we showed that $\frac{1}{J} \sum_{j=1}^{J} K\left(f_{0, n}, f_{j, n}\right) \leq$ $\alpha \log J$. A direct consequence of Fano's lemma (for details see, for example, Corollary 2.6 in Tsybakov (2009) is that the minimum average probability of error is bounded from below as

$$
\begin{equation*}
\inf _{\Psi} \frac{1}{J+1} \sum_{j=0}^{J} \mathbb{P}_{j}\left(\Psi \neq j \mid U_{1}, \ldots, U_{n}\right) \geq \frac{\log (J+1)-\log 2}{\log J}-\alpha \tag{3.2}
\end{equation*}
$$

The right hand side of the last inequality does not depend on U_{1}, \ldots, U_{n} and so the desired result is obtained.

4. Acknowledgements

Michael Levine's research has been partially supported by the NSF grant DMS \# 1208994

References

Brown, L.D., Levine,M., and Wang, L. (2014) A semiparametric multivariate partially linear model: a difference approach. A Technical Report at http://www.stat.purdue.edu/research/technical_reports/2014-tr.html

Engle, R. F., Granger, C. W., Rice, J., and Weiss, A. (1986). Semiparametric estimates of the relation between weather and electricity sales. Journal of the American Statistical Association, 81(394), 310-320.

Ibragimov, I.A. and Has'minskii, R.Z. (1977) On the estimation of an infinitedimensional parameter in Gaussian white noise. Soviet Mathematics. Doklady, 18, 1307-1309

Has'minskii, R.Z. (1978) A lower bound on the risks of nonparametric estimates of densities in the uniform metric Theory of Probability and Its Applications, 23, 794-798

Fan, J., and Gijbels, I. (1995) Local polynomial modelling and its applications: Monographs on Statistics and Applied Probability, Chapman\& Hall, London

Fano, R.M. (1952) Class Notes for Transmission of Information. Course 6.574, MIT, Cambridge, Massachusetts

Gilbert (1952) A comparison of signalling alphabets. Bell System Technical Journal, 31, 504-522

Tsybakov, A.B. (2009) Introduction to Nonparametric Estimation, Springer
Wang, L., Brown, L.D. and Cai, Tony T. (2011). A difference based approach to the semiparametric partial linear model. Electronic Journal of Statistics, 5, 619-641.

