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Summary: Next-generation sequencing (NGS) technologies have become the preferred way of exploring a genome.

These data are high-dimensional discrete counts with latent structure that, once revealed, will reduce the dimensions

and will lead to the subsets of genes that are suitable for further exploration. Latent Process Decomposition of high-

dimensional count data (LPD-C) is presented as a two stage approach that is based on the assumption that genes work

in groups or processes. The first stage uses a variational empirical Bayesian approach that adapts the Latent Dirichlet

Allocation algorithm and extends the Latent Process Decomposition algorithm for high-dimensional Gaussian data.

The second stage of LPD-C selects gene-subsets using empirical Bayes hypothesis testing. The performance of LPD-C

is explored using simulated and publicly available NGS data, compared with existing approaches, and shown to be a

useful and extensible framework for identifying genes suitable for further exploration. Although we apply LPD-C in

a genomic context, it can be used for any high-dimensional count data.
Key words: Empirical Bayes; hypothesis testing; hierarchical Bayesian modelling; mixed-membership models;

next-generation sequencing data; variational inference.
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1. Introduction

Most genomic data are collected and analyzed for the purpose of associating genomic covari-

ates (e.g., gene expression, microRNA expression, DNA copy number, and single nucleotide

polymorphisms) with individuals’ phenotypes (e.g., disease status and survival time). Recent

advances in high-throughput technologies such as microarrays and next-generation sequenc-

ing (NGS) have enabled measurements of complex biological and genomic activities at an

extremely high resolution (Marioni et al., 2008). Typically, the number of available genomic

covariates is much larger than the number of individuals sampled; therefore, these data are

considered high-dimensional. One of the major challenges in genomic data analysis is to

model the statistical dependence of phenotypes on the genomic covariates, while accounting

for their high-dimensionality and interactions. The aim is to identify the covariates that are

most predictive of the phenotypes, and thereby suitable for further exploration. Low signal

strength and presence of confounding variables only complicate the analyses.

NGS technologies have emerged as the preferred approach for exploring a genome because

their data are highly replicable with little technical variation, and they facilitate novel

genomic discoveries (Marioni et al., 2008). Compared to microarrays, the issues in NGS

data analysis are magnified simply due to the non-Gaussian, discrete, and overdispersed

nature and increased complexity and size of the data (Marioni et al., 2008). We present

the Latent Process Decomposition of high-dimensional count data (LPD-C), a two stage

approach for NGS data analysis that models the generative mechanism of NGS data and

selects a pre-specified number of gene-subsets that have desirable properties. The proposed

framework is generic and computationally efficient, is well-suited to handle the increased

complexity and size of genomic data, and can be easily used by practitioners.

Historically, microarray investigations and research has addressed many of the aforemen-

tioned challenges posed by high-dimensional data. It has led to significant advancements in
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the applications and theory of multiple hypothesis testing (Efron, 2010), high-dimensional

variable selection, and the use of penalized likelihood approaches, especially the Lasso, for

high-dimensional data analysis (Friedman et al., 2010). Of these approaches, two major

themes arise for selecting candidate genes suitable for further exploration. The first theme

frames the problem as a gene-wise multiple hypothesis testing problem, with the rejected

hypotheses corresponding to the candidate genes (Efron, 2010). The second theme proposes

modeling the exchangeability of genes either using two level generative Bayesian models or

using penalized likelihood approaches (Friedman et al., 2010). The Bayesian approach uses

posterior distributions and the penalized likelihood approach chooses appropriate tuning

parameters to select candidate genes. Both of these themes borrow information across genes

as recommended by Efron (2010), and work well, both theoretically and practically, for

high-dimensional Gaussian data such as microarray data.

Limited results exist for the analysis of high-dimensional non-Gaussian data, such as

NGS data. Multiple hypothesis testing for discrete data is nontrivial because there are

no equivalents of the t- or F -test statistics (Robinson et al., 2010). Further, the sampling

distributions of test statistics are hard to justify in the current small sample size setting and

even worse if interacting genes are considered (Efron, 2010). Luckily, Bayesian modeling ap-

proaches for high-dimensional non-Gaussian data analysis do not suffer from these problems.

However, the convergence and diagnostic procedures for, and the scalability of, Markov chain

Monte Carlo (MCMC) based approaches in high dimensions are fairly complex for generic

applications. Few penalized likelihood approaches address statistical significance in high-

dimensional models and the analysis of genomic data from complex experimental designs

(e.g., time series of gene expression data; Meier and Bühlmann (2007)). Young et al. (2012)

provide an excellent overview of existing hypothesis testing based methods for NGS data

analysis; most of these approaches model NGS data using a negative binomial distribution.
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Witten (2011) proposes sparse Poisson Linear Discriminant Analysis (SPLDA), a penalized

likelihood approach using Lasso penalty, that performs much better than many existing

methods for classifying and clustering NGS data. Currently, no Bayesian approach exists

that selects genes while modeling the generative mechanism of NGS data along with the

biological hypothesis that genes work in networks or pathways.

LPD-C is a special case of the Latent Process Decomposition (LPD) framework. A specific

case of LPD was first proposed for high-dimensional Gaussian data (LPD-G) in the context

of microarray data (Rogers et al., 2005). Rogers et al. (2005) proposed LPD-G as a more

flexible approach than classical unsupervised approaches (hierarchical or K-means clustering)

to model the biological hypothesis that genes work in groups or networks. Because their main

objective was to find clusters of genes in microarray data, Rogers et al. (2005) do not select

candidate genes suitable for further exploration. The proposed LPD framework, of which

LPD-G and LPD-C are special cases, amends the original generative Bayesian model via a

second stage that selects candidate gene-subsets. Selected genes have two properties: they

are a small fraction of the total number of genes, and they are associated to their respective

subsets with high probabilities. Since the generative Bayesian model of LPD is an example

of Bayesian Latent Factor model (BLFM), the processes in LPD correspond to factors in

BLFM. West (2003) and Carvalho et al. (2008) present applications of BLFM to microarray

data. Their model is similar to LPD-G’s modeling approach. Dunson and Herring (2005)

model discrete outcomes, including count data, using BLFM. An extension of their model

to high-dimensional count data, which accounts for the fact that genes act in networks, is

similar to LPD-C’s generative Bayesian model. That said, there is a key difference between

BLFM and LPD. In BLFM, latent factors (processes) are of main interest, whereas in LPD

the focus is on estimating mean genomic effects.

Motivated by the need for a Bayesian approach that selects genes, the methodology and
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associated computations for LPD-C are developed in the context of NGS data. LPD-C is

a two stage approach that adapts to the underlying latent structure of the data and helps

in understanding complex systems. When applied to NGS data, LPD-C’s first stage is an

unsupervised approach to model the biological hypothesis that genes work in groups, or

processes, and is a special case of the mixed membership modeling framework (Airoldi

et al., 2005). This stage uses a variational empirical Bayesian approach that adapts the

Latent Dirichlet Allocation algorithm (LDA) (Blei et al., 2003) to model the generative

mechanism of NGS data. In doing so the framework becomes highly extensible and facilitates

computationally efficient estimation of the parameters and hyperparameters. The second

stage uses the parameter estimates from the first stage to select candidate genes, organized as

gene-subsets, using empirical Bayes hypothesis testing framework (Efron, 2010). The second

stage has few assumptions and controls the number of false discoveries. In real data analysis,

LPD-C’s results agree closely with those of hypothesis testing and penalized likelihood based

approaches. LPD-C’s distinguishing features are that it selects gene-subsets in NGS data,

and it can be easily extended to model data from more complicated experimental designs.

2. Latent process decomposition of high-dimensional count data

NGS data can be represented as a matrix N of gene counts with S rows and G columns

that represent samples and genes, respectively. The gene counts for s-th sample are denoted

as ns (i.e., the s-th row of N), and nsg is the count for gene g in sample s. There are K

latent processes (hereafter processes) associated with each sample. Any gene in a sample can

belong to one of the K processes. Due to the unsupervised nature of the analysis, we ignore

any covariate information associated with the samples.
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2.1 First stage of LPD-C: Hierarchical Bayesian model

Consider a three level generative Bayesian model for ns. The first (population) level of the

sampling model generates the probability vector πs = (πs1, . . . , πsK) of process memberships

for genes in sample s from a Dirichlet distribution with parameters, α = (α1, . . . , αK), such

that

πs | α ∼ Dirichlet(α), (Level 1) (1)

and πs is a latent variable specific to sample s. Model (1) implies that the genes in sample

s belong to K sub-populations called processes, and the probability of a gene belonging to

a process depends on the sample.

In the second level, the model generates the process membership k of gene g in sample s

as the latent Multinomial random vector zsg of length K, with all zeros except 1 at the k-th

position

zsg | πs ∼ Multinomial(1;πs), for g = 1, . . . , G, (Level 2) (2)

zsg = (zsg1, . . . , zsgk), k is such that zsgk = 1 and zsgj = 0 for j 6= k.

Zs is a latent indicator matrix specific to sample s with zsg as its rows. It has G rows and K

columns representing genes and processes, respectively. The column with the non-zero entry

in the g-th row of Zs indicates the latent process membership of gene g.

Finally, the third level generates the count nsg for gene g in sample s based on its process

membership k as

nsg |λgk ∼ Poisson(λgk), (Level 3) (3)

where λgk is an element of the gene- and process-specific mean (“loadings”) matrix Λ with

G rows and K columns that represent genes and processes, respectively. The gene counts

for all the samples are generated following (1) – (3). Hereafter α and Λ are assumed to be

fixed parameters. The generative model of LPD-C adapts the sampling models of LDA (Blei
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et al., 2003) and LPD-G (Rogers et al., 2005) for NGS data, which implies that the genes

and processes are exchangeable within a sample. All of these models are examples of BLFMs

that have been successfully used for microarray data analysis (West, 2003; Carvalho et al.,

2008).

The generative model (1) – (3) makes LPD-C more flexible than classical unsupervised

approaches, such as hierarchical and K-means clustering (Blei et al., 2003; Rogers et al.,

2005). Specifically, (2) associates genes in sample s to different processes chosen from the K

processes using Multinomial(1;πs). This level gives rise to two major advantages of LPD-C.

First, (2) enables LPD-C to both model the biological hypothesis that genes work in groups

(processes) and to associate genes to processes that can vary depending on their functions in

a sample. Second, due to its greater flexibility than classical clustering models, LPD-C can

better adapt to the latent structure of NGS data.

2.1.1 Estimation of posterior distributions of parameters. Each gene-subset corresponds

to a process and Z1:S relate samples, genes, and processes. LPD-C selects K gene-subsets

using test statistics obtained from the posterior density for Z1:S, p(Z1:S|n1:S,α,Λ). The

joint density of the latent variables π1, . . . ,πS (hereafter π1:S) and Z1, . . . , ZS (hereafter

Z1:S) and NGS data n1, . . . ,nS (hereafter n1:S) given α and Λ, p(π1:S, Z1:S,n1:S |α,Λ) is

analytically intractable (Blei et al., 2003); therefore, the posterior density p(Z1:S|n1:S,α,Λ)

is also analytically intractable. There are a host of techniques that can be used to approximate

p(Z1:S|n1:S,α,Λ), including MCMC.

We employ Poisson variational Bayes methods from machine learning and obtain ana-

lytically tractable variational density q(π1:S, Z1:S|n1:S,α,Λ) that approximates analytically

intractable true posterior density p(π1:S, Z1:S|n1:S,α,Λ) (Bishop, 2006). This choice is im-

portant for the computational efficiency and practical applicability of LPD-C. The variational

approach minimizes the Kullback-Liebler (KL) divergence between q(π1:S, Z1:S|n1:S,α,Λ)
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and p(π1:S, Z1:S|n1:S,α,Λ) (KL(q||p)). This approximation achieves analytic tractability by

assuming that latent variables π1:S and Z1:S are independent under the variational posterior

density, so that

q(π1:S, Z1:S|n1:S,α,Λ) =
S∏

s=1

q(πs)q(Zs) =
S∏

s=1

q(πs)

( G∏
g=1

q(zsg)

)
, (4)

where the conditioning on data and hyperparameters is suppressed. The variational posterior

densities of πs and Zs are q(πs) = q(πs |ns,α,Λ) and q(Zs) = q(Zs|ns,α,Λ). The factor-

ization (4) alone guarantees the analytic tractability of q(π1:S, Z1:S|n1:S,α,Λ), and there are

no further distributional assumptions for q’s. Using Section 1 of Supplementary Material,

the variational approximation introduces variational parameters, γs = (γs1, . . . , γsK) and

{Φsg = (φsg1, . . . , φsgK)}Gg=1, which are estimated using ns,α, and Λ, so that

q(πs |γs) = Dirichlet(γs1, . . . , γsK), γsk = αk +
G∑

g=1

φsgk,

q(zsg |Φsg) = Multinomial(1;φsg1, . . . , φsgK), φsgk =
P(nsg|λgk) exp[Ψ(γsk)]

K∑
k′=1

P(nsg|λgk′ ) exp[Ψ(γsk′ )]

, (5)

where P(nsg|λgk) denotes the Poisson density with mean λgk evaluated at nsg.

Because in real data analysis α and Λ are rarely known, we choose an empirical Bayesian

approach and estimate α and Λ based on n1:S. Following Blei et al. (2003), instead of

maximizing log p(n1:S |α,Λ), its lower bound from variational inference log q(n1:S |α,Λ) is

maximized for estimating α and Λ. The log variational lower bound (ELBO) log q(n1:S |α,Λ)

has the advantage of being analytically tractable. ELBO is obtained by replacing the func-

tions of latent variables π1:S and Z1:S in log p(π1:S, Z1:S,n1:S |α,Λ) by their conditional

expectations with respect to q(πs |γs) and q(Zs|Φs) for s = 1, . . . , S. This observation

motivates iterative estimation of α and Λ based on n1:S similar to EM algorithm (Dempster

et al., 1977). Specifically, if φ(t)
sgk, γ

(t)
sk , λ

(t)
gk , α

(t)
k represent the parameter estimates at the t-th
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iteration, then the (t+ 1)-th updates for these parameters are obtained as

φ
(t+1)
sgk =

P(nsg|λ(t)
gk ) exp[Ψ(γ

(t)
sk )]

K∑
k=1

P(nsg|λ(t)
gk ) exp[Ψ(γ

(t)
sk )]

, γ
(t+1)
sk = α

(t)
k +

G∑
g=1

φ
(t+1)
sgk ,

λ
(t+1)
gk =

S∑
s=1

φ
(t+1)
sgk nsg

S∑
s=1

φ
(t+1)
sgk

, α(t+1) = α(t)−H(α(t))−1 g(α(t)), (6)

where Ψ(.) is the digamma function (Abramowitz and Stegun, 1970) and H and g are the

Hessian and gradient for α update (see Sections 1 and 2 of Supplementary Material; and

Bishop (2006) for details). We start the iterations using φsgk = 1
K

for all samples, genes, and

processes, and αk = 1 for all processes. Later, we recommend two practical approaches for

choosing K (see Sections 2.1 – 2.4 of Supplementary Material for details).

2.1.2 Interpretation Of Parameter Estimates. The interpretation of parameters in Section

2.1.1, and the relation between them are described using (6). The probability that gene g

in sample s belongs to the process k is φsgk; therefore,
∑K

k=1 φsgk = 1 and
∑G

g=1 φsgk is the

expected number of genes in sample s that belong to process k. The probability that sample

s belongs to the process k is proportional to γsk. The prior probability that a gene in any

NGS experiment belongs to process k is proportional to αk. The expected number of genes

in process k in sample s is γsk − αk, which equals
∑G

g=1 φgsk. This relation can be used for

checking the convergence of iterative updates in (6). The expected value of the count for

gene g, when it belongs to the process k, is λgk.

2.2 Second stage of LPD-C: Selection of gene-subsets

The second stage of LPD-C employs Φ̂1, . . . , Φ̂S, which are estimated using (6), to select

genes grouped in K subsets. This stage depends on the local false discovery rate (locfdr)

cutoff for each subset (Efron, 2007, 2010). The selected genes are a small fraction of the



Latent Process Decomposition Of High-Dimensional Count Data 9

total number of genes and are associated to their respective subsets with high probabilities.

Most importantly, this stage extends the original LPD framework of Rogers et al. (2005) and

makes it more useful for high-dimensional genomic data analysis by selecting genes, grouped

in subsets, that are suitable for further exploration, while controlling the number of false

discoveries. Based on the locfdr procedure, the second stage of LPD-C has the following

advantages. It does not require modeling of full error structure of the original data set, has

few assumptions, and is easy to implement (Efron, 2007). The trade-off for these advantages

is the loss of statistical efficiency (Efron, 2007). The advantages, however, are of primary

importance in practical data analysis.

Because gene-subsets correspond to processes, genes in subset k are selected using test

statistics based on φ̂sgk for G genes across S samples. If zsgk’s are known for all the samples

and genes, then pgk =
∑S
s=1 zsgk

S
represents the probability that gene g belongs to process

k. Motivated from EM algorithm (Dempster et al., 1977), modified test statistics p̂gk are

defined by replacing the latent variables zsgk’s in pgk by their conditional expectations with

respect to q(Zs|Φ̂s) for s = 1, . . . , S and

p̂gk =

∑S
s=1 Ezsgk [zsgk|ns]

S
≈
∑S

s=1 Eq(Zs|Φ̂s)[zsgk]

S
=

∑S
s=1 φ̂sgk

S
. (7)

The test statistic (7) represents the approximate posterior probability of gene g belonging

to process k. Because Efron (2007) recommends using the test statistics for genes that have

the same range as the normal distribution, p̂gk is transformed to the corresponding quantile

of the central t-distribution with ν degrees of freedom, tgk, using its cumulative distribution

function F tν , and tgk = F−1
tν (p̂gk). The t-distribution is chosen due to its heavy tails; in real

data analysis, we choose ν = 3. Assuming that T represents the matrix of test statistics

with G rows and K columns, genes with high posterior probabilities of belonging to process

k are in the right tail of tk, k-th column of T ; therefore, tk is used as the vector of test

statistics in an empirical Bayes testing framework to select genes in subset k that are non-
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null, that lie in the right tail of tk, and when locfdr is controlled at a small pre-specified

value. This procedure selects a small fraction of genes that are associated with subset or

process k with high probabilities. We select K gene-subsets based on the columns of T and

separately control locfdr for each column. For the NGS data applications presented later,

the R package locfdr (Efron et al., 2008) is employed.

3. Applications of LPD-C

We apply LPD-C to simulated and real NGS data, and compare its performance to both

SPLDA (Witten, 2011) and a negative binomial model (EdgeR; Robinson et al. (2010)).

These methods are chosen because Witten (2011) shows that SPLDA performs significantly

better than current approaches (except EdgeR) for classifying and clustering NGS data. The

simulated data are generated using the hierarchical model (1) – (3). Two publicly available

NGS datasets are used: human cervical cancer data (hereafter cervical cancer data; Witten

et al. (2010)) and human gene expression data from liver and kidney (hereafter human

data; Marioni et al. (2008)). These real data are chosen because Witten (2011) shows that

both EdgeR and SPLDA perform well for the human data, but that the cervical cancer

data are challenging for both of these methods. It is important to remember that LPD-C

models the generative mechanism of NGS data, and that it is fundamentally different from

the hypothesis testing based approach of EdgeR, and from the penalized likelihood based

approach of SPLDA. However, the comparisons illustrate the similarities and differences in

these methods. The novel feature that distinguishes LPD-C from existing approaches for NGS

data analysis is that it groups selected genes into a pre-specified number of gene-subsets,

and these gene-subsets have desirable properties.
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3.1 Simulation

We simulated 10 NGS datasets such that each dataset contains 12 samples (S) with 2

processes (K) for different settings of G and λgk’s. For each setting, the simulated data

have the following process membership for the genes. In samples 1 to 10, the first 100 genes

(hereafter group 1 genes) belong to the first process and the last 100 genes (hereafter group

2 genes) belong to the second process. For a particular G, the first 10 samples have the

following five settings of gene- and process-specific means λgk’s depending on ∆,

λg1 =


exp(zg1), zg1 ∼ Normal(∆, 1) for g = 1, . . . , 100,

exp(zg1), zg1 ∼ Normal(0, 0.25) for g = 101, . . . , G,

λg2 =


exp(zg2), zg2 ∼ Normal(0, 0.25) for g = 1, . . . , G− 100,

exp(zg2), zg2 ∼ Normal(∆, 1) for g = G− 99, . . . , G,

(8)

where ∆ is varied as 1, 2, 3, 4, and 5. These values of ∆ represent the difference between

the log-means of the “null” (i.e., genes that are not in group 1 and 2) and “non-null” genes

(i.e., group 1 and 2 genes) in the two processes. The number of genes (G) is varied as 2000

and 20,000 genes, respectively, while the number of non-null genes is 200 in both cases.

For samples 11 and 12, the process memberships of group 1 and 2 genes are reversed. The

remaining genes belong to the two processes with 0.5 probability across all samples. These

parameter values are motivated from Efron et al. (2008) and Witten (2011). NGS data

are simulated using these parameter values and LPD-C’s generative model (1) – (3). The

simulated data are similar to those observed in practice, with a large fraction of small counts

and a small fraction of large counts.

3.1.1 Application of EdgeR, LPD-C, and SPLDA to simulated data.

[Figure 1 about here.]
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We applied the first stage of LPD-C to 50 replications of the simulated data. For each

application of LPD-C, we chose K = 2 to facilitate comparison with the truth and estimated

α, Λ, Φ’s, and γ’s (see (6) for their definition). The results of variational approximation are

known to be sensitive to the starting points, which in LPD-C’s case depend on α and Φ’s

(Bishop, 2006). We used multiple starting points until convergence to the posterior mode was

stable. We observed that the final parameter estimates were most sensitive to the starting

values of Φ’s and were fairly robust to the starting values of α. The process numbers are

identified based on the ascending order of α̂k’s such that α̂(1) and α̂(2) correspond to processes

1 and 2, respectively.

[Figure 2 about here.]

Figure 1 compares log λ̂gk’s with their true values in processes 1 and 2 given ∆ = 1, . . . , 5. It

shows that as ∆ increases, LPD-C’s estimates accurately capture the true bimodal density

of log λgk’s. Despite being an approximate method, LPD-C’s estimates are fairly close to

the truth even at low values of ∆. Figure 2 shows the ELBO that variational inference

maximizes for estimating the variational posterior densities across LPD-C’s iterations for

∆ = 1, . . . , 5. Similar to the EM algorithm, variational updates monotonically increase the

ELBO guaranteeing convergence to the local mode of the objective function for determining

the variational posterior densities.

After estimating p̂gk’s from φ̂sgk’s, we obtain tgk = F−1
t3

(p̂gk), where F t3 is the cumulative

distribution function of the central t-distribution with 3 degrees of freedom (see Section

2.2). We apply empirical Bayes hypothesis testing to the columns of T , which correspond to

processes, and select genes that are non-null, that are in the right tail, and that have a locfdr

of 0. The selected genes belong to their processes, and hence to the corresponding gene-

subsets, with high probability. Figure 2 shows the proportion of true positive genes, grouped

as subsets, selected by LPD-C depending on the number of genes G and ∆. It shows that,



Latent Process Decomposition Of High-Dimensional Count Data 13

for G = 2000 and 20, 000, as ∆ increases, the proportion of true positive genes respectively

selected in the two gene-subsets by LPD-C increases to 1.

3.1.2 Comparison of results obtained using EdgeR, LPD-C, and SPLDA.

[Figure 3 about here.]

LPD-C selects genes grouped in subsets, but EdgeR and SPLDA do not; therefore, we

compare overall gene selection of LPD-C with that of EdgeR and SPLDA. Unlike LPD-C,

both EdgeR and SPLDA select genes based on a response variable. We define a response

variable (Y ) that is 1 for the first ten samples and is 2 for samples 11 and 12, and EdgeR

selects genes that are differentially expressed between samples with Y = 1 and Y = 2.

Similarly, SPLDA finds a sparse list of genes that can classify samples as Y = 1 or Y = 2

based on their expression while minimizing the cross-validation (CV) error for classification.

We use edgeR package (Robinson et al., 2010) for EdgeR and PoiClaClu package (Witten,

2011) for SPLDA. We obtain the gene-wise p-values for differential expression using edgeR,

correct for multiple comparisons using the Benjamini-Hochberg (BH) procedure (Benjamini

and Hochberg, 1995), and choose the genes that corresponded to 200 smallest BH corrected

p-values. Because PoiClaClu uses CV to select the tuning parameters and requires minimum

4 samples, which is infeasible in our simulation, we instead choose the tuning parameters

depending on G and ∆ that select 200 genes. These modified gene selection criteria for EdgeR

and SPLDA facilitate better comparison of their results with LPD-C.

Figure 3 shows the true positive and false discovery proportions for EdgeR, LPD-C, and

SPLDA at different values of G and ∆. The proportion of true positives selected by LPD-C

increases with ∆ when G = 2000 and 20,000; however, the proportion of false discoveries

are much higher than their expected value when G = 20, 000. This observation is expected

because the number of non-null genes are 200 for bothG = 2000 and 20,000, and the apparent

increase in true positives when G = 20, 000 comes at the cost of increased false discoveries.
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The true positive proportions for both EdgeR and SPLDA behave similar to that in LPD-C,

but their values are lower than that of LPD-C. The false discovery proportions of SPLDA

and LPD-C are much higher than that of EdgeR when G = 20, 000. This observation for

EdgeR is an artifact our gene selection procedure that only selects the first 200 genes based

on the ascending order of p-values; however, the proportion of false discoveries of EdgeR

when G = 20, 000 is also much higher than those shown in Figure 3 when genes are selected

based on the standard FDR cutoff 0.05.

Biological knowledge suggests that genes work in networks. Our simulation study illus-

trates that LPD-C leads to better results than EdgeR and SPLDA; both do not model

the dependence among genes. LPD-C also provides interpretable parameters, and its distin-

guishing feature is that it selects genes grouped as subsets. Further, because LPD-C uses

variational inference, it is computationally tractable and more efficient than other sampling-

based Bayesian approaches.

3.2 Real data examples

We apply LPD-C to two publicly available NGS datasets. The cervical cancer data provide

measurements of the digital expression for 714 small RNAs (miRNAs; hereafter miRNAs

and genes are used interchangeably) in 29 tumor and 29 normal cervical tissue samples

from humans (Witten et al., 2010). The human data provide measurements of the digital

expression for 22,925 genes in 14 samples from a single human male, which consists of seven

technical replicates from liver and kidney, respectively (Marioni et al., 2008). The cervical

cancer data were collected for the purpose of discovering miRNAs associated with human

cervical cancer. The human data were collected in order to compare microarray and NGS

technologies.

3.2.1 Two approaches for selecting the number of processes K in real data. We suggest

two practical approaches based on n-fold CV for selecting the number of processes K in
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real data. The problem of selecting K is similar to that of selecting the number of clusters,

which is known to be a notoriously difficult problem; therefore, we suggest fitting LPD-C

for a range of K’s and selecting those K’s which lead to results that agree closely with the

biological knowledge.

The first approach chooses K based on the held-out log likelihood in n-fold CV (Rogers

et al., 2005). It is well-suited for small sample sizes, such as in the human data. This approach

randomly splits the samples into n partitions, fits LPD-C using the samples in n−1 partitions

(training data), calculates the held-out log likelihood for the samples that are not in training

data (test data) using parameter estimates obtained from the training data, and repeats this

process n times by separately using each partition as the test data. It yields n held-out log

likelihoods for a particular K. These n log likelihoods are calculated when K is varied from

1 to a large integer. The chosen number of processes corresponds to the K that maximizes

the medians of the held-out log likelihoods.

The second approach chooses K using the true positive proportion (TPP) and false discov-

ery proportion (FDP) determined using training and test data (Friedman et al., 2010). It is

more suitable for relatively large sample size data such as found for the cervical cancer data.

Similar to the first approach, the second approach randomly splits the samples into training

and test data, and separately selects genes in both sets using LPD-C for a particular value of

K. Assuming that the genes selected in the training data represent the truth, this approach

calculates the proportion of true positives and false discoveries in the genes selected by LPD-

C in the test data. This process is repeated n times to yield n TPPs and FDPs for each K.

The values of K that have large TPPs and small FDPs represent good choices of K (see

Section 2.4 in Supplementary Material for greater details about the CV-based approaches).

[Figure 4 about here.]

Figures 4a and 4b illustrate the determination of K for both the cervical cancer and human
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data using 5-fold CV. We choose K = 5 for the human data because it has the maximum

held-out log likelihood with a small median absolute deviation estimate compared to other

values of K. For the cervical cancer data, both K = 5 and 3 are reasonable choices. As such,

we selected genes in the cervical cancer data using LPD-C for both K = 5 and 3 and found

that the results obtained using K = 5 agree closely with biological knowledge, as well as

with other approaches for selecting genes in NGS data; therefore, all our subsequent analyses

for the cervical cancer data are based on K = 5.

3.2.2 Application of EdgeR, LPD-C, and SPLDA to real data.

[Figure 5 about here.]

The first stage of LPD-C estimates α, Λ, Φ’s, and γ’s for both the cervical cancer and

human data using K = 5 (see (6)). Similar to the simulation study, we tried various starting

points for α and Φ’s until convergence to the posterior mode was stable; identified the process

numbers based on the ascending order of α̂k’s; after estimating p̂gk’s from Φ̂’s, obtained

tgk = F−1
t3

(p̂gk); and used columns of T to select genes using a locfdr cutoff of 0.2 for each

subset. The two features of empirical Bayes hypothesis testing that are useful here are its

mild distributional assumptions on, and no requirement for modeling the full error structure

of tgk’s (Efron, 2007, 2010).

We also apply EdgeR and SPLDA to the cervical cancer data using tumor status as the

response variable. Similarly, EdgeR and SPLDA are applied to the human data using liver

and kidney as values of the response variable. We obtain gene-wise p-values for differential

expression using edgeR, correct for multiple comparisons using the BH procedure, and select

genes using 0.05 as the cutoff for the BH corrected p-values. We used 5-fold CV for both the

cancer and human data in SPLDA. While the choice of tuning parameter using CV is fairly

stable for the human data, multiple tuning parameters lead to the same CV classification

error for the cervical cancer data, which results in unstable gene-selection. For example, at the
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same value of CV error for classification, SPLDA selects 2 genes when the tuning parameter

is 8.23 and selects 499 genes when the tuning parameter is 0.57. The reason for these unstable

results is that a large range of tuning parameters yield the same classification error, 0.172,

which corresponds to 10 out of 58 errors. Classification error is a very coarse measure (unlike,

for example, the mean square error for regression), so many tuning parameter values are tied

in terms of CV error for classification. We choose the tuning parameter as the mean of all the

tuning parameter values that correspond to the minimum CV classification error (personal

communication, D. Witten).

3.2.3 Results obtained using EdgeR, LPD-C, and SPLDA. Figures 6a and 6b summarize

the number of genes selected in both the cervical cancer and the human data using EdgeR,

LPD-C, and SPLDA, respectively. The total number of genes selected by EdgeR, LPD-C,

and SPLDA are 267, 265, and 39 for the cervical cancer data, and 12746, 14029, and 7 for

the human data. LPD-C selected 103 unique miRNAs (genes) in the cervical cancer data

that are related to different types of cancers, including cervical cancer, and that are not

selected by EdgeR or by SPLDA. Specifically, some of these 103 miRNAs are known to

be in the let-7, mir-7, mir-17, mir-24,mir-26, mir-27, mir-29, mir-124, mir-127, mir-192,

and miR-744 families, and include miRNAs that play important roles in regulating different

forms of cancers, such as metastasis, tumorigenesis, and tumor suppression. These miRNAs

also have clinical applications in cancer diagnosis and therapy. Because the human data were

collected for comparing microarray and NGS technology, we did not investigate the biological

annotation of the genes selected by LPD-C.

LPD-C’s results agree closely with those of EdgeR in that both of these methods select

most of the genes chosen by SPLDA. When compared to EdgeR, about 61% and 70% of the

genes selected by LPD-C in the cervical cancer data and the human data are also declared

as differentially expressed. We also notice that the number of genes selected by SPLDA in
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both datasets is much smaller than the number of genes selected by either EdgeR or LPD-

C. Further, unlike SPLDA and EdgeR, LPD-C groups the selected genes into subsets with

desirable properties.

[Figure 6 about here.]

Marioni et al. (2008) employed both microarray and NGS technologies to compare the

differentially expressed genes. They used two sample t tests for the microarray data analysis

using a Gaussian model and likelihood ratio tests for NGS data analysis using a negative

binomial model. Figure 6c compares the 4105 genes selected only by LPD-C in the human

data (Figure 6b) with the differentially expressed genes in microarray or NGS data reported

by Marioni et al. (2008), excluding the 9924 genes that lie in the intersection of LPD-C and

EdgeR (Figure 6b). We observe that almost half of the genes that are selected solely by

LPD-C are also reported as differentially expressed in the microarray or NGS data results

of Marioni et al. (2008). Among the remaining differentially expressed genes, about 88% of

the genes are in the 2822 differentially expressed detected only by EdgeR (see Figure 6b).

This observation suggests that the results of LPD-C do contain genes that are potentially

differentially expressed, and that are not selected by EdgeR.

The distinguishing feature of LPD-C is that it selects genes grouped as subsets having

desirable properties. Table 1 summarizes the number of genes in each of the five gene-

subsets as selected by LPD-C for both the cervical cancer data, and the human data. It

also illustrates the number of genes that are in common when any two gene-subsets are

compared, as well as the proportion of genes that are differentially expressed. For the human

data, where SPLDA and EdgeR results agree, LPD-C results are similar. For the cervical

cancer data, where SPLDA and EdgeR results do not agree, LPD-C leads to results that are

close to those of EdgeR.

[Table 1 about here.]
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3.3 Summary of data analysis

We have demonstrated that LPD-C selects genes that compare favorably with existing

approaches, such as EdgeR and SPLDA, even though SPLDA consistently selects a smaller

number of genes than EdgeR and LPD-C. We note that this under-selection issue has

been observed in applications of Lasso for variable selection to high-dimensional data that

have dependence among the variables (Friedman et al., 2010). Since most high-dimensional

biological data, including NGS data, have dependence among their variables, this could be

a potential reason for SPLDA selecting a smaller number of genes. Furthermore, since the

tuning parameters is not identifiable in the cervical cancer data it leads to an unstable

selection of genes which in turn makes SPLDA undesirable if used for gene selection. As an

alternative suggestion for situations like these, we recommend using the glmnet algorithm

for variable selection (Friedman et al., 2010).

LPD-C’s generative model is a three level Bayesian model that includes two level hierarchi-

cal models for NGS data (e.g., EdgeR) as special cases. Therefore, LPD-C’s modeling results

are more flexible, but similar to those of EdgeR. Witten (2011) shows that both EdgeR and

SPLDA perform well for the human data. We in turn demonstrate that the results of LPD-C

for the human data closely agree with that of EdgeR and SPLDA. Witten (2011) went on

to illustrate that the cervical cancer data are a challenge for both EdgeR and SPLDA. Our

application of LPD-C to the cervical cancer data successfully discovers subsets of miRNAs

that are known to be biologically associated with various types of cancer, and that are not

selected by EdgeR or by SPLDA.

4. Discussion

Due to the decreasing cost of using high-throughput technologies and the potential impact

of large-scale genome-wide epidemiological and clinical projects, such as ENCODE project
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(Birney et al., 2007) and 1000 Genomes Project (Siva, 2008), genomic data are becoming

increasingly complex and large (Stein, 2010). Bayesian generative models offer an attractive

approach to model the latent structure of genomic data by combining the hierarchy in the

sampled population, uncertainty about the underlying model and unknown parameters,

and prior experimental knowledge. This type of modeling framework naturally facilities

extensions that can capture complex data-specific patterns. Although many approaches exist

for analyzing NGS data using multiple hypothesis testing or using penalized likelihood based

approaches, few Bayesian approaches exist for NGS data that model the data generative

mechanism, and that acknowledge the biological concept that genes work in groups to

perform biological functions. To this end, we have presented an application of Latent Process

Decomposition (LPD) framework to NGS data, LPD-C, that addresses the aforementioned

issues in two stages. LPD-C’s first stage extends the generative Bayesian model of LPD

for modeling microarray data to NGS data. Its second stage uses the parameter estimates

from first stage to select genes, organized as gene-subsets, that are a small fraction of total

number of genes and that belong their respective subsets with high probability. To achieve

computationally tractable Bayesian inference, we have applied variational techniques from

machine learning, and combined the results of variational inference with empirical Bayes

hypothesis testing to select gene-subsets that control the number of false discoveries at a

certain level. We have explored LPD-C’s application in the context of simulated and real NGS

data, and demonstrated that LPD-C discovers genes with known biological significance that

competing approaches cannot. Furthermore, LPD can be applied to any high-dimensional

data by simply modifying the distributional assumptions.

An additional benefit of LPD-C is that it can be easily extended to a supervised model.

Typically, a variety of covariate information is available for the experimental units (e.g.,

disease status, survival time, treatment information, etc.), and about the genes (e.g., depen-



Latent Process Decomposition Of High-Dimensional Count Data 21

dence between the genes due to known functional associations, pathway information, etc.).

The supervised extension of LPD-C modifies (3) as

nsg|λgk,β ∼ Poisson(λgk x
T
sg β),

where xsg are the covariates specific to gene g in sample s and β are the corresponding mean

covariate effects. Dunson and Herring (2005) use a similar BLFM for analyzing discrete

outcomes in complex health conditions and mixtures of discrete outcomes. They employ

a fully Bayesian approach using the Metropolis-Hastings algorithm for sampling from the

posterior density of β under a multivariate normal prior. Using the same prior for β, LPD-

C’s supervised extension yields an approximate multivariate t variational posterior density

for β.

The generative Bayesian model in the first stage of LPD, which is adapted from LDA,

naturally facilitates extensions that capture patterns specific to the data (Gelman et al.,

2003). LDA has been studied extensively in text mining literature, therefore its extensions

motivate the development of methods for modeling genomic data from complex experimental

designs. Two extensions of LPD that follow immediately by adapting the extensions of

LDA are as follows. Using Dynamic Topic Models (Blei and Lafferty, 2006), LPD can be

extended to model a time series of high-dimensional genomic data. This extension models

the exchangeability of genes and processes at a time point, but not across time points. Using

Correlated Topic Models (Blei and Lafferty, 2007), we can account for correlation between

the process memberships of genes, which cannot be modeled through Dirichlet(α) in (1).

The apriori choice of the number of processes, K, facilitates efficient parameter estimation.

Sometimes, however, the apriori knowledge aboutK is unavailable orK is unidentifiable from

approaches recommended in Section 3.2.1. In these scenarios it is desirable to adaptively

select K based on the genomic data using applications of Bayesian Nonparametrics in

genetics, signal processing, and text mining (Hjort et al., 2010).
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The second stage of the LPD uses the parameter estimates from the Bayesian model

and selects gene-subsets with desirable properties. Similar ideas about finding groups of

differentially expressed gene-subsets have been explored starting with gene-set enrichment

analysis (Subramanian et al., 2005), and then generalized to gene-set analysis (GSA) (Efron

and Tibshirani, 2007). We propose to investigate the relationship between the enriched gene-

subsets obtained from GSA and gene-subsets obtained from the LPD. Further, we propose

to incorporate sparsity in the second stage of the LPD using appropriate priors on Λ from

Bayesian variable selection literature, such as Bayesian Lassos, g-priors, and horse-shoe prior

(Liang et al., 2008; Carvalho et al., 2010; Bhattacharya and Dunson, 2011).

Finally, it is also desirable to develop MCMC algorithms tuned for LPD to estimate

uncertainty in parameters of interest by sampling from their posterior densities. Following

Griffiths and Steyvers (2004), collapsed Gibbs samplers can be developed for LPD. For

LPD-C, we first extend its generative model and impose conjugate Gamma priors on λgk’s.

A collapsed Gibbs sampler marginalizes over π’s and Λ, samples zsg = (zsg1, . . . , zsgK) given

Z1, . . . , Zs\ zsg, . . . , ZS, n1:S, and α for all the samples and genes, and finally updates the

Gamma distributions of λgk’s given Z1, . . . , ZS and n1:S and the Dirichlet distribution of πs

given Zs and α for all the samples.
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Figure 1: Estimated gene- and process-specific means Λ for ∆ = 1, 2, 3, 4, and 5. The
bottom and top rows respectively compare estimated (blue) and true (red) log λg1’s and
log λg2’s conditioned on the difference between the log-means of null and non-null genes ∆
using kernel density estimates. In both processes, as ∆ increases from low to high (left to
right), LPD-C’s estimates accurately capture the bimodality of the true density. Although
variational inference is an approximate procedure, the estimated means are fairly close to the
truth. There are boundary effects in the left tails that are due to the truncation of estimated
means to achieve numerical stability.
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Figure 2: Log variational lower bound (ELBO) during parameter estimation in LPD-C (left)
and the proportion of true positive genes selected by LPD-C (right). Variational inference
iteratively maximizes ELBO, which is similar to the EM algorithm. The left plot shows the
ascent of ELBO normalized by its absolute maximum (y-axis) during the iterations of LPD-C
(x-axis) for values of the difference between the log-means of the null and non-null genes in
the two processes (∆; see (8)). The right plot shows the performance of LPD-C in selecting
genes for 50 replications of simulated data. The x-axis represents ∆ and the y-axis represents
the true positive proportion (TPP) for the genes selected in the two processes represented
by the panels respectively when the number of genes (G) is 2000 (red) and 20,000 (blue).
The TPP increases with ∆ in both the processes when G = 2000 and 20,000. TPPs for
G = 2000 are greater than those for G = 20, 000. This trend is expected because the number
of non-null genes is 200 in both the cases, and it easier to detect true positives when their
proportion is large (i.e., when G = 2000).
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Figure 3: Comparison of true positives and false discoveries in the genes selected by EdgeR,
LPD-C, and SPLDA in 50 replications of simulated data analysis. The x-axis represents the
difference between the log-means of the null and non-null genes in the two processes (∆; see
(8)) and y-axis represents the true positive (TPP) and false discovery (FDP) proportions.
Panels one through three represent TPPs, while panels four through six represent FDPs, for
EdgeR, LPD-C, and SPLDA, respectively, when the number of genes (G) is 2000 (red) and
20,000 (blue). For both LPD-C and SPLDA, TPP increases and FDP decreases as ∆ increases
when G = 2000 and 20, 000; EdgeR also has a similar pattern except when G = 2000, where
the TPP and FDP oscillates around 0.5 for all the ∆’s. Although TPPs appear to increase
with ∆ for EdgeR, LPD-C, and SPLDA, the FDPs are much higher than their expected
values. This pattern is expected because the number of non-null genes is same for G = 2000
and 20,000, and the power increase is accompanied by an increase in FDPs.
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Figure 4: Plots for determining the number of processes K in LPD-C for cervical cancer
data (a) and human data (b) using 5-fold CV. (a) Plot of median false discovery proportion
(FDP; on x-axis) versus median true positive proportion (TPP; on y-axis) determined from
5-fold CV when LPD-C is applied to cervical cancer data using K = 2, . . . , 10 (red points),
respectively. The vertical lines (grey) show 1 median absolute deviation (MAD) intervals for
the TPPs. Based on this plot, 3 and 5 are good candidates for K in cervical cancer data
due to their relatively low FDPs and high TPPs. Further data analysis shows that K = 5 is
a better candidate than K = 3. (b) Dot plot with y-axis showing the number of processes
and the x-axis showing the medians and 1 MAD intervals of the held-out log likelihoods
determined from 5-fold CV when LPD-C is applied to human data using K = 2, . . . , 10; K’s
are ordered so that the medians of the held-out log likelihoods increase from bottom to top.
Based on this plot, we choose K = 5 for human data.
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Figure 5: Log variational lower bound (ELBO) for LPD-C as applied to cervical cancer
data (a) and to human data (b) with K = 5. The x-axes in (a) and (b) represent the
iterations in the application of LPD-C, and the y-axes represent the ELBO at each iteration.
Both figures show that LPD-C monotonically increases the ELBO at every iteration. The
monotonic ascent property of ELBO in variational inference is similar to the ascent property
of the log likelihood in EM algorithm, and guarantees convergence of variational updates in
(6) to the local mode of the objective function for determining variational posterior densities.
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Figure 6: (a) Comparison of the miRNAs selected by EdgeR, LPD-C, and SPLDA in the
cervical cancer data. All the miRNAs selected by SPLDA are selected by EdgeR or LPD-C.
The miRNAs selected by LPD-C and EdgeR overlap significantly. (b) Comparison of the
genes selected by EdgeR, LPD-C, and SPLDA in the human data. All genes selected by
SPLDA are selected by EdgeR, and by LPD-C. The genes selected by EdgeR and LPD-C
agree closely. (c) Comparison of the 4105 genes, selected solely by LPD-C in the human
data, with the differentially expressed genes found in the microarray and NGS data analyses
reported by Marioni et al. (2008). It excludes the 9924 genes that are in the intersection
of EdgeR and LPD-C. The microarray and NGS data analysis, respectively, use a Gaussian
and a negative binomial model. Approximately 44% of the genes that are selected by LPD-C
in the human data are differentially expressed in either the microarray or the NGS data
analysis of Marioni et al. (2008).
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Table 1: Number of genes, and fraction of differentially expressed genes, selected by LPD-C
in the five processes (gene-subsets) for both the cervical cancer data and the human data.
The diagonal elements in columns 1-5 represent the total number of genes selected by LPD-C
in the respective gene-subsets. The upper off-diagonal elements in columns 1-5 represent the
number of genes that are in common between two gene-subsets, while columns 6-10 represent
the fraction of differentially expressed genes among the processes as determined by edgeR
(Robinson et al., 2010).

Number of Selected Genes Differentially Expressed Genes

Cervical Cancer Data
Process 1 2 3 4 5 1 2 3 4 5

1 5 1 2 0 0 0.60 1 0.5 0 0
2 44 13 4 3 0.59 0.62 0.5 0.33
3 61 8 6 0.59 0.75 0.67
4 103 25 0.67 0.80
5 113 0.62

Human Data
Process 1 2 3 4 5 1 2 3 4 5

1 4128 806 935 1150 1773 0.72 0.74 0.72 0.71 0.79
2 3188 695 985 13 0.78 0.78 0.79 0.46
3 4107 469 1163 0.70 0.84 0.79
4 5476 1391 0.68 0.77
5 5090 0.77
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