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ABSTRACT

Motivation: The majority of Next-Generation Sequencing (NGS)
technologies effectively sample small amounts of DNA or RNA that
are amplified (i.e., copied) prior to sequencing. The amplification pro-
cess is not perfect, leading to extreme bias in sequenced read counts.
We present a novel procedure to account for amplification bias and
demonstrate its effectiveness in mitigating gene length dependence
when estimating true gene expression.

Results: We tested the proposed method on simulated and real data.
Simulations indicated that our method captures true gene expres-
sion more effectively than classic censoring-based approaches and
leads to power gains in differential expression testing, particularly for
shorter genes with high transcription rates. We applied our method to
an unreplicated Arabidopsis RNA-seq data set resulting in disparate
gene ontologies arising from gene set enrichment analyses.
Availability: R code to perform the RASTA procedures is freely
available on the web at www.stat.purdue.edu/~doerge/

Contact: doerge@purdue.edu

1 INTRODUCTION

One cause of technical variation in Next-Generation Sequencing
(NGS) studies is amplification bias. Fragmented cDNA is subje-
cted to amplification via polymerase chain reaction (PCR; Saiki
et al. (1988)) in all NGS applications (Margulies et al., 2005; Mar-
dis, 2008; Bennet, 2004). The amplification process is not perfect,
and reads can suffer from amplification bias (Chepelev et al., 2009).
This means that there may be extra copies of certain reads, perhaps
tens of thousands of extra copies. The typical statistical procedure
to correct for this bias is to ignore any duplicate reads by limiting
the number of reads starting at the same base to be 1 read. This
censoring procedure, herein referred to as “censoring,” ignores the
possibility of natural read duplication (multiple copies of the same
read which is not due to amplification bias), and thus underestimates
true read count. For example, in the human liver samples analyzed
by (Marioni et al., 2008), 10-15% of the genic bases exhibited dupli-
cation, accounting for approximately 30% of the observed reads.
While approximately only 1% of the bases exhibited more than 10
duplicated reads, the number of reads starting at these bases com-
prised approximately 10% of the total reads. The prevalence of
duplicated reads in these samples illustrates the need for statisti-
cal methods that are able to correct for amplification bias without
needlessly censoring natural duplication.

*to whom correspondence should be addressed

The effects of censoring on gene expression depend primarily on
gene length and rate of transcription. Under censoring, at most only
one read is considered to originate from each nucleotide in a gene.
This artificially limits the estimate of gene expression to values less
than or equal to gene length. Assuming that the sonication process
truly randomly fractionates the mRNA, the expected occurrence
of natural read duplication decreases as gene length increases for
a given level of gene expression. Thus, the effects of censoring
decrease as gene length increases. Conversely, for a given gene,
the effects of censoring are more pronounced when gene transcri-
ption increases or when the total number of reads increases. In these
cases, the sensitivity to detect differences between genes of short
length is typically lower than that for longer genes when reads are
censored. This length bias can be dramatically reduced when natural
read duplication is allowed since the dependence on gene length is
mitigated.

We present a novel approach to correct for amplification bias
while allowing for natural duplication. The proposed method,
Robust Adjustment of Sequence Tag Abundance (RASTA), accu-
rately estimates true tag abundance by separating legitimate reads
from incorrectly amplified reads through a novel application of hie-
rarchical clustering. Further, it sets appropriate thresholds for the
amplified reads through a novel application of the zero-truncated
Poisson distribution. The impact of properly accounting for amplifi-
cation bias using RASTA when testing for differential gene expres-
sion testing, both in terms of power and ranking of results, are
investigated. While RASTA was developed and investigated for
gene expression, the method is general enough to be applied to DNA
methylation and histone modification studies as well.

2 METHODS

Observed RNA-seq reads are assumed to be generated by two distinct pro-
cesses: legitimate reads (including natural duplication) and amplification
bias. For a given mapped read, we define “read count” as the number of obse-
rved mapped reads which start at the same base in the genome. Let xf be the
read counts for base ¢ = 1, ..., n for a given gene g, where n is the number
of bases with observed reads in gene g. Given that the xf are generated by
two distinct processes, the goal in correctly accounting for amplification bias
is to accurately classify each :cf into legitimate and erroneous clusters.
Hierarchical clustering, using complete linkage (Sorensen, 1948) and
Canberra distance (Lance and Williams, 1966), was used to cluster the read
counts into two distinct groups. Since NGS gene expression studies pro-
duce discrete read counts, clustering was performed on the unique read count
values. Let ({f s.o ., &), where m < n, be the unique read counts values
corresponding to (:c‘l] ,...,x3) for gene g. The Canberra distance for two
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unique read counts (£Y, £ ;.7 ) is defined as
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In practical settings and simulations m << n, thus providing a mar-
ked computational time improvement over traditional clustering algorithms
based on all read counts.

In order to estimate the distribution of the legitimate reads for each gene
g, we assume that the sonication and selection process (Bennet, 2004) ran-
domly fragments the mRNA. Given this random fragmentation process,
let

g ; — /\9
x] ~ Poisson(yg = —) ?2)

Ly
be the distribution of read counts for the n legitimate bases with observed
reads for a given gene g, where Ay and Ly are the overall transcription
rate and length for gene g, respectively. Since :vf are restricted to be posi-
tive only, the legitimate base counts for a given gene are modeled using a
zero-truncated Poisson(y; ) (ZTP) distribution (Yee, 1996) via the VGAM

package (Yee, 2010) in R (R Core Development Team, 2011).

For an estimated value of ﬁ , a threshold Tg* can be defined such that any
counts greater than T, at a given base location can be considered to be a
result of amplification bias. Here, T is defined as the 95" percentile of the
Z TP('y;,‘) distribution. Then, for each :r:f , define

y] = min(z], T,) 3)
and the digital gene expression (DGE) estimate for gene g is defined as

DGEg = v (C)

3 SIMULATION

3.1 Simulation Design

A simulation study was conducted to evaluate and compare the performa-
nce of RASTA to “censoring”. For 1,000 genes, gene counts were simulated
following Auer & Doerge (2011) with the following modifications: Ampli-
fication bias was incorporated by setting the prevalence of bias to wgi‘“ =
.001 (or 1 out of every 1000 bases), and the bias DGE count to

AbiS ~ Uni form (10, 1000) %))

for each of the 1,000 genes. The value of WS”S and the upper bound on
)\gi‘” are relatively conservative, as the prevalence of amplification bias
in real data often exceeds 1%, and the erroneously amplified read counts
can exist in tens of thousands (Marioni et al., 2008; Lister et al., 2008).
Gene lengths were simulated based on the Mus musculis and Drosophila
melanogaster annotation databases from Ensembl (Flicek et al., 2011) with

Ly ~ exp(Normal(p = 8,0 = 2)). (6)
For a given gene with parameters A\, and )\Zi‘“, the legitimate reads follow
. Ag
Poisson(yg = —) (@)
Lyg
and the counts arising from amplification bias follow
b bias
; ias 9
Poisson(m, 7 ). (©))

For each gene, these counts were preprocessed by either truncating all counts
to 1 (the current censoring practice) or via RASTA. These modified counts
were then summed, giving rise to an adjusted DGE value for each gene.
This process was repeated 500 times to account for simulation-to-simulation
(sampling) variability.

For the 1,000 simulated genes, both non-differentially expressed (500)
and differentially expressed (500) genes were generated for three replicates

in two treatments. DGE rates for each gene were generated (Equations 7 - 8)
with the following modifications: for differentially expressed genes, means
were sampled separately from (7), yielding )\ZH and )\32 for treatments 71
and T%; for non-differentially expressed genes, the means were sampled
together (\g). For each simulated data set, we applied RASTA and “censo-
ring” to the observed base counts. The adjusted gene counts were analyzed
for differential expression using the exact negative binomial model in edgeR
under a common dispersion assumption (Robinson and Smyth, 2007, 2008).
P-values were adjusted using the Benjamini-Hochberg procedure in edgeR
(Benjamini and Hochberg, 1995).

3.2 Simulation Results

Statistical power and false discovery rates (FDR) were estimated by taking
the averages of true positive and false positive rates (o« = 0.05) across the
simulations. RASTA yields similar effective power and FDR in simulati-
ons when compared to the censoring procedure (power: 0.655 vs. 0.602,
FDR: 0.23 vs 0.14, respectively). Although the power and FDR rates were
similar, summaries comparing true and estimated log fold changes showed
greater accuracy under the RASTA method. To illustrate this, estimated log
fold changes were regressed against true log fold changes (Figure 1; the
relative closeness of the RASTA and “censoring” approaches to the identity
line). The regression slope for RASTA was considerably closer to 1 than the
censoring method (0.95 and 0.83, respectively), indicating an increase in
accuracy when estimating true log fold change between the two treatments.
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Fig. 1. Simulation results for true vs. estimated log fold change when
comparing RASTA versus “censoring.” As the true log fold change values
increase (in absolute value), RASTA (blue) more accurately estimates the
log fold change relative to the censoring (red) procedure (regression slopes:
0.95 vs 0.83, respectively).

In order to assess the relationship between adjusted p-values and gene
length, loess smoothing (Cleveland, 1979) was applied to the results from
the edgeR analyses (Figure 2). In addition to the simulated DGE levels repre-
sentative of those typically observed in current RNA-seq studies (displayed
in solid lines), Figure 2 also displays results from simulations in which
these DGE levels were doubled on average (displayed in dashed lines). By
more accurately estimating DGE using RASTA, especially for shorter genes
with high DGE, RASTA is able to all but eliminate length bias in these
simulations as average DGE levels increase.
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Fig. 2. Gene length bias simulation results. The censoring method is pre-
sented in red, while the RASTA method is presented in blue. The solid
lines represent simulated gene expression levels based on (Auer and Doerge,
2011). The dashed lines represent a doubling, on average, of DGE levels. For
the original simulation settings, RASTA provided a marginal improvement
over the censoring procedure. When average DGE was increased, RASTA
showed little evidence of length bias, while the censoring procedure’s bias
became much more pronounced.

Table 1. Distribution of read duplication for the unreplicated
metl-3 and Col-0 Arabidopsis lines in Lister et al. (2008). The
Col-0 wild-type sample displays considerably more duplication
than the met]-3 mutants at each of the levels presented.

metl-3 Col-0
Total Reads 5997689 6283230
Unique Reads 2991256 1264135
Single bases with > 5 reads 139972 285610
Single bases with > 10 reads 38718 72227
Single bases with > 100 reads 232 849
Max number of reads at a single base 5525 17063

4 APPLICATION TO ARABIDOPSIS
4.1 Materials and Methods

The censoring and RASTA approaches were used to preprocess the unre-
plicated Arabidopsis RNA-seq data from Lister et al. (2008). In this study,
metl-3 mutants (deficient in methylation) were compared to wild-type (Col-
0) controls. Gene start and stop locations were used to define 22,266 anno-
tated genomic regions, and were based on the Columbia reference genome
gained from The Arabidopsis Information Resource (TAIR, Swarbreck et al.
(2008)). Although the total number of mapped reads for the met/-3 and
Col-0 samples were approximately equal (5,997,689 and 6,283,230, respe-
ctively), the occurrence of read duplication, either from natural duplication
or amplification bias, was dramatically different between the two samples
(Table 1).

Gene counts under each of the control procedures were analyzed using the
exact negative binomial model in edgeR (Robinson and Smyth, 2007, 2008).
P-values were adjusted using the Benjamini-Hochberg FDR procedure (Ben-
jamini and Hochberg, 1995), and the nominal significance threshold was
set at @ = 0.01. Gene set enrichment analysis (GSEA) was performed on
the resulting lists of significant genes using agriGO (Du et al., 2010; Berg
et al., 2009). The agriGO toolkit performs GSEA based on a hypergeometric
distribution to assess the over- or under-representation of gene ontologies
in the lists of significant genes when compared to all genes with annotated

Table 2. Gene Set Enrichment Analysis results (top five ontologies) from the
agriGO toolkit under censoring and RASTA amplification bias control procedures
for the unreplicated met-3 and Col-0 Arabidopsis lines in Lister et al. (2008). The
“GO Term” and “Description” columns represent the gene ontologies enriched in
the significant gene lists when compared to all Arabidopsis gene ontologies. The
p-values are based on the hypergeometric distribution, and are adjusted via FDR
under dependence (Benjamini and Yekutieli, 2001). The resulting enriched onto-
logies for the censoring and RASTA approaches are quite disparate, indicating that
the control procedure is highly influential in downstream analyses.

RASTA
GO Term Ontology Description Adj. p-value
GO:0009791 | Post-embryonic development 4.2e-76
GO0:0034641 | Cellular nitrogen compound metabolic process 5.7e-33
GO0:0032501 | Multicellular organismal process 2.4e-24
GO0:0009987 | Cellular process 5.9e-24
GO:0007275 | Multicellular organismal development 1.4e-23
Censoring
GO Term Ontology Description Adj. p-value
GO0:0009628 | Response to abiotic stimulus 2.2e-19
GO0:0050896 | Response to stimulus 8.2e-17
GO:0009791 | Post-embryonic development 1.6e-16
GO:0006950 | Response to stress 3e-16
GO0:0044262 | Cellular carbohydrate metabolic process 3.3e-16

ontologies, and corrects for multiple testing using FDR under dependence
assumptions (Benjamini and Yekutieli, 2001). The collection of gene ontolo-
gies for each differentially expressed gene are collated, and if the proportion
of a particular ontology in the differentially expressed genes is significantly
different (higher or lower) than the corresponding proportion in the entire
gene set, that function is reported in agriGO.

4.2 Results

The presence of DNA methylation typically serves as a transcriptional
regulator in eukaryote species; when depleted, gene transcription typically
increases (Riggs, 1975; Robertson, 2005; Shames et al., 2007). The RASTA
approach yielded many more statistically significant differentially expres-
sed genes than the censoring method (8912 and 2855 genes, respectively).
This increase is in concordance with the biological knowledge that when
comparing the two Arabidopsis lines, metl-3 is deficient in methylation
maintenance which reduces the degree of gene regulation (Lister ez al.,
2008). The agriGO GSEA results based on the two gene lists (Table 2)
display a stark contrast in enriched gene ontologies, indicating that appro-
priate amplification bias control is important for discovery and downstream
confirmation studies. In fact, of the top ten significant ontologies (top five
shown in Table 2) produced by RASTA and censoring, only two are similar
between the two lists.

5 DISCUSSION

Accurately estimating digital gene expression, and subsequently dif-
ferential gene expression, is a primary challenge in Next-Generation
RNA sequencing studies. One of the key sources for technical
variation between samples, and between or within treatments, is
amplification bias. Controlling for this bias not only improves the
accuracy of DGE estimates (Figure 1), it dramatically changes
downstream analyses. Since confirmatory studies often target the
most statistically significant differentially expressed genes (i.e., the
genes with the lowest p-values), the ordering of results plays an
important role in downstream analyses.
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As the costs for sequencing decrease, we anticipate that resea-
rchers will want a greater number of sequenced reads in order to
more accurately detect differences in expression levels between tre-
atments. This scenario provides some cause for caution, as blindly
seeking high read counts invites the possibility of over-amplification
in order to achieve a particular observed sequencing depth or cove-
rage. If sequenced reads are systematically over-amplified, as is the
case in Shiroguchi et al. (2012), researchers are relegated to only
two approaches: Digital RNA Sequencing (DRS, (Shiroguchi et al.,
2012)), when the additional amplification is expected before sequ-
encing; and censoring, when the amplification is not planned. DRS
is a promising biological approach to account for amplification bias,
but its use comes at significant cost to the researcher. First, it requi-
res greater sequencing depth than conventional RNA-seq studies in
order to effectively sample read/barcode pairs. Secondly, DRS pro-
hibits barcoding for efficient sequencing. Where several samples
could be sequenced in the same lane using sample-specific barcodes
normally, the DRS procedure requires separate lanes for each sam-
ple. Finally, at least in the E. coli data from Shiroguchi et al. (2012),
the extra time and sequencing costs associated with DRS could be
eliminated by just using the censoring approach. This would be true
when reads are systematically over-amplified in general. However,
the censoring approach is insensitive to natural read duplication,
which in turn results in an underestimation of true DGE when reads
are actually naturally duplicated.

Achieving greater sequencing depth can be done correctly, with-
out limiting the choice in amplification bias control procedures,
simply by using a larger sample of mRNA from subjects. As sequ-
encing depth increases due to larger biological samples of mRNA,
the occurrence of legitimately duplicated reads will increase. Assu-
ming that reasonable amplification is employed prior to sequencing,
the proposed RASTA approach is well-suited to account for amplifi-
cation bias even in the context of increased natural read duplication.
In these settings, the censoring approach will consistently underesti-
mate the true DGE; on the other hand, the DRS approach is likely to
produce similar results to RASTA, though with greater restrictions
and increased sequencing cost. As a statistical procedure, RASTA
costs very little to the researcher since it is computationally efficient
and requires no additional sequencing or sequencing reagents. At
the same time, the hierarchical clustering and zero-truncated Pois-
son estimation procedures used in RASTA are powerful and are able
to accurately classify legitimate and erroneous reads when both exist
for a given gene.
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