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Abstract

Here we propose an algorithm, named generalized orthogonal components regres-

sion (GOCRE), to explore the relationship between a categorical outcome and a set

of massive variables. A set of orthogonal components are sequentially constructed to

account for the variation of the categorical outcome, and together build up a gener-

alized linear model (GLM). This algorithm can be considered as an extension of the

partial least squares (PLS) for GLMs, but overcomes several issues of existing exten-

sions based on iteratively reweighted least squares (IRLS). First, existing extensions

construct a different set of components at each iteration and thus cannot provide a

convergent set of components. Second, existing extensions are computationally inten-

sive because of repetitively constructing a full set of components. Third, although they

pursue the convergence of regression coefficients, the resultant regression coefficients

may still diverge especially when building logistic regression models. GOCRE instead

sequentially builds up each orthogonal component upon convergent construction, and

simultaneously regresses against these orthogonal components to fit the GLM. The

performance of the new method is demonstrated by both simulation studies and a real

data example.

Key Words: categorical data; classification; collinear; dimension reduction; multi-

collinear
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1 INTRODUCTION

Available high-throughput biotechnologies have made it possible to genotype thousands of

genetic markers, meanwhile, they bring challenges to statistical analyses of these data. Such

data are characterized by a large number of variables (p) observed from a relatively small

number of subjects (n), and create the well-known large p small n problems. To deal with

this issue, an important strategy is to reduce the high dimensionality of the predictors before

fitting models. As a supervised dimension-reduction method, partial least squares (PLS) by

Wold (1975) has drawn considerable attentions, see Vinzi et al. (2010). PLS constructs or-

thogonal components such that these components capture information of original predictors

predicting response variables, and linear models are built on the base of these components

instead of the original predictors. It is computationally fast and able to take collinear or

multicollinear predictors.

Success of PLS in fitting linear models motivates extensions to generalized linear models

(GLMs). With the iteratively reweighted least squares (IRLS) algorithm commonly used

for building regular GLMs (Green 1984), Marx (1996) proposed an extension, i.e., the iter-

atively reweighted partial least squares (IRPLS) algorithm, which replaces the least squares

estimates with PLS estimates at each iteration. It is a natural extension of PLS, however,

a different set of orthogonal components are constructed at each iteration and thus the con-

vergence of original regression coefficients is pursued. As a result, the loadings of orthogonal

components never converge, and even regression coefficients especially for logistic regressions

rarely converge. A full set of distinct components at each iteration not only make it difficult

to interpret, but also demand intensive computation.

Much effort has been devoted to solving the non-convergence issue of IRPLS. Ding and

Gentleman (2004) applied the bias reduction procedure proposed by Firth (1993) to IRPLS,

specifically for the classification problems. Firth (1993) modified the score function to remove

the first order term of the asymptotic bias of maximum likelihood estimators for GLMs.

Heinze and Schemper (2002) showed that this bias reduction procedure may also avoid the

common infinite estimate problem of logistic regressions. However, the non-convergence issue

still exists in IRPLS by Ding and Gentleman (2004), possibly due to varying components
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at each iteration. Alternatively, Fort and Lambert-Lacroix (2005) proposed to build up

continuous pseudo-responses via ridge regression and then apply PLS to regress these pseudo-

responses against the predictors; Nguyen and Rocke (2002) instead proposed to first apply

PLS by treating the responses as continuous, and then fit a regular GLM using the resultant

orthogonal components instead of the original predictors.

Here we propose a different strategy, namely, the generalized orthogonal components

regression (GOCRE), to extend the supervised dimension reduction idea in PLS and fit high

dimensional GLMs. While IRPLS repetitively constructs a different set of components at

each iteration and targets a convergent set of regression coefficients, GOCRE sequentially

constructs orthogonal components which maximally account for the remaining variation in

the categorical outcome. The bias correction procedure by Firth (1993) is also applied. The

proposed method enjoys computational privilege over IRPLS since IRPLS needs to rebuild

all orthogonal components at each iteration. The construction of orthogonal components is

also different from the methods by Fort and Lambert-Lacroix (2005) and Nguyen and Rocke

(2002), both directly maximizing correlation between categorical responses and components.

This paper is organized as follows. The next section introduces our proposed method

in details. Simulation studies are shown in Section 3, and an application of the proposed

method to a real dataset is presented in Section 4. We close the paper with a brief discussion.

2 THE METHOD

2.1 High Dimensional Generalized Linear Model

Suppose the distribution of response Y is a member of the exponential family distribution,

f(y|θ) = exp

{
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

}
, (1)

where θ is the canonical parameter, and ϕ is the known dispersion parameter. A link function

g(·) further relates the mean of response Y to the p predictors in X, i.e.,

g(E[Y |X]) = µ+Xβ, (2)
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where µ is the intercept, and β is a p-dimensional column vector containing all regression

coefficients of the predictors. The inverse function of g(·) is denoted as g−1(·).

With a size n sample {(yi,xi), i = 1, 2, · · · , n}, a common issue is how to provide a

legitimate estimate of β in (2) when p ≫ n. Denote X = (xt
1, · · · ,xt

n)
t, an n × p matrix

with rank rx ≤ min(n, p). The classical maximum likelihood estimators (MLEs) of β form a

space with dimension at least p−rx. Suppose an n×rx matrix XS is constructed by a subset

of columns of X, and further assume that there is a unique maximum likelihood estimator

of βS for the following model,

g(E[Y |XS ]) = µ+XSβS . (3)

Correspondingly there exists a unique MLE of β, namely β̂, in model (2), satisfying the

following assumption,

Assumption 1. β̂tψ = 0 whenever Xψ = 0n×1.

In the case that X is of rank rx, the above assumption equivalently puts p−rx constraints

on MLE β̂ to make model (2) identifiable. This assumption makes practical sense in solving

the collinearity or multicollinearity issue. For example, if the j-th predictor consistently

doubles the value of the k-th predictor, we have β̂j = 2β̂k. Therefore, the scale of the

predictor, if preserved, may indicate its importance. On the other hand, when the predictors

are identical, the corresponding regression coefficients will also be identical.

Due to the aforementioned multicollinearity issue, we can focus on building model (2)

with β satisfying the following assumption, a population version of Assumption 1.

Assumption 2. βtψ = 0 whenever Xψ = 0, a.s.

In the next section, we consider the construction of the GOCRE model for any ran-

dom pair (Y,X) from the population. GOCRE sequentially builds orthogonal components

Xϖj, j = 1, 2, · · · , to account for the variation of the categorical outcomes. For the same

reason mentioned above, each ϖj satisfies the following assumption, leading to β satisfying

Assumption 2 when a full set of components are used to build model (2).

Assumption 3. ϖt
jψ = 0 whenever Xψ = 0, a.s.
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2.2 Generalized Orthogonal Components Regression (GOCRE)

The orthogonal components will be sequentially constructed with a prespecified weight w for

each pair of Y and X in the whole population such that E[w] is finite. We further assume

that E[wX] = 0t
p, where 0p is a p-dimensional column vector with all components as zero.

Note that such a weighted centralization of the random vector X plays an important role in

carrying out GOCRE. Since GOCRE constructs orthogonal components relying on a linear

regression model whose response value changes at each iteration, the intercept has to be

updated at each iteration (unlike PLS which removes intercept from the regression model).

This weighted centralization allows separate calculation of the intercept and orthogonal

components. For convenience, we denote ∇g−1(η) = dg−1(η)/dη in the following.

First, let X1 = X and for a specific η, i.e., η = η(0), we calculate

Z(η) = η +
{
Y − g−1(η)

}/
∇g−1(η). (4)

A component X1α(η) can be constructed with α = α(η) maximizing ∥E[Z(η)wX1α]∥2 under

the condition ∥α∥ = 1. With a scaler variable Z(η), we indeed have

α(η) = E[X t
1wZ(η)]/∥E[X t

1wZ(η)]∥.

Then regressing Z = Z(η) against X1α with α = α(η) leads to an update of η,

η(α) = E[wZ]/E[w] +X1αγ1, (5)

where γ1 = E[αtX t
1wZ]/E[α

tX t
1wX1α]. Alternatively update α(η) and η(α) until α(η)

converges to α1, which leads to the construction of the first component X1α1.

After constructing the j-th component Xjαj, we remove Xjαj from Xj such that Xj+1 =

Xj −Xjαjθj is orthogonal to Xjαj, i.e.,

E[X t
j+1wXjαj] = 0 =⇒ θj = E[αt

jX
t
jwXj]/E[α

t
jX

t
jwXjαj]. (6)

Since

Xjαj = Xj−1(I − αj−1θj−1)αj = · · · = X

{
j−1∏
l=1

(I − αj−lθj−l)

}
αj,

we have the following preposition.
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Preposition 1. Each component Xjαj can be rewritten as Xϖj where

ϖj =

{
j−1∏
l=1

(I − αj−lθj−l)

}
αj.

Furthermore, with the inner product defined as ⟨x, y⟩ = E[xwy], the components Xϖ1,

Xϖ2, · · · , are orthogonal.

Through these first j orthogonal components, we can obtain an estimate of η, say ηj.

Taking η = ηj, we calculate Z(η) following (4). A component Xj+1α(η) is then constructed

with

α(η) = arg max
α:∥α∥=1

{∥E[Z(η)wXj+1α]∥2} = E[X t
j+1wZ(η)]/∥E[X t

j+1wZ(η)]∥. (7)

Regressing Z = Z(η) against Xj+1α(η) as well as the first j components leads to an update

of η,

η(α) = E[wZ]/E[w] +

j∑
k=1

Xkαkγk +Xj+1αγ, (8)

where γ = E[αtX t
j+1wZ]/E[α

tX t
j+1wXj+1α], and γk = E[αt

kX
t
kwZ]/E[α

t
kX

t
kwXkαk] for k =

1, · · · , j. Alternatively update α(η) and η(α) until α(η) converges to αj+1, which leads to

the construction of the (j + 1)-st component Xj+1αj+1.

Such construction stops whenever w1/2Z(η) is uncorrelated to w1/2Xj+1. Upon comple-

tion of the construction, w1/2Xϖ1, w
1/2Xϖ2, w

1/2Xϖ3, · · · , are uncorrelated, which lead to

the generalized orthogonal-components regression model with orthogonal components Xϖ1,

Xϖ2, Xϖ3, · · · .

Preposition 2. Upon completion of the construction, we can build up the generalized

orthogonal-components regression model,

g(E[Y |X]) = µ+
∑
j

ϑj (Xϖj) , (9)

where ϖj, j = 1, 2, · · · , are as specified in Preposition 1, and ϑj, j = 1, 2, · · · , are the

regression coefficients of the corresponding orthogonal components. Furthermore each ϖj

satisfies Assumption 3, and β =
∑

j ϑjϖj satisfies Assumption 2.
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Proof. When X1ψ = Xψ = 0, a.s., αt
1ψ = 0 following (7). It leads to X2ψ = 0, a.s..

Iteratively we have Xjψ = 0, a.s., and αt
jψ = 0. Hence ϖt

jψ = 0, j = 1, 2, · · · , which leads

to βtψ = 0.

2.3 The Algorithm

With observed data Y = (y1, · · · , yn)t and X = (xt
1, · · · ,xt

n)
t, we can follow the above idea

to sequentially construct orthogonal components accounting for the variation in Y, and also

provide an estimate of β satisfying Assumption 1. The construction proceeds on the basis of

prespecified weight wi for the i-th observation. We denote W = diag{w1, · · · , wn}. Without

loss of generality, we further assume that X1 = X has been column-wisely centralized, i.e.,

XtW1n = 0p, where 1n is an n-dimensional column vector with all components as one.

Suppose that components X1α1, · · · ,Xj−1αj−1 have been constructed, ηj−1 is output

from the construction of the (j−1)-st component Xj−1αj−1, and Xj is also constructed. We

can therefore proceed to construct the j-th component Xjαj, ηj, and Xj+1 as follows,

1. Initialize ηj = ηj−1;

2. Update Z = ηj +H−1{Y − g−1(ηj)}, with H = diag{∇g−1(ηj1), · · · ,∇g−1(ηjn)};

3. Update µ = 1t
nWZ/{1t

nW1n};

4. Update αj = Xt
jWZ/∥Xt

jWZ∥;

5. Update γk = αt
kX

t
kWZ/{αt

kX
t
kWXkαk} for k = 1, · · · , j;

6. Update ηj = µ1n +
∑j

k=1Xkαkγk;

7. Iterate between 2-6 until αj converges;

8. Calculate Pj = αt
jX

t
jWXj/{αt

jX
t
jWXjαj}, and Xj+1 = Xj −XjαjPj.

Note that ηj = (ηj1, · · · , ηjn)t. In Step 2, we also abuse the notations by defining

g−1(ηj) = (g−1(ηj1), · · · , g−1(ηjn))
t.
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Remark 1. For each k, Xk = Xk−1(Ip − αk−1Pk−1) = · · · = X ×
∏k−1

l=1 (Ip − αlPl),

therefore Xt
kW1n = 0p following XtW1n = 0p. The weighted least squares estimation

equation 1t
nWZ = 1t

nW (µ1n +
∑j

k=1 γkXkαk) leads to Step 3.

Remark 2. Calculation of Pj in Step 8 implies that Xt
j+1WXjαj = 0. Iteratively, it

leads to Xt
j+1WXkαk = 0 for k = j, j − 1, · · · , 1. That is, the components X1α1, X2α2,

X3α3, · · · , are orthogonal when the inner product is defined as ⟨x, y⟩ = xtWy.

Remark 3. Step 5 follows the application of Xt
kW1n = 0p and αt

kX
t
kWXlαl = 0, l ̸= k,

to the weighted least squares estimation equation αt
kX

t
kWZ = αt

kX
t
kW (µ1n +

∑j
l=1 γlXlαl).

Remark 4. From the construction of the last component, say Xmαm, we have the

estimate

β̂ =
m∑
j=1

{
j−1∏
k=1

(Ip − αkPk)

}
αjγj,

which can be sequentially updated and satisfies Assumption 1. The parameter µ in the

model (2) can be estimated by µ upon constructing the last component.

Compared to the original model (2), the GOCRE model (9) not only present the unique

MLE satisfying Assumption 1, but also calculate the MLE without computing inverse of

any matrix. While both features are desirable in analyzing p ≫ n data, the latter one

particularly speeds up the calculation.

2.4 Selection of Weights

Note that, for a specific η, Z(η) in (4) has the variance

var(Z(η)) = b′′(θ)a(ϕ)

/{
∇g−1(η)

}2
.

Therefore, it is preferred to have a dynamic weight w(η) ∝ 1/var(Z(η)). However, such

a dynamic weight makes it impossible to construct orthogonal components in any specific

inner product space.

One strategy is to take dynamic weights when the first component is being iteratively con-

structed with the identity matrix as the initial value. Once the first component is constructed,

we have a converged weight matrix, and therefore use this weight matrix for constructing all

subsequent components.
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Another strategy is to run the aforementioned algorithm twice. The first run of the

algorithm may take an identity weight matrix or use the above strategy to construct a

weight matrix. The second run can construct a weight matrix based on the η value from the

last step of the previous run.

Our simulation study demonstrated that the first strategy usually performs well and

there is negligible gain in taking a second run of the algorithm (results not shown).

2.5 Convergence Failures and Bias Correction

For some GLMs, especially the logistic regression model for binary responses, MLE may

not exist due to complete separation, or quasicomplete separation of different categories

(Albert and Anderson 1984), and it usually results in non-convergence of the corresponding

algorithm. Heinze and Schemper (2002) proposed that the penalized likelihood method by

Firth (1993) can solve the convergence problem due to the aforementioned separation issue.

Suppose the model in (2) has log-likelihood ℓ(µ, β) and information matrix I(µ, β). In-

stead of directly maximizing the log-likelihood function, Firth (1993) proposed to maximize

the penalized log-likelihood

ℓ∗(µ, β) = ℓ(µ, β) +
1

2
log{|I(µ, β)|},

where the penalty corresponds to the Jeffreys invariant prior (Jeffreys 1946). Firth (1993)

initially took this modification to reduce the bias of maximum likelihood estimates, and

showed that the first order bias can be removed.

For logistic regression, we will modify our algorithm using the same idea to reduce the

bias and solve the non-convergence issue. Note that only Step 2 of the algorithm in Section

2.3 needs to be modified. Define
∆ = (δkl)n×n , W

1
2X(XtWX)+XtW

1
2 ,

ζ , (δ11, · · · , δnn)t,

Λ , diag{δ11, · · · , δnn},

where (XtWX)+ is a Moore-Penrose pseudo-inverse. We then replace Step 2 with the fol-

lowing steps,
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2a. Calculate H = diag{(1 + δ11)∇g−1(ηj1), · · · , (1 + δnn)∇g−1(ηjn)};

2b. Update Z = ηj +H−1{Y + 1
2
ζ − (In + Λ)g−1(ηj)}.

Note that, once the weight matrix W is fixed, we then have fixed values of δkk, k =

1, · · · , n. Therefore, unlike the IRPLS method modified by Ding and Gentleman (2004)

which requires re-calculation of the weight matrix at each iteration, we do not need this

re-calculation when constructing all components other than the first component, because of

the fixed weight matrixW . Since high-dimensional data imply large matrices involved in cal-

culation of the weight matrix, our algorithm can be more efficient in terms of computational

cost.

We use GOCRE0 to refer to the above implementation for bias correction. As shown in

the following, the calculation of ∆ can be simplified through a singular value decomposition,

which will essentially speed up the computation of GOCRE0.

For large n, it is still computationally intensive to calculate and maintain the matrix

∆. Instead, Chung and Keles (2010) approximate each diagonal component of ∆ with

trace{∆}/n. A similar strategy has been utilized in constructing generalized cross-validation

(Golub et al. 1979). Observing that ∆ is usually of full rank and therefore trace{∆}/n = 1

when p ≫ n, Chung and Keles (2010) always take ζ = 1n and Λ = In. Indeed, as shown

below, ∆ = In when p ≥ n and X is of full rank.

Preposition 3. Assume rank(X) = k and therefore the singular value decompositionW 1/2X =

UΩV t where U is n × k with U tU = Ik, Ω is a k × k diagonal matrix with positive diag-

onal elements, and V is p × k with V tV = Ik. Then ∆ = UU t. Furthermore, if k = n,

then ∆ = In; if k = n − 1 and 1t
nWX = 0t

p, then ∆ = In −W 1/21n1
t
nW

1/2/∥W∥1, where

∥W∥1 =
∑n

i=1wi.

As we preprocess X such that 1t
nWX = 0t

p, ∆ will usually have the rank of n− 1 instead

of full rank when p ≫ n. The above preposition implies that ζ = 1n − W1n/∥W∥1 and

Λ = In −W/∥W∥1. Hereafter, we will use GOCRE to refer to such an implementation, that

is, taking δkk = 1− wk/
∑n

i=1wi, k = 1, 2, · · · , n.

11



3 SIMULATION STUDIES

We simulated large p small n data to evaluate the performance of GOCRE and compare

it with IRPLS implemented by Marx (1996) and Ding and Gentleman (2004), which are

hereafter denoted by IRPLS-M and IRPLS-DG respectively. The underlying models take

the logit link function in (2) with µ = 0 and p = 1000. The predictors were divided into

ten blocks, where each block was simulated from an AR(1) process with the correlation ρ

prespecified at ρ = 0, 0.3, 0.5, and 0.7 respectively. The regression coefficients {βj, 1 ≤

j ≤ p}, were generated from a Laplace distribution with location parameter two and scale

parameter one.

For each different ρ, the simulated data consist of a training set, an independent validation

set and an independent test set. Each method was used to fit the models using the training

data, and the optimal number of components was chosen using the validation data. The

maximum number of components is ten for all methods. The performance was evaluated

based on the misclassification rate (MR) and sum of squares of the prediction residuals

(PRESS) calculated from the test data. We simulated 100 data sets, each consisting of the

training, validation, and test set with sample size being 100, 100, and 200, respectively.

Shown in Table 1 are the frequencies of each method which has converged in analyzing

100 simulated data sets with each specific ρ. It is well known that there is a divergence

problem for both IRPLS implementations (Ding and Gentleman 2004; Fort and Lambert-

Lacroix 2005; Boulesteix and Strimmer 2006; Chung and Keles 2010). Indeed, the IRPLS-M

did not converge in analyzing any of the simulated data sets. IRPLS-DG partially solved

this problem through Firth’s procedure. However, it still did not converge in analyzing, for

example, 23% of the data sets with ρ = 0.5. On the other hand, both GOCRE0 and GOCRE

converged in all data analyses.

The MR and PRESS in analyzing different models are shown in Table 2 for all methods.

We observe that, for each method, the higher the correlation among the predictors, the lower

MR and PRESS. For either GOCRE0 or GOCRE, bold MR and PRESS values indicate better

performance than IRPLS-M as well as IRPLS-DG. Interestingly, IRPLS-DG reported smaller

MR than IRPLS-M except for the case of ρ = 0.3, while IRPLS-DG always reported smaller

12



Table 1: Convergence Frequencies of Different Methods in Analyzing Simulated Data.

Methods ρ = 0.0 ρ = 0.3 ρ = 0.5 ρ = 0.7

IRPLS-M

IRPLS-DG

GOCRE0

GOCRE

0%

79%

100%

100%

0%

82%

100%

100%

0%

77%

100%

100%

0%

94%

100%

100%

PRESS than IRPLS-M except for the case of ρ = 0.7. In all cases, GOCRE0 performed better

than both IRPLS methods in terms of either criterion, except that IRPLS-M reported the

smallest PRESS when ρ = 0.7. Indeed, GOCRE reported larger MR than IRPLS-DG only

in the case of ρ = 0.0, but performed better than both IRPLS methods in all other cases.

In addition to their competitive performance and solving the convergence issue, GOCRE0

and GOCRE also enjoy advantage over the other two methods in computing time which

is a critical issue in analyzing high-dimensional data. As shown in the next section, both

GOCRE0 and GOCRE can significantly reduce the computing time.

Table 2: Performance Comparison in Analyzing Simulated Data. Reported are the me-

dian MR and PRESS across 100 simulated data sets, with standard errors presented in the

parentheses.

Criterion Model IRPLS-M IRPLS-DG GOCRE0 GOCRE

MR ρ = 0.0 .4350(.0313) .4250(.0349) .4250(.0330) .4275(.0332)

ρ = 0.3 .3900(.0350) .3950(.0364) .3825(.0365) .3850(.0365)

ρ = 0.5 .3525(.0378) .3450(.0337) .3350(.0336) .3350(.0336)

ρ = 0.7 .3050(.0337) .2900(.0310) .2850(.0347) .2850(.0346)

PRESS ρ = 0.0 .2671(.0169) .2414(.0057) .2405(.0058) .2405(.0058)

ρ = 0.3 .2475(.0217) .2330(.0064) .2313(.0066) .2312(.0067)

ρ = 0.5 .2290(.0195) .2223(.0069) .2208(.0072) .2207(.0072)

ρ = 0.7 .2004(.0185) .2034(.0073) .2034(.0084) .2033(.0085)

As shown in Preposition 3, GOCRE0 and GOCRE should report exactly the same results

since we preprocessed X in simulated data such that 1
′
nWX = 0

′
p. However, 1

′
nWX = 0

′
p
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could not be computationally obtained due to the computer precision. For example, our

computation in MATLAB would return centralized X with column means in the scale of

10−16 instead of exact zero, which resulted in the slight difference between GOCRE0 and

GOCRE.

4 APPLICATION TO GENE EXPRESSION PROFIL-

ING

Here we use the lung cancer data set (Gustafson et al., 2010) from Gene Expression Omnibus

(GEO; http://www.ncbi.nlm.nih.gov/geo/) to illustrate the performance of GOCRE when

compared to the two different IRPLS implementations. In this data set, a total of 187 arrays

were used to monitor the expression levels of 22,215 genes from 97 cancer patients and 90

healthy individuals. For each gene, a p-value was obtained from the Wilcoxon rank-sum test.

Ranking the genes ascendingly on the basis of their p-values, we constructed four data sets

by including the top 1000, 2000, 5000, and all genes respectively.

For each data set, we randomly selected one-quarter of the samples to form the test data

(with 24 cancer patients and 23 normal persons) and used the rest as training data. We

applied each method to build up the models with different number of components (up to 20

components) using the training data, and then calculated MR and PRESS of each model

based on the test data. The results are shown in Figure 1 and Figure 2.

As shown in Figure 1, IRPLS-M did not converge in constructing almost every compo-

nent. Although IRPLS-DG converged in constructing majority of the components, it did

not converge in constructing some components in analyzing each of the four data sets. As

expected, both GOCRE0 and GOCRE performed similarly, and converged in constructing

each component. Except for the case with p = 5000 where GOCRE0 and GOCRE might

obtain smaller MR than other methods, all methods obtained the same smallest MR in other

cases.

Similar to the performance in terms of MR in Figure 1, IRPLS-M presented rather wildly

varying PRESS when different number of components were considered. The other three
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(c) p = 5000 (d) p = 22215
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Figure 1: Misclassification Rates (MR) in Analyzing the Lung Cancer Data. The results were

obtained using IRPLS-M (dotted lines), IRPLS-DG (dashed dotted lines), GOCRE0 (dashed

lines), and GOCRE (solid lines) respectively to build up models with different number of

components (κ). Non-converged methods were marked by diamonds for IRPLS-M, and

circles for IRPLS-DG.
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(c) p = 5000 (d) p = 22215
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Figure 2: Sum of Squares of the Prediction Residuals (PRESS) in Analyzing the Lung

Cancer Data. The results were obtained using IRPLS-M (dotted lines), IRPLS-DG (dashed

dotted lines), GOCRE0 (dashed lines), and GOCRE (solid lines) respectively. Non-converged

methods were marked by diamonds for IRPLS-M, and circles for IRPLS-DG.
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methods instead presented very stable and similar PRESS while the PRESS of IRPLS-DG

are slightly smaller than those of GOCRE0 and GOCRE. Note that the slight advantage

of IRPLS-DG in PRESS did not imply improvement in MR. Indeed, all methods except

IRPLS-M presented very similar MR for most models.

Not surprisingly, both GOCRE0 and GOCRE were much faster than the other two meth-

ods because the IRPLS implementations need to reconstruct a set of components at each

iteration, but GOCRE0 and GOCRE sequentially construct all components. As shown in

Table 3, they took much less computing time than the other two methods when analyzing

the lung cancer data using GLMs with different number of components (up to 20 compo-

nents). Indeed, for each GLM model with k components, both IRPLS implementations need

to update the predictor matrix k times within each iteration. For large p small n data set

which produces a high dimensional predictor matrix, it is time consuming to update the

predictor matrix.

Table 3: Computation Time (Seconds) in Analyzing the Lung Cancer Data.

p IRPLS-M IRPLS-DG GOCRE0 GOCRE

1000 2,384 263 8 7

2000 5,334 609 15 12

5000 11,750 819 35 28

22215 48,531 2,972 443 370

5 DISCUSSION

Zhang et al. (2009) proposed an orthogonal-component regression (OCRE) for supervised

construction of principal components which account for the variation of continuous responses.

OCRE can be considered as an alternative implementation of PLS. We here propose GOCRE

which extends OCRE for GLMs, focusing on binary outcomes. Such an extension makes it

feasible to extend POCRE in Zhang et al. (2009) for GLMs, allowing to select variables from

a large amount of candidates. However, the need of iterated procedures like IRLS for fitting

classical GLMs challenges the extension. One challenge follows the use of weighted linear
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models to construct the components. Available components would suggest a weighted linear

model with updated weights when constructing a new component. Indeed, any update of

the same component in each iteration would suggest a new set of weights. Here we suggest

to fix the weights upon the construction of the first component, which usually provide a

satisfactory set of orthogonal components. A fixed set of weights can also be suggested using

some other preliminary analysis of the data.

GOCRE is proposed to sequentially construct a set of orthogonal components and it

allows to investigate the relationship between a categorical outcome and a set of variables of

interest. Cross validation can be used to determine the number of orthogonal components

when it is targeted to fit the underlying GLM. We may be interested in a set of orthogonal

components which may take account of the variation in the categorical outcome. Therefore,

the coefficient of determination as defined by Nagelkerke (1991) may be employed. An

entropy measure may also be explored for such a purpose.

APPENDIX: PROOF OF PREPOSITION 3

Expand V to Ṽ = (V Vc) such that Ṽ tṼ = Ip, and further expand U to Ũ such that Ũ tŨ = Ip

in the following way,

Ũ =


(U Uc), if p ≤ n; U Uc 0

0 0 Ip−n

 , if p > n.

Accordingly, we expand Λ to a p× p matrix Λ̃ as follows,

Λ̃ =

 Λ 0

0 0

 .

Let Xw = W 1/2X and X̃w = Ũ Λ̃Ṽ t, then Xt
wXw = X̃t

wX̃w = Ṽ Λ̃2Ṽ t, which implies that

(Xt
wXw)

+ = Ṽ Λ̃+2Ṽ t, and

Λ̃+ =

 Λ−1 0

0 0

 .
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It follows that Xw(X
t
wXw)

+Xt
w = UΛV tṼ Λ̃+2Ṽ tV ΛU t = UU t. That is, ∆ = UU t.

When k = n, U is an orthonormal matrix which implies that ∆ = UU t = In.

When k = n − 1 and 1t
nWX = (W 1/21n)

tXw = 0t
p, then Ũ = (U W 1/21n/

√
∥W∥1) is

an orthonormal matrix. That is, In = Ũ Ũ t = UU t +W 1/21n1
t
nW

1/2/∥W∥1, which implies

∆ = UU t = In −W 1/21n1
t
nW

1/2/∥W∥1.
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