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A semiparametric multivariate partially linear model: a difference approach

Lawrence D. Brown, Michael Levine, and Lie Wang

University of Pennsylvania, Purdue University, and MIT

Abstract: A multivariate semiparametric partial linear model for both fixed and

random design cases is considered. The fixed design case is shown to be, in effect,

a semiparametric random field model. In either case, the model is analyzed us-

ing a difference sequence approach. The linear component is estimated based on

the differences of observations and the functional component is estimated using a

multivariate Nadaraya-Watson kernel smoother of the residuals of the linear fit.

We show that both components can be asymptotically estimated as well as if the

other component were known. The estimator of the linear component is shown to

be asymptotically normal and efficient if the length of the difference sequence used

goes to infinity at a certain rate. The functional component estimator is shown to

be rate optimal if the Lipschitz smoothness index exceeds half the dimensionality

of the functional component argument. We also develop a test for linear combi-

nations of regression coefficients whose asymptotic power does not depend on the

functional component. All of the proposed procedures are easy to implement. Fi-

nally, numerical performance of all the procedures is studied using simulated data.

Key words and phrases: Multivariate semiparametric model, difference-based method,

asymptotic efficiency,partial linear model, random field.

1. Introduction

Semiparametric models have a long history in statistics and have received

considerable attention in the last 30 − 40 years. They have also been a sub-

ject of continuing investigation in subject areas such as econometrics. The main

reason they are considered is that sometimes the relationships between the re-

sponse and predictors are very heterogeneous in the same model. Some of the

relationships are clearly linear whereas others are much harder to categorize. In

many situations, a small subset of variables is presumed to have an unknown

relationship with the response that is modeled nonparametrically while the rest

are assumed to have a linear relationship with it. As an example, Engle, Granger,

Rice and Weiss (1986) studied the nonlinear relationship between temperature
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and electricity usage where other related factors, such as income and price, are

parameterized linearly. Shiller (1984) considered an earlier cost curve study in

the utility industry using a partial linear model.

The model we consider in this paper is a semiparametric partial linear mul-

tivariate model

Yi = a+X
′
iβ + f(Ui) + εi (1.1)

where Xi ∈ Rp and Ui ∈ Rq, β is an unknown p × 1 vector of parameters, a is

an unknown intercept term, f(·) is an unknown function and εi are independent

and identically distributed random variables with mean 0 and constant variance

σ2. We consider two cases with respect to U : a random design case whereby

U is a q-dimensional random variable and a fixed design case with Ui being a

q-dimensional vector where each coordinate is defined on an equispaced grid on

[0, 1]. In the fixed design case the errors are independent of Xi while in the

random design case they are independent of (X
′
i , Ui). To obtain meaningful

results, the function f is assumed to belong in the Lipschitz ball class Λα(M)

where α is the Lipschitz exponent. Of particular interest is the fact that, to

be coherent, in the fixed design case when q > 1 the model (1.1) must have

multivariate indices. The version with q = 1 was earlier considered in Wang,

Brown and Cai (2011) and we only consider here the case of q > 1.

The bibliography concerning the case of q = 1 is very extensive and we

refer readers to Wang, Brown and Cai (2010) for details. The case where q > 1

has received much less attention in the past. Bansal, Hamedani and Zhang

(1999) considered a nonlinear regression model that can be viewed as a very

special case of the model (1.1) when p = q. He and Shi (2010) considered the

model (1.1) for the random design case and provided an estimation approach for

both parametric and nonparametric parts that uses a bivariate tensor-product

B-splines based method; the resulting method is illustrated in detail for the case

of q = 2. He and Shi (2010) note that the optimal result for the mean squared

error of the nonparametric component requires that the degree of smoothness of

that component r increases with the dimension q as r > q/2; this is very similar

to our results that suggest a similar sufficient condition α > q/2. Schick (1996)

considered essentially the same model (also under the random design assumption)

being only concerned with estimation of the parametric component, obtaining
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a
√
n consistent estimator of β. A fundamental element in his construction

is the use of tensor product splines to estimate E(U |X). Samarov, Spokoiny

and Vial (2006) also consider the same model, while also investigating a related

variable selection problem; they proposed an iterative method for estimation of

all of the components of the model that, however, seems to provide a
√
n rate of

convergence for the parametric part of the model only when the dimensionality

q ≤ 3. Müller, Schick and Wefelmeyer (2012) also considered the same model,

again looking at the random design case only, while focusing on the estimation of

the residual variance σ2. As an intermediate step, the nonparametric component

is estimated using a polynomial smoother.

In this paper, we consider the estimation of both parametric and nonpara-

metric components. The difference sequence approach utilized in Wang, Brown

and Cai (2010) is generalized so that it can be used when q > 1. In the fixed

design case, the model is only coherent when the indices are are assumed to

be multivariate; as a result, it can be viewed as a semiparametric random field

model. Let n be the sample size; then, using differences of observations, a
√
n-

consistent estimator of the parametric component and a
√
n-consistent estimator

of the intercept are constructed; to obtain
√
n rate of convergence for the inter-

cept a, the smoothness of a nonparametric component must exceed q/2. As is the

case in Wang, Brown and Cai (2010), the correlation between differences has to

be ignored and the ordinary least squares approach must be used instead of the

generalized least squares to obtain an optimal estimator. These estimators can

be made asymptotically efficient if the order of the difference sequence is allowed

to go to infinity. The estimator of the nonparametric component is defined by

using a kernel regression on the residuals and is found to be n−α/(2α+q) consis-

tent. The hypotheses testing problem for the linear coefficients is also considered

and an F-statistic is constructed. The asymptotic power of the F-test is found

to be the same as if the nonparametric component is known.

In the random design case, the model has univariate indices and so the ap-

proach is slightly different. An attempt to generalize the approach of Wang,

Brown and Cai (2010) directly is fraught with difficulties since one can hardly

expect to find an ordering of multivariate observations that preserves distance re-

lationships intact. Instead, we utilize a nearest neighbor approach whereby only
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observations that are within a small distance from the point of interest U0 are

used to form a difference sequence. This inevitably results in difference sequences

that have varying lengths for different points in the range of the nonparamet-

ric component function. In order to ensure that the length of the difference

sequence does not go to infinity too fast, some assumptions on the marginal

density function of Ui must be imposed. As in the fixed design case, we ob-

tain a
√
n-consistent estimator of the parametric component and a rate efficient

estimator of the nonparametric component.

Our approach is easy to implement in practice for both random and fixed

design cases and for an arbitrary dimensionality q of the functional component.

Moreover, it guarantees
√
n rate of convergence for the parametric component

regardless of the value of q and provides an easy way of testing standard linear

hypotheses about β that have an asymptotic power that does not depend on the

unknown nonparametric component.

The paper is organized as follows. Section 2 discusses the fixed design case

while the Section 3 covers the random design case. The testing problem is con-

sidered in Section 4. Section 5 is dedicated to a simulation study that is carried

out to study the numerical performance of suggested procedures.

2. Deterministic design

We consider the following semiparametric model

Yi = a+X
′
iβ + f(Ui) + εi (2.1)

where Xi ∈ Rp, Ui ∈ S = [0, 1]q ⊂ Rq, εi are iid zero mean random variables

with variance σ2 and finite absolute moment of the order δ + 2 for some small

δ > 0: E |εi|δ+2 < ∞. In the model (2.1), i = (i1, . . . , iq)
′

is a multidimensional

index. Each ik = 0, 1, . . . ,m for k = 1, . . . , q; thus, the total sample size is

n = mq. This assumption ensures that m = o(n) as n→∞. In this setting one

can also say that εi form an independent random field with the marginal density

function h(x). We will say that two indices i1 = (i11, . . . , i
1
q) ≤ i2 = (i21, . . . , i

2
q) if

i1k ≤ i2k for any k = 1, . . . , q; the relationship between i1 and i2 is that of partial

ordering. Also, for a multivariate index i |i| = |i1| + . . . + |iq|. Here we assume

that Ui follows a fixed equispaced design: Ui = (ui1 , . . . , uiq)
′ ∈ Rq where each

coordinate is uik = ik
m for β is an unknown p-dimensional vector of parameters
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and a is an unknown intercept term. We assume that Xi’s are independent

random vectors and that Xi is also independent of εi; moreover, we denote the

non-singular covariance matrix of X as ΣX . For convenience, we also denote

N = {1, . . . ,m}q.This model requires an identifiability condition to be satisfied;

more specifically,
∫

[0,1]q f(u)du = 0. The version of (2.1) with q = 1 has been

considered earlier in Wang, Brown and Cai (2010). The case of q = 1 is quite

different in that it only requires univariate indices for the model to be tractable.

We will follow the same approach as Wang, Brown and Cai (2010), estimat-

ing first the vector coefficient β using the difference approach and then using

residuals from that fit to estimate both the intercept a and the unknown func-

tion f . To obtain uniform convergence rates for the function f , some smoothness

assumptions need to be imposed first. For this purpose, we consider functions

f that belong to the Lipschitz ball class Λα(M) for some positive constant M

that is defined as follows. For a q-dimensional index j = (j1, . . . , jq), we define

j(l) = {j : |j| = j1 + . . .+ jq = l}. Then, for any function f : Rq → R, Dj(l)f

∂u
j1
1 ...∂u

jq
q

is defined for all j such that |j| = l. Then, the Lipschitz ball Λα(M) consists of

all functions f(u) : [0, 1]q → R such that |Dj(l)f(u)| ≤ M for l = 0, 1, . . . , bαc
and |Dj(bαc)f(v)−Dj(bαc)f(w)| ≤M ||v − w||α

′
with α

′
= α− bαc. Here and in

the future, || · || stands for the regular l2 norm in Rq.

As in Cai, Levine and Wang (2009), our approach will be based on differ-

ences of observations Yi. The differences of an arbitrary order must be carefully

defined when indices are multivariate. Let A be an arbitrary set in Rq. It is

clear that we need to specify a particular choice of observations that form a

difference since there are many possibilities for a difference of any order ”cen-

tered” around an observation Yi. As in Cai, Levine and Wang (2009) and Munk,

Bissantz, Wagner and Freitag (2005), we select a set of q-dimensional indices

J = {(0, . . . , 0), (1, . . . , 1), . . . , (γ, . . . , γ)}. For any vector u ∈ Rq, a real number

v and a set A, we define the set B = u+vA = {y ∈ Rq : y = u+va, a ∈ A ⊂ Rq};
then, we introduce a set R that consists of all indices i = (i1, . . . , iq) such that

R+J ≡ {(i+j)|i ∈ R, j ∈ J} ⊂ {1, . . . ,m}q. Let a subset of R+J corresponding

to a specific i ∈ R be i+J . In order to define a difference of observations of order

γ, we define first a sequence of real numbers {dj} such that
∑γ

j=0 dj = 0 and∑γ
j=0 d

2
j = 1. The latter assumption makes the sequence {dj} normalized. More-
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over, denote ck =
∑γ−k

i=0 didi+k. Note that the so-called polynomial sequence used

in Wang, Brown, Cai and Levine (2009) with dj =
(
γ
j

)
(−1)j/

(
2γ
γ

)1/2
satisfies this

asymptotic requirement; moreover, it also satisfies an important property that∑γ
j=0 djj

k = 0 for any power k = 1, . . . , γ. For the asymptotic optimality results

that will be described later, the order of the difference sequence γ must go to

infinity as n → ∞. Then the difference of order γ ”centered” around the point

Yi, i ∈ R is defined as

Di =
∑
j∈J

djYi+J (2.2)

Note that this particular choice of the set J makes numbering of difference co-

efficients dj very convenient; since each q-dimensional index j consists of only

identical scalars, that particular scalar can be thought of as a scalar index of d;

thus,
∑

j∈J dj is the same as
∑γ

j=0 dj whenever needed.

Now, let Zi =
∑

j∈J djXi+J , δi =
∑

j∈J djf(Ui+J), and ωi =
∑

j∈J djεi+J ,

for any i ∈ R. Then, by differencing the original model (2.1), one obtains

Di = Z
′
iβ + δi + ωi (2.3)

for all i ∈ R. The ordinary least squares solution for β can be written as

β̂ = argmin
∑
i∈R

(Di − Z
′
iβ)2

Our interest lies in establishing consistency and asymptotic distribution for

the least squares β̂ as n = mq →∞. We are going to prove the following result.

Theorem 2.1. Let the distribution of the independent random field εi have an

absolute finite moment of order 2 + δ for some small δ > 0. Also, let us assume

that the marginal density function of the field εi h(x) has a bounded variation

over the real line. Then,

1. if a difference sequence dj of order γ ≥ bαc such that
∑γ

j=0 dj = 0,
∑γ

j=0 d
2
j =

1,
∑γ

j=0 djj
k = 0 for k = 1, . . . , γ is chosen, the resulting least squares so-

lution is asymptotically normal in the sense that

√
n(β̂ − β) L→ N

(
0,ΣX

(
1 +O

(
1
γ

)))
.
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2. The resulting least squares estimator β̂ is not asymptotically efficient if the

difference sequence order γ is finite. However, if we let γ → ∞ while

γ = o(m) and
∑γ

j=0 |dj |jl <∞ for some l > q/2, the asymptotic efficiency

is achieved.

Proof. As a first step, note that the solution has the usual form

β̂ =

(∑
i∈R

ZiZ
′
i

)−1(∑
i∈R

ZiDi

)
and that

β̂ − β =

(∑
i∈R

ZiZ
′
i

)−1(∑
i∈R

Zi[ωi + δi]

)
(2.4)

=

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Ziωi +

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Ziδi.

Note that the following notation is needed in order to characterize the covariance

array of ωi. For any two q-dimensional indices i, j we say that |i − j| = l if for

all k = 1, . . . , q |ik − jk| = l. With that in mind, a set of pseudoresiduals ωi,

i ∈ R has a covariance array Ψ = {Ψi,j} i, j ∈ R with only the elements having

the ”index distance” l ≤ γ and l 6= 1 being non-zero. We denote those non-zero

elements cl for any 1 < l ≤ γ. Because ωi’s for all i ∈ R are linear combinations

of εi, all of cl’s will depend on the difference sequence {dj}. More precisely, the

covariance array Ψ has a typical element

Ψi,j =


1, if i = j

cl, if |i− j| = l ≤ γ
0, otherwise

We will examine the two terms in the above separately. First, it is clear that the

expectation of the first term E
(∑

i∈R ZiZ
′
i

)−1∑
i∈R Ziωi = 0 and its conditional

variance

V ar

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Ziωi|Zi, i ∈ R

 =

(∑
i∈R

ZiZ
′
i

)−1

V ar

(∑
i∈R

Ziωi

)(∑
i∈R

ZiZ
′
i

)−1

.

Due to the existence of a non-singular ΣX the weak law of large numbers

for 1
n

∑
i∈R ZiZ

′
i is ensured. Indeed, let us define an increasing sequence of finite
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subsets Dm = [1,m]q ∈ S and another such sequence Dm\J . The weak law of

large numbers would consider sums of sample covariance matrices 1
nZiZ

′
i over all

i ∈ R, that is over increasing sequence of subsets Dm\J . Recall that the number

of elements in Dm\J is (m − γ)q while n = mq. For any finite or even infinite

difference sequence such that γ = o(m), the weak law of large numbers will be

true as long the non-singular covariance matrix ΣX exists. Let K be an identical

copy of the index set L; in a more explicit form, we have, then

1
n

∑
i∈R

ZiZ
′
i =

1
n

∑
i∈R

∑
j∈J

djXi+J

(∑
k∈K

dkX
′
i+K

) p→ ΣX

To conclude that the term
(∑

i∈R Ziωi

) (∑
i∈R ZiZ

′
i

)−1
is (conditionally on

the set of Zi) asymptotically normal we need to use a central limit theorem for

stationary random fields; for example, a version cited in Guyon (1995) that is

originally due to Bolthausen (1982) seems suitable for our circumstances. In

order to verify mixing conditions, it is useful to consider some characteristics of

the random field ωi, i ∈ R first. Note that a field ωi =
∑

j∈J djεi+J is a linear

transformation of the independent field εi; alternatively, it can also be viewed

as an infinite moving average. This allows us to use some well-known results

on mixing properties for linear fields that have been descried in detail in Guyon

(1995) and Doukhan (1994). Note that these results are much stronger than

what is technically required here since our central limit theorem only describes

the mean over a fairly simple set R.

First, a brief introduction into strong mixing coefficients for a random field is

needed. For a random field X, a subset XC = {Xt : t ∈ C} for some subset C of

q-dimensional indices is called a C-marginal of X. Let κC be σ-algebra generated

by XC . For any two arbitrary sets A,B ∈ R denote d(A,B) = infx∈A,y∈B d(x, y)

with d being a Euclidean metric in R. Finally, let |A| and |B| be the cardinality

of sets A and B, respectively. Then, for two sets A and B a strong mixing

coefficient αX(A,B) = α(κA, κB). Let u and v be two nonnegative integers;then,

a somewhat more convenient version is αX(k;u, v) = sup{αX(A,B) : d(A,B) ≥
k, |A| ≤ u, |B| ≤ v}. Note that αX(k;u, v) is an increasing function with respect

to both u and v. We also denote αX(k;u,∞) = supv αX(k;u, v).

To ensure that the central limit theorem is valid, we need to show that the
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strong mixing coefficient αX(k; 2,∞) of the field X decays sufficiently fast to

satisfy the condition
∑

k≥1 k
q−1αX(k; 2,∞)ζ/2+ζ for some ζ > 0. To do that, we

will use Corollary 1 of the Theorem 1 of Doukhan (1994, pp 78-79) for the mul-

tivariate case (i.e., when q > 1). To ensure that all of the conditions mentioned

in the Theorem 1 are true, it is necessary to make certain assumptions on both

the difference sequence {dj}, j ∈ J and on the field distribution function h of the

independent field εi first. More specifically, we need to require that

• the field εi has a uniformly bounded absolute moment of order 2 + δ:

supiE |εi|2+δ <∞ for some δ > 0

• The density function h of the field εi possesses the following regularity

property: ∫
R
|h(z + x)− h(z)| dz ≤ C|x|

for some positive C that does not depend on x. This requirement is satisfied

if the density function h(x) has a bounded variation on a real line.

• The difference sequence dj must satisfy the so-called inversibility condition

(Guyon, 1995) that requires the existence of a sequence aj such that the

product of the two associated diagonal matrices D = diag{dj} and A =

diag{aj} DA = I with I being the unity matrix. To guarantee that this is

true, it is necessary to require that for some k > q/2∑
i

|i|k|di| <∞. (2.5)

The reason we need to require this is because if we define d(z) =
∑

j∈J djz
j ,

then (2.5) guarantees the existence of an absolutely convergent Fourier series

for a complex-valued function a(z) = d−1(z) =
∑

j∈J ajz
j .

It is easy to see that, since dj = 0 if j > γ = o(n) Therefore, the above

mentioned Corollary 1 of Doukhan (1994) implies that the strong mixing co-

efficient αX(2k) ≡ supu,v αX(2k;u, v) decays even faster than exponential rate;

therefore, according to the Remark 1 to the Central Limit Theorem (3.3.1) of

Guyon (1995), this guarantees (conditional) asymptotic normality of the term(∑
i∈R ZiZ

′
i

)−1∑
i∈R Ziωi.
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To establish the asymptotic variance of the first term, we find that the vari-

ance

1
n
V ar

(∑
i∈R

Ziωi

)
=

1
n

E

∑
i,j∈R

ZiZjωiωj

 = ΣX

(
1 + 2

γ∑
k=1

c2
k

)

Finally, the conditions imposed on the difference coefficients above lead to
∑γ

k=1 c
2
k =

O
(

1
γ

)
and we have for the conditional variance of the first term in (2.4) Σ−1

X (1+

2
∑γ

k=1 c
2
k) = Σ−1

X

(
1 +O

(
1
γ

))
.

Now we will treat the 2nd term
(∑

i∈R ZiZ
′
i

)−1∑
i∈R Ziδi. As a first step,

we note that the expected value of this term is E
(∑

i∈R ZiZ
′
i

)−1∑
i∈R Ziδi = 0

due to the identifiability requirements that we imposed. Now we need to examine

the variance term which is defined by E
[(∑

i∈R Ziδi
) (∑

l∈R Z
′
lδl

)]
.

Clearly,

E

[(∑
i∈R

Ziδi

)(∑
l∈R

Z
′
lδl

)]
=

∑
i∈R

δ2
i − ck

∑
i∈R

δi
∑
j∈J

δi+j

ΣX

Analyzing δi, i ∈ R, it is convenient first to introduce the differential operator

Dy,z for any two arbitrary vectors y, z ∈ Rq as Dy,z =
∑q

k=1(yk − zk) ∂
∂xk

with

xk being the generic kth argument of a q-dimensional function. Then, by using

Taylor’s formula to expand f(Ui+J) around Ui, we find that, for any i ∈ R,

δi =
∑
j∈J

dj

[∑bαc
l=1D

l
Ui+J ,Ui

f(Ui)

l!
(2.6)

+
∫ 1

0

(1− u)bαc−1

(bαc − 1)!

[
D
bαc
Ui+J ,Ui

f(Ui + u(Ui+J − Ui))−D
bαc
Ui+J ,Ui

f(Ui)
]
du
]

Following the same line of argument as in Cai, Levine and Wang (2009), we

can conclude that, if the order of difference sequence γ ≥ bαc, the first addi-

tive term above is equal to zero due to properties of the polynomial difference

sequence. Using the Lipschitz property of the function f , it can be shown that

δi ≤M
(
m
n

)α/q. Due to this, it is clear that∑
i∈R

δ2
i − ck

∑
i∈R

δi
∑
j∈J

δi+j = O(n1−2α/qm2α/q)
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and, therefore, as n→∞ we have nV ar ((
∑

i∈R ZiZ
−1
i )Z

′
δ) = O

((
m
n

)2α/q)Σ−1
X .

The combination of the results for the two terms of (2.4) produces asymptotic

normality of the least squares estimator.

Our next step is to obtain properties of the estimated intercept â. The

natural estimator â = 1
n

∑
i≤n(Yi − X

′
i β̂) can be used. Its properties can be

described in the following lemma.

Lemma 2.2. Under the assumption of the uniform design on s = [0, 1]q and

α/q > 1/2, we have
√
n(â− a) L→ N(0, σ2)

Proof. First, notice that, a = 1
n

∑
i≤n(Yi −X

′
iβ)− 1

n

∑
i≤n f(Ui) + op(1); due to

this, we have â − a = 1
n

∑
i≤nX

′
i(β̂ − β) + 1

n

∑
i≤n f(Ui) + op(1). Recall that

the function f(·) ∈ Λα(M) and, therefore, 1
nf(Ui) = O(n−α/q). This suggests

that, if the ratio α/q > 1/2, the asymptotic property of â is driven by the
1
n

∑
i≤nX

′
i(β̂ − β) only. This is also reasonable from the practical viewpoint - if

the function f(·) is sufficiently smooth, its influence on the asymptotic behaviour

of â is negligible; moreover, the degree of smoothness required depends on the

dimensionality q.

Next, the estimation of the function f is an important task. One of the

ways to do this is to apply a smoother to the residuals ri = Yi − â − X
′
i β̂; out

of the many possible smoothers, we choose a multivariate kernel smoother de-

fined as a product of the univariate kernels. More specifically, let K(U l) be a

univariate kernel function for a specific coordinate U l, l = 1, . . . , q satisfying∫
K(U l) dU l = 1 and having bαc vanishing moments. We choose the asymptoti-

cally optimal bandwidth h = n−1/(2α+q) (see, for example, J. Fan and I. Gijbels

(1995)). We define its rescaled version as Kh(U l) = h−1K(h−1U l) so that the

q-dimensional rescaled kernel is Kh(U) = h−q
∏q
l=1K(h−1U l). Wang, Brown

and Cai (2010) used Gasser-Müller kernel weights to smooth the residuals ri in

the one-dimensional case. In the multivariate case, it is clearly preferable to use

some other approach to define weights that add up to 1; the classical Nadaraya-

Watson approach is the one we choose. The Nadaraya-Watson kernel weights are
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defined as

Wi,h(U − Ui) =
Kh(U − Ui)∑
i≤nKh(U − Ui)

.

Finally, the resulting kernel estimator of the function f(U) can then be defined

as

f̂(U) =
∑
i≤n

Wi,h(U − Ui)ri

Theorem 2.3. For any Lipschitz indicator α > 0 and any U0 ∈ [0, 1]q, the

estimator f̂ satisfies

sup
f∈Λα(M)

E[(f̂(U0)− f(U0))2] ≤ Cn−2α/(2α+q)

for a constant C > 0. Also, for any α > 0 ,

sup
f∈Λα(M)

E[
∫

[0,1]q
(f̂(U)− f(U))2 dU ] ≤ Cn−2α/(2α+q)

Proof. We will only prove the first statement since the derivation of the sec-

ond statement is very similar. The proof follows closely that of Theorem 3

in Wang, Brown and Cai (2011) and so we only give its outlines. First, note

that the residual ri = f(Ui) + εi + a − â + X
′
i(β − β̂) and , therefore, the es-

timate f̂(U) = f̂1(U) + f̂2(U) where f̂1(U) =
∑

i≤nWi,h(U − Ui)[f(Ui) + εi]

while f̂2(U) =
∑

i≤nWi,h(U − Ui)[X
′
i(β − β̂)] + a − â. From the standard mul-

tivariate nonparametric regression results we know that for any U0 ∈ [0, 1]q

sup
f∈Λα(M)

E[(f̂1(U0) − f1(U0)2] ≤ Cn−2α/(2α+q) for some constant C > 0. On the

other hand, clearly
∑

i≤nW
2
i,h(U − Ui) = O

(
1
nhq

)
= O(n−2α/(2α+q)). Therefore,

E(̂f2(U0))2 = E

∑
i≤n

Wi,h(U − Ui)X
′
i(β − β̂)

2 (2.7)

≤
∑
i≤n

Wi,h(U − Ui)2E(X
′
i(β − β̂))2 = O

(
n−2α/(2α+q)

)
.

Since â converges to a at the usual parametric rate of n1/2, the statement of the

theorem is true.

2. Random Design Case
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So far, we have only considered the deterministic setting whereby the func-

tion f(U) is defined on S = [0, 1]q ∈ Rq. In the multivariate setting, this means

using a grid with each observation Ui = (ui1 , . . . , uiq)
′ ∈ Rq and defining each

coordinate as uik = ik
m . It is also interesting to consider the random design case

where the argument U ∈ Rq is random and not necessarily independent of X. We

note that in this case the use of multivariate indices is not necessary to ensure

that the model is sensible.

Now, our model is again

Yi = a+X
′
iβ + f(Ui) + εi (3.1)

for i = 1, . . . , n; we also assume that (X
′
i , Ui) ∈ Rp × Rq are independent with

an unknown joint density g(x, u). Moreover, we assume that the conditional

covariance matrix Σ∗ = E[(X1 − E(X1|U1))(X1 − E(X1|U1))
′
] is non-singular.

Next, β ∈ Rp is the vector of coefficients, and εi are independent identically

distributed random variables with mean zero and variance σ2 that are indepen-

dent of (X
′
i , Ui). To make the model identifiable, we also need to assume that

E(f(Ui)) = 0. Finally, an individual coordinate of the vector Xi will be denoted

X l
i , for l = 1, . . . , p.

One’s first inclination is to try to order multivariate observations Ui in some

way in order to form a difference sequence. This would be a direct analogy to

what was done in Wang, Brown and Cai (2010). While there is a number of ways

to do so (e.g. by using the lexicographical ordering that results in the complete,

and not just partial, order), the resulting sequence is of little use in estimation

of the function f at any particular point U . Speaking heuristically, the reason

for that is that it is impossible to keep such an ordering and ensure that, at the

same time, the points remain in a neighborhood of the point U . Due to this,

such a direct generalization is impossible.

The above discussion suggests a different way out. Let us consider all the

points Ui such that the Euclidean norm ||Ui −U || ≤ ε for some small ε > 0. Let

the number of these points be mi(ε); clearly, this number depends on the choice

of ε as well as on the marginal distribution of Ui. Then, a difference ”centered”

on the point Ui will be δi =
∑mi(ε)

t=1 dtf(Ui+t). Applying this difference to both
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sides of (2.1), one obtains

Di = Z
′
iβ + δi + ωi (3.2)

where Di =
∑mi(ε)

t=1 dtYi+t, Zi =
∑mi(ε)

t=1 dtXi+t, and ωi =
∑mi(ε)

t=1 dtεi+t, i =

1, . . . , n. Note that, as opposed to the fixed design case, the difference sequence

considered here is of variable order that depends on the point Ui at which the

function f is to be estimated as well as the ”tuning” parameter ε. For simplicity,

we will suppress the dependence of the difference order on ε and write simply

mi, unless indicated otherwise.

As before, the sequence is defined in such a way that
∑mi+1

j=1 dj = 0,
∑mi+1

j=0 d2
j =

1,
∑mi+1

j=0 djj
k = 0 for k = 1, . . . ,mi + 1. We will also denote

cij =
min(mi,mj)−(i−j)∑

t=1

dtdt+(i−j).

In the matrix form the model (3.2) can be written as

D = Zβ + δ + ω (3.3)

where Z is the matrix whose ith row is Z
′
i , D = (D1, . . . , Dn)

′
, ω = (ω1, . . . , ωn)

′
,

and δ = (δ1, . . . , δn)
′
. The least squares solution is, then,

β̂ = (Z
′
Z)−1Z

′
D (3.4)

Note that it is necessary to ensure that mi = o(n) as n → ∞ for consistency of

the estimator β̂. More precisely, the following result can be established.

Theorem 3.4. Let the marginal density function of Ui g(u) be bounded every-

where on Rq. Also, let the function f(U) ∈ Λα(Mf ) and h(U) ≡ E(X|U) ∈
Λρ(Mh). Define the difference based estimator of β as above in (3.4) with ε→ 0

as n → ∞. Then, as long as o(n)ε2(ρ+α) → 0 when n → ∞, the estimator β̂ is

asymptotically normal
√
n(β̂ − β) L→ N(0,Σ−1

∗ )

where Σ∗ = E[(X − E(X|U))(X − E(X|U))
′
]. If

∑
i,j c

2
ij = O

(
1
m

)
for m =

max1≤i≤nmi, the estimator is also efficient.
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Remark 3.5. Requiring that the marginal density function g(u) be bounded is

not the weakest possible assumption - moderate rates of growth to infinity can be

permitted as well at the expense of making ε go to zero faster as n→∞. We do

not pursue this question further here

Proof. To analyze asymptotic behavior of this distribution it is useful, as before,

to split the bias into two terms:

β̂ − β = (Z
′
Z)−1Z

′
δ + (Z

′
Z)−1Z

′
ω

and analyze these two terms separately. Starting with the second term, it is clear

immediately that the conditional expectation E((Z
′
Z)−1Z

′
ω|Z) = 0. Now, we

need to look at the conditional variance of this term. Clearly, V ar((Z
′
Z)−1Z

′
ω|Z) =

(Z
′
Z)−1Z

′
ΨZ(Z

′
Z)−1 where Ψ = V ar(ω) is a matrix with a typical element

Ψij =
min(mi,mj)∑

t=1
dtdt+(i−j). Note that the special case is Ψii = 1 due to prop-

erties of the difference sequence we just specified. Therefore, the conditional

distribution is

(Z
′
Z)−1Z

′
ω ∼ N(0, (Z

′
Z)−1Z

′
ΨZ(Z

′
Z)−1)

Now, we need to analyze conditional variance. The first step is to investigate

the behavior of expectations EZ ′
Z and EZ ′

ΨZ. First, we have E(ZiZ
′
i) =∑mi

t=1 d
2
tV ar(Xi+t|U)+[

∑mi
t=1 dth(Ui+t)]

′
[
∑mi

t=1 dth(Ui+t)]. For non-equal indices,

the analogous statement is

E(ZiZ
′
i+j) =

min(mi,mj)∑
l=1

dj+ldlE(V arXi+j+l|U) (3.5)

+
mi∑
t=1

dth(Ui+t)]
′
[
mj∑
t=1

dth(Ui+j+t)]

Since the matrix Z =
∑n

i=1 ZiZ
′
i , we have

lim
n→∞

1
n

E(Z
′
Z) = lim

n→∞

1
n

n∑
i=1

EZiZ
′
i = lim

n→∞

1
n

n∑
i=1

E[V ar(Xi|U)] = Σ∗

because the second contributing term is bounded as | [
∑mi

t=1 dth(Ui+t)]
′
[
∑mi

t=1 dth(Ui+t)] | ≤
mjε

2α; due to the assumption on the marginal density g(u), the length of the
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difference sequence is always o(1) due to assumptions on ε and the marginal

density g(u) no matter the point it is centered around and so the second term

disappears. In a similar way, for the expectation of the term EZ ′
ΨZ we have

lim
n→∞

1
n

E(Z
′
ΨZ) =

1−
n∑

i,j=1

c2
ij

Σ∗

Let U = (U1, . . . , Un)
′
; then, the last term is

1
n

EZ
′
δδ

′
Z =

1
n

E
∑
i,j,k,l

Z
′
iδjδ

′
kZl

=
1
n

E

E

∑
i,j,k,l

Z
′
iδjδ

′
kZl|U


 =

1
n

E

∑
i,j,k,l

E(Z
′
i |U)δjδ

′
kE(Zl|U)


=

1
n

E

∑
i,j,k,l

E

(
mi∑
t=1

dtX
′
i+t|U

)
δjδ

′
kE

(
ml∑
t=1

dtXl+t|U

)
=

1
n

E

∑
i,j,k,l

(
mi∑
d=1

dth(Ui+t)

)
δjδ

′
k

(
ml∑
t=1

dth(Ul+t)

)
By definition of differences that we use here, and since both mi = o(n) and

ml = o(n), we obtain

1
n

EZ
′
δδ

′
Z ≤ 1

n
ε2ρ+2α ∗ o(n2) ≤ o(n)ε2(ρ+α) (3.6)

The (3.6) implies that, in order for the parametric part of the model (2.1) to

be estimable, the expression above must go to zero as n → ∞; for example, if

ε = O(n−1), we obtain γ + α > 1
2 which is the condition stated in Wang, Brown

and Cai(2010).

Finally, we need to verify that the all of the variances limn→∞
1
nV ar Z

′
Z =

limn→∞ Z
′
ΨZ = limn→∞ Z

′
δδ

′
Z = 0; all of the variances here are understood

elementwise.

As an example, the first case gives the variance of the klth element as

V ar
{∑p

i,j=1

{∑mi
t=1 dtX

i
k+t

∑ml
t=1 dtX

j
l+t

}}
; therefore, limn→∞

1
nV ar Z

′
Z = 0

due to the existence of non-singular Σ∗ as long as mi = o(n) for any point Ui
for any point Ui around which the respective difference is defined (due to the
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assumptions of the theorem). The same also true for the second limit - one only

needs to use the assumption on the elements of the covariance matrix Ψ as well.

Finally, the third limit also goes to zero due to the Lipshitz property of the

function f(U).

3. Linear component related tests

In this section we consider testing of linear hypotheses of the type H0 :

Cβ = 0 vs. Ha : Cβ 6= 0 for some full-rank r × p matrix C with rank(C) = r;

here r is the number of hypotheses tested. It is assumed that the errors are

independent and normally distributed, that is εi ∼ N(0, σ2) for some σ2 > 0.

To estimate the error variance σ2, for any i ∈ R we define the estimated ith

residual as ei = Di − Z
′
i β̂ = Di − Z

′
i(
∑

s∈R ZsZ
′
s)
−1
∑

s∈R ZsDs and, therefore,

the estimated error variance as

σ̂2 =
∑

i∈R e
2
i

n−m− p
(4.1)

Theorem 4.6. Suppose α > q/2 and 1 − d0 = O(m−1). In order to be able to

test H0 : Cβ = 0 vs. H1 : Cβ 6= 0 where C is an r× p matrix with rank(C) = r,

the test statistic

F =
β̂

′
C

′
(C(
∑

s∈R ZsZ
′
s)
−1C

′
)−1Cβ̂/r

σ̂2

is asymptotically distributed as F (r, n − m − p) distribution under the null hy-

pothesis.

Proof. From our previous results, we know that the estimator β̂ is asymptotically

normal and efficient; in other words, it satisfies
√
n(β̂− β) L→ N(0, σ2Σ−1

X ). This

immediately implies that
√
n(Cβ̂ − Cβ) L→ N(0, σ2CΣ−1

X C
′
). This, of course,

suggests that, as in Wang, Brown and Cai (2010), we can define the test statis-

tic based on n
σ2 β̂

′
C

′
(CΣ−1

X C
′
)Cβ̂; however, neither σ2 nor ΣX are known in

real applications and, therefore, need to be estimated. To estimate ΣX , we re-

call from the proof of Theorem (2.1) that 1
n

∑
s∈R ZsZ

′
s

p→ ΣX and, therefore,
1
n

∑
s∈R ZsZ

′
s can be used as an estimate of ΣX . The resulting test statistic would

be 1
σ2 β̂

′
C

′
(
C(
∑

s∈R ZsZ
′
s)
−1C

′
)−1

Cβ̂ that looks like a classical χ2 type statis-

tics asymptotically. However, σ2 is also not known and needs to be estimated as

well.
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Let us start with the numerator. As in Wang, Brown and Cai (2010), intro-

duce an array (essentially, a linear operator) L : RN → RR such that Li,j = di−j

for any 0 ≤ |j − i| ≤ m and 0 otherwise. Another useful array that we use is a

unity array(operator) J : RN → RR with Ji,i = 1 for any i ∈ R and 0 otherwise.

Using these definitions, we have ω = Lε = Jε+(L−J)ε = ω1 +ω2 where ω1 = Jε

and ω2 = (L − J)ε. Clearly, ω1 is a collection of uncorrelated normal random

variables: ω1 ∼ N(0, σ2IR) where IR is a unity array with both indices varying

over R. At the same time, ω2 ∼ N(0, σ2(L− J)(L− J)
′
). Under the additional

assumption of 1− d0 = O(m−1), it is not hard to verify that each element of the

covariance array of ω2 is of the order O(m−1) and that, therefore, ω2 tends to

zero in probability as n→∞.

Note that β̂ = β+(
∑

i∈R ZiZ
′
i)
−1Z

′
iδ+(

∑
i∈R ZiZi)−1Z

′
ω = β+(

∑
i∈R ZiZ

′
i)
−1Z

′
iδ+

(
∑

i∈R ZiZi)−1Z
′
ω1 + (

∑
i∈R ZiZi)−1Z

′
ω2. Therefore, under the null hypothesis

we have Cβ̂ = Cβ+C(
∑

i∈R ZiZ
′
i)
−1Z

′
iδ+C(

∑
i∈R ZiZ

′
i)
−1Z

′
ω1+C(

∑
i∈R ZiZ

′
i)
−1Z

′
ω2.

Following the proof of Theorem 1, we conclude that the term (
∑

i∈R ZiZ
′
i)
−1Z

′
iδ

converges to zero in probability as n → ∞; since under our assumptions each

element of the covariance array of ω2 is of the order O(m−1) we can consider just

the term C(
∑

i∈R ZiZ
′
i)
−1Z

′
ω1 ∼ N(0, σ2C(

∑
i∈R ZiZi)−1C

′
).

To analyze the denominator, we substitute first Di = Z
′
iβ + δi + ωi in the

definition of a typical residual ei and then, looking at (4.1), we realize that

the δ related term
∑

i∈R |δi − Z
′
i(
∑

s∈R ZsZ
′
s)
−1
∑

s∈R Zsδs|2 converges to zero

in probability if α > q
2 . The ”crossproduct” term that contains both δi and ωi

will also tend to zero in probability as n → ∞ under the same circumstances.

Therefore, we only need to analyze the behavior of the term

Hω ≡
∑
i∈R

∣∣∣∣∣∣ωi − Z
′
i

(∑
s∈R

ZsZ
′
s

)−1∑
s∈R

Zsωs

∣∣∣∣∣∣
2

(4.2)

.

To analyze the expression (4.2), one first needs to notice that operator H

is the projector of the rank n − m − p due to the regularity properties of the

contrast process
∑

i∈R

[
Di − Z

′
iβ
]2

; see, for example, Guyon (2009) pp.271-274

for the details. Due to this, we conclude that the estimate σ̂2 has χ2(n−m− p)
distribution and that it is independent from the numerator of the test statistic.



Multivariate partially linear model 19

The analogous result also holds for the random design case.

Theorem 4.7. Let α > q/2, 1 − d0 = O(m−1) and the ”nearest neighbor” type

estimator β̂ defined with ε→ 0 as n→∞ such that o(n)ε(2ρ+α) → 0 as n→∞.

Also, let the marginal density of Ui g(u) be bounded everywhere on Rq. For testing

H0 : Cβ = 0 against H1 : Cβ = 0 where C is an r× p matrix with rank(C) = r,

the test statistic

F =
β̂

′
C

′
(C(Z

′
Z)−1C

′
)−1Cβ̂/r

σ̂2

asymptotically follows the F (r, n−m− p) distribution under the null hypothesis.

3. Simulation

As a first step, we consider the effect of the unknown function f on the es-

timation accuracy of the coefficients of the linear component. We select the

sample size n = 500, define Ui ∼ Uniform(0, 1) for i = 1, . . . , n and con-

sider two cases. In the first case, dimensionality of the linear component is

p = 1 and the true coefficient is β = 2; the one-dimensional random variable

Xi ∼ N(µ, 1) for i = 1, . . . , n with µi = Ui. For the second case, we de-

note a 3 × 3 identity matrix I3. Then, we select p = 3, β = (2, 2, 4)
′

and

Xi = (X1
i , X

2
i , X

3
i )

′ ∼ N((µi, 2µi, 4µ2
i )

′
, I3). In both cases, errors are gener-

ated from the standard normal distribution. We select the dimensionality of

the functional argument to be q = 2 and consider four choices of functions:

f1(U) = U2
1 +U4

2 , f2 = 5 sin(π(U1 +U2), f3 = min(U1, 1−U1) + min(U2, 1−U2)

and f4(U) = f1
4 (U1)∗f2

4 (U2) where f1
4 (U1) = |4∗U1−2| and f2

4 (U2) = |4U2−2|+1
2 .

The first two choices are taken from Yang and Tschernig (1999) where they were

used to study bandwidth selection for the multivariate polynomial regression.

The third function brings discontinuities in our experimental setting. The fourth

is the so-called g-Sobol function, commonly used for sensitivity analysis (see,

e.g. Saltelli (2000) and Touzani and Busby (2011)). It is strongly nonlinear and

non-monotonic.

First, we assess the influence of the unknown function f on the estimation of

the linear component. We use the difference sequence of the order γ = 2. There

are 200 Monte-Carlo runs and the mean squared error is defined as ||β̂ − β||22
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Table 5.1: The MSE’s of estimate β̂ over 200 replications with sample size n = 500. The
numbers inside parentheses are the standard deviations. The first two rows assume that
the functional component has been taken into account.

f ≡ 0 f1 f2 f3 f4

Case(1) 0.0004(0.0006) 0.0005 (0.0007) 0.0006 (0.0008) 0.0006 (0.0008) 0.0005 (0.0006)
Case (2) 0.0028 (0.0022) 0.0028 (0.0024) 0.0038 (0.0034) 0.0030 (0.0025) 0.0026 (0.0024)
Case(1) 0.0001 (0.0001) 0.0306 (0.0030) 0.0021 (0.0018) 0.0251 (0.0025) 0.1084 (0.0066)
Case (2) 0.0008 (0.0007) 0.0332 (0.0038) 0.0128 (0.0105) 0.0275 (0.0036) 0.1151 (0.0098)

with || · ||2 being the Euclidean norm. The results are summarized in in the first

two rows of the Table (5.1)

Note that the presence of nonparametric component clearly does not have

much influence on the estimation of the parametric part. To illustrate the fact

that accounting for the presence of nonparametric component in the model is

crucial, we also conducted estimation of the Euclidean component using simple

linear least squares that disregards the presence of the function f . The results

are shown in the last two rows of the Table (5.1). Note that those results are

much worse than those in the first two rows with an obvious exception of the first

column. The rest of mean squared errors are several orders of magnitude larger

than those in the first two rows of the Table (5.1). The difference is especially

pronounced for g-Sobol function choice due to its obvious ”roughness”.

Our next check is the estimation of the nonparametric component. To do

this, we are using the multivariate Nadaraya-Watson estimator and the optimal

bandwidth has been selected using the cross-validation approach. Since the test

functions used are not symmetric, different bandwidths are assumed for different

coordinates. Note that the Priestley-Chao kernel used in Wang, Brown and Cai

(2010) is not as convenient for multivariate settings and therefore we prefer not to

use it in this case. For comparison, the nonparametric component has also been

estimated in the case where β = 0. The Table (5.2) summarizes mean squared

errors (MSE’s) of the estimated function f .

Note that MSE’s in each column are quite close to each other and so the

performance of the estimator f̂ does not seem to depend a lot on the structure

of X and β.
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Table 5.2: The MSE’s of estimate f̂ over 200 replications with sample size n = 500. The
numbers inside parentheses are the standard deviations

f ≡ 0 f1 f2 f3 f4

β = 0 0.0009 (0.0018) 0.0081 (0.0024) 0.0347 (0.0047) 0.0073 (0.0020) 0.0162 (0.0032)
Case(1) 0.0013 (0.0021) 0.0096 (0.0036) 0.0372 (0.0060) 0.0093 (0.0039) 0.0185 (0.0047)
Case (2) 0.0013 (0.0019) 0.0094 (0.0031) 0.0371(0.0054) 0.0088 (0.0033) 0.0178(0.0044)

Table 5.3: The mean and standard deviation of the estimated coefficients and the average
MSE of estimate f̂ over 200 replications with sample size n = 500. The numbers inside
parentheses are the standard deviations

m = 2 m = 4 m = 8 m = 16
Mean(sd) of β̂1 0.0012 (0.0019) 0.0014 (0.0023) 0.0025 (0.0032) 0.0059 (0.0071)
Mean(sd) of β̂2 0.0008 (0.0015) 0.0013 (0.0019) 0.0024 (0.0035) 0.0056 (0.0078)
Mean(sd) of β̂3 0.0005 (0.0006) 0.0009 (0.0010) 0.0011 (0.0014) 0.0030 (0.0041)

MSE of f̂2 0.0360 (0.0054) 0.0366 (0.0059) 0.0376 (0.0062) 0.0419 (0.0104)

It is also a matter of substantial interest to check the performance of the

proposed method for difference lengths of the difference sequence {di}. We focus

on the Case (2) and the function f = f2. There are still n = 500 observations

used and 200 Monte-Carlo replications have been used. The chosen length of the

difference sequence are 2, 4, 8 and 16. The results are summarized in the Table

(5.3). It is clear that some dependence on the order of the difference sequence

is quite clear - it appears that for larger values of m, e.g. m = 8 and m = 16

the MSE’s of the linear component parameters are larger than those for m = 2

and m = 4. This is probably due to the fact that, in order to achieve efficiency

of estimators, m = o(n) as n → ∞. Given that the sample size n = 500 is not

very large, increase in m, after a certain point, begins to cause an increase in

asymptotic variances of linear parameter estimators.
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