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This article presents the first comprehensive studies on the lo-
cal and global inferences for the smoothing spline estimate in a uni-
fied asymptotic framework. The novel functional Bahadur represen-
tation is developed as the theoretical foundation of this article, and is
also of independent interest. Based on that, we establish four inter-
connected inference procedures: (i) Point-wise Confidence Interval;
(ii) Local Likelihood Ratio Testing; (iii) Simultaneous Confidence
Band (SCB); (iv) Global Likelihood Ratio Testing. In particular, our
C.I. is proven to be asymptotically valid at any point over the sup-
port, and is extraordinarily shorter than the classical Bayesian C.I.
(Wahba, 1983). We also unveil new Wilk’s phenomena arising from
the local/global likelihood ratio testing, and further show that the
global testing is more powerful/efficient than the local one in terms
of the smaller minimum separation rate. It is also worthy noting that
our SCB is the first one applicable to the general quasi-likelihood
models. Furthermore, the inference optimality/efficiency issues are
carefully addressed. As a by-product of this article, we discover some
surprising asymptotic equivalence phenomenon between the periodic
and non-periodic smoothing splines in terms of inferences.

1. Introduction. Smoothing spline models provide a very general framework for data analysis,
modeling and learning in a variety of fields; see [57, 58, 21]. As far as we are aware, the existing
literature are mostly concerned about the global convergence properties or methodological studies
of smoothing spline estimate. Unfortunately, a systematic and rigorous theoretical study on their
asymptotic inferences is almost nonexistent. This is partly due to the technical restrictions of
the widely used equivalent kernel method. The novel Functional Bahadur Representation (FBR)
we develop brings several major breakthroughs into the inference studies. The main purpose of
this paper is to propose a series of local and global inference procedures for a univariate smooth
curve based on FBR as the theoretical foundation. Moreover, we carefully investigate the inference
optimality/efficiency that has not been well treated in the smoothing spline literature.

In this paper, we consider a general class of nonparametric regression models that covers the
least square regression and logistic regression. The equivalent kernel method has long been used as
a standard tool in dealing with the asymptotics of the smoothing splines, but it is only restricted to
the simple least square regression; see [48, 38]. Moreover, this classical method only “approximates”
the reproducing kernel function and the approximation formula becomes extremely complicated as
∗Postdoctoral Fellow.
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2 Z. SHANG AND G. CHENG

the smoothness of regression function increases and the design points are not uniform. To analyze
the smoothing spline estimates in a more feasible way, we develop a novel technical tool via the
empirical processes techniques, i.e., Functional Bahadur Representation, which directly deals with
the “exact” reproducing kernel, and thus makes the systematic inference studies possible in the
general nonparametric regression models. Several new theoretical insights are also obtained through
its applications. An immediate consequence of FBR is the local behaviors of the smoothing splines,
i.e., asymptotic normality, which naturally leads to our construction of approximate point-wise
confidence intervals. The classical Bayesian C.I. in the literature ([56, 40]) is only valid in an average
sense over the observed covariates, and may not be reliable if only evaluated at peaks or troughs as
pointed out by Nychka (1988). However, our frequentist C.I. is proven to be theoretically valid at any
point, and even possesses the surprisingly shorter length. We next introduce the local likelihood ratio
method in testing the value of the regression function at any point of interest. It is shown that the
null limit distribution is a scaled Chi-square distribution with degree of freedom one, and its scaling
constant converges to one as the regression function becomes more and more smooth. Therefore,
we have unveiled an interesting Wilk’s phenomenon arising from this nonparametric local testing,
which injects new theoretical insight into the literature. The very tricky testing sensitivity issue has
also been studied by characterizing its power behaviors under a sequence of local alternatives. One
relevant work is for the monotone function but with rather different null limit distribution; see [3].

In practice, the global inferences are arguably more useful. The simultaneous confidence band
depicts the global behaviors of the regression function with sufficient accuracy, and its construction
has been extensively studied in the literature. However, most of the efforts were devoted to the
simple regression models with either symmetric errors, i.e., the volume of tube method ([51]), or
additive Gaussian errors based on the kernel or local polynomial estimates, e.g., [22, 10, 17, 60]. By
incorporating the approach of [5] into the Reproducing Kernel Hilbert Space (RKHS) framework,
we are able to construct the first SCB applicable to the general nonparametric regression models,
and prove its theoretical validity based on the strong approximation techniques. We further demon-
strate that the minimum bandwidth order of our SCB has achieved the lower bound established
in Genovese and Wasserman (2008). Model assessment forms another crucial component of global
inferences; see [23]. Fan et al (2001) explored the use of local polynomial estimate in testing non-
parametric regression models by the Generalized Likelihood Ratio Testing (GLRT). Based on the
smoothing spline estimate, we propose an alternative method called as the Penalized Likelihood
Ratio Testing (PLRT), and prove its null limit distribution as the nearly Chi-square with diverging
degree of freedom. Therefore, the Wilk’s phenomenon previously established for the local testing
continues to hold for the global one but in a more nonparametric manner. Moreover, we demonstrate
that the PLRT achieves the optimal minimax rate for the nonparametric hypothesis testing in the
sense of Ingster (1993), and also discover that this global testing is more powerful/efficient than
the local one in terms of the smaller minimum separation rate. Note that most other smoothing
spline based tests, e.g., LMP and GML tests ([13, 57, 27, 8, 43]), either lead to complicated null
distributions with nuisance parameters, or have not addressed the optimality issues. One major
advantage of our PLRT over GLRT is that the specifications of the former null limit distribution
are only determined by the parameter space, while the latter heavily depends on the choice of kernel
function. In other words, our PLRT tests the nonparametric models in a more fundamental way.

In the end, we would like to reiterate the highlights of this paper:

(i). Our asymptotic C.I. has the point-wise consistency and shorter length than the Bayesian C.I.;
(ii). Our SCB is the first one applicable to the general class of nonparametric regression models;
(iii). Our local and global likelihood ratio testing both yield the Wilk’s phenomenon. More impor-

tantly, we prove that the global testing is more sensitive/powerful than the local one in terms
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of the smaller minimum separation rate.

As an important by-product of this paper, we derive the asymptotic equivalence of inferences
between the periodic and non-periodic smoothing splines under mild conditions; see Remark 5.2. In
general, our discoveries reveal an intrinsic connection between two rather different basis structures,
which in turn may be used to facilitate the practical implementations. The under-smoothing is
usually needed in the nonparametric inferences, e.g., [39, 24, 25], and its amount has been precisely
quantified for the inference procedures considered in this paper. We also give three general under-
smoothing rules in Remarks 3.1 – 3.3. However, we also note that the under-smoothing is actually
not needed in the global testing, i.e., PLRT. As it will be seen, the innovative FBR is an ideal
theoretical tool for studying the above inference problems.

Our paper is mainly devoted to theoretical studies, and leaves the more practical issues, e.g.,
tuning of the smoothing parameter, and the more challenging adaptive inferences as future topics.
The general class of nonparametric models in consideration is fundamentally important so that
the inferences on the more complicated models, e.g., multivariate extension, become conceptu-
ally simple by applying similar likelihood based approach and FBR techniques. In particular, the
semiparametric extension has been investigated in [9]. The rest is organized as follows. Section 2
introduces the basic notations, model assumptions, and some preliminary RKHS results. Section 3
presents the key technical tool of this paper, i.e., FBR, and the local asymptotics of the smoothing
spline as its trivial application. In Sections 4 and 5, two local and two global inference procedures
together with their theoretical properties are formally discussed, respectively. In Section 6, we give
three concrete examples showing the validity of our theories. Numerical studies are also provided
for both periodic and non-periodic splines. All the technical arguments are included in Appendix
or Online Supplementary ([46]).

2. Preliminaries.

2.1. Notations and Assumptions. Suppose that the data Ti = (Yi, Zi), i = 1, . . . , n, are i.i.d.
copies of T = (Y,Z), where Y ∈ Y ⊆ R is the response variable, Z ∈ I is the covariate variable and
I = [0, 1]. Consider a general class of nonparametric models under the primary assumption that

(2.1) µ0(Z) ≡ E(Y |Z) = F (g0(Z)),

where g0(·) is some unknown smooth function and F (·) is some known link function. It covers
two sub-classes of statistical interest. The first sub-class assumes that the data are modelled by
yi|zi ∼ p(yi;µ0(zi)) for some conditional distribution p unknown upto the parameter µ0. Instead
of assuming the distributional knowledge, the second sub-class only specifies the moment relation
in the sense that there exists some known positive function V(·) such that V ar(Y |Z) = V(µ0(Z)).
The nonparametric estimation of g in the latter is engaged by using the quasi-likelihood Q(y;µ) ≡∫ µ
y (y − s)/V(s)ds, where µ = F (g), as an objective function ([59]). Despite distinct modelling

principles, these two sub-classes have a large overlap since Q(y;µ) coincides with several commonly
used distributions log p(y;µ) under various combinations of (F,V) as summarized in Table 1 below.

p Normal Logistic Gamma(α, β) Poisson Inverse Gaussian

F (a) a exp(a)
1+exp(a)

exp(a) exp(a) exp(a)

V(s) 1 s(1− s) α−1s2 s s3

Table 1
Five commonly used distributions together with their mean and variance functions.
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From now on, we focus on the smooth criterion function `(y; a) : Y×R 7→ R, and allow it to cover
the above two statistical classes, i.e., `(y; a) = Q(y;F (a)) or log p(y;F (a)). Denote the parameter
space H as the m-th order Sobolev space:

Hm(I)≡{g : I 7→R| g(j) is absolutely continuous for j = 0, 1, . . . ,m− 1, and g(m) ∈L2(I)},

where m is assumed to be known and larger than 1/2. In some cases, H is also defined as a
subclass of Hm(I), i.e., homogeneous Sobolev space Hm

0 (I), which has an additional restriction
g(j)(0) = g(j)(1) for j = 0, 1, . . . ,m−1 (also known as the class of periodic functions). Let J(g, g̃) =∫
I g

(m)(z)g̃(m)(z)dz. Consider the penalized nonparametric estimate ĝn,λ:

(2.2) ĝn,λ = arg max
g∈H

`n,λ(g) = arg max
g∈H

{
1
n

n∑
i=1

`(Yi; g(Zi))− (λ/2)J(g, g)

}
,

where J(g, g) is the roughness penalty of order m and λ is the smoothing parameter converging
to zero as n. We use λ/2 (rather than λ) here only for the simplicity of future expressions. The
existence and uniqueness of ĝn,λ are guaranteed by Theorem 2.9 of [21] when the null space Nm ≡
{g ∈ Hm(I) : J(g, g) = 0} is finite dimensional and `(y; a) is concave and continuous w.r.t. a.

We next assume some basic model conditions. Let I0 be the range for g0(z), which is obviously
compact. Denote the first, second and third order derivatives of `(y; a) w.r.t. a by ˙̀

a(y; a), ῭
a(y; a)

and `′′′a (y; a), respectively. We first assume the following smoothness and tail conditions on `:

Assumption A.1. (a). `(y; a) is three times continuously differentiable and concave w.r.t a.
There exists a bounded open interval I ⊃ I0, and positive constants C0 and C1 s.t.

(2.3) E

{
exp(sup

a∈I
|῭a(Y ; a)|/C0)

∣∣∣∣Z
}
≤ C1, a.s.,

and

(2.4) E

{
exp(sup

a∈I
|`′′′a (Y ; a)|/C0)

∣∣∣∣Z
}
≤ C1, a.s..

(b). There exists a positive constant C2 such that C−1
2 ≤ I(Z) ≡ −E(῭

a(Y ; g0(Z))|Z) ≤ C2 a.s..
(c). ε ≡ ˙̀

a(Y ; g0(Z)) satisfies E(ε|Z) = 0 and E(ε2|Z) = I(Z), a.s.

Assumption A.1 (a) implies the slow diverging rate, i.e., OP (log n), of max1≤i≤n supa∈I |῭a(Yi; a)∨
`′′′a (Yi; a)|. In the case that `(y; a) = log p(y; a), Assumption A.1 (b) imposes the boundedness and
positive definiteness of the Fisher information, and Assumption A.1 (c) trivially holds if p satisfies
some regularity conditions. However, when `(y; a) = Q(y; a), we have

῭
a(Y ; a) = F1(a) + εF2(a) and `′′′a (Y ; a) = Ḟ1(a) + εḞ2(a),(2.5)

where ε = Y−µ0(Z), F1(a) = −|Ḟ (a)|2/V(F (a))+(F (g0(Z))−F (a))F2(a) and F2(a) = (F̈ (a)V(F (a))−
V̇(F (a))|Ḟ (a)|2)/V2(F (a)). Hence, Assumption A.1 (a) holds if Fj(a), Ḟj(a), j = 1, 2, are all
bounded over a ∈ I, and

(2.6) E{exp(|ε|/C0)
∣∣Z} ≤ C1, a.s..
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By (2.5), we have I(Z) = |Ḟ (g0(Z))|2/V(F (g0(Z))). Thus, Assumption A.1 (b) holds if

(2.7) 1/C2 ≤
|Ḟ (a)|2

V(F (a))
≤ C2 for all a ∈ I0, a.s..

Assumption A.1 (c) follows from the definition of V(·). Sub-exponential tail Condition (2.6) and
boundedness Condition (2.7) are very mild quasi-likelihood model assumptions (also assumed in
[37]). The assumption that Fj and Ḟj are both bounded over I could be restrictive without as-
suming the estimation consistency. However, we can remove it in most models, e.g., binary logistic
regression, by applying similar empirical processes arguments as in Section 7 of [37].

2.2. Reproducing Kernel Hilbert Space (RKHS). Some RKHS results are introduced into our
general model framework as slight extensions of [12] and [41], e.g., an important Sobolev norm
(2.8). It is well known that, when m > 1/2, H = Hm(I) is a RKHS in which we endow the inner
product and norm as, respectively, 〈g, g̃〉 = E{I(Z)g(Z)g̃(Z)}+ λJ(g, g̃) and

(2.8) ‖g‖2 = 〈g, g〉.

The reproducing kernel K(z1, z2) defined on I× I is known to have the following property:

Kz(·) ≡ K(z, ·) ∈ Hm(I) and 〈Kz, g〉 = g(z), for any z ∈ I and g ∈ Hm(I).

Obviously, K is symmetric with K(z1, z2) = K(z2, z1). We further introduce a positive definite
self-adjoint operator Wλ : Hm(I) 7→ Hm(I) such that

(2.9) 〈Wλg, g̃〉 = λJ(g, g̃),

for any g, g̃ ∈ Hm(I). Denote V (g, g̃) = E{I(Z)g(Z)g̃(Z)}. Hence, 〈g, g̃〉 = V (g, g̃) + 〈Wλg, g̃〉,
which implies V (g, g̃) = 〈(id−Wλ)g, g̃〉, where id denotes the identity operator.

In the below, we assume that there exists a sequence of basis functions in the space Hm(I),
which can simultaneously diagonalize the bilinear forms V and J . Such an eigenvalue/eigenfunction
assumption is typical in the smoothing spline literature, and is critical to control the local behaviors
of our penalized estimates. Hereinafter, positive sequences aµ and bµ satisfying limµ→∞(aµ/bµ) =
c > 0 is denoted as aµ � bµ. If c = 1, we denote aµ ∼ bµ. Let

∑
ν denote the sum over ν ∈ N =

{0, 1, 2, . . .} for convenience. Denote the sup-norm of g ∈ Hm(I) as ‖g‖sup = supz∈I |g(z)|.

Assumption A.2. There exists a sequence of eigenfunctions hν ∈ Hm(I) satisfying supν∈N ‖hν‖sup <
∞, and a nondecreasing sequence of eigenvalues γν � ν2m such that

(2.10) V (hµ, hν) = δµν , J(hµ, hν) = γµδµν , µ, ν ∈ N,

where δµν is the Kronecker’s delta. Furthermore, for any g ∈ Hm(I), it admits the Fourier expansion
g =

∑
ν V (g, hν)hν with the convergence held under ‖ · ‖-norm.

Assumption A.2 enables us to derive explicit expressions of ‖g‖, Kz(·) and Wλhν(·) for any
g ∈ Hm(I) and z ∈ I; see Proposition 2.1 below.

Proposition 2.1. For any g ∈ Hm(I) and z ∈ I, we have ‖g‖2 =
∑
ν |V (g, hν)|2(1 + λγν),

Kz(·) =
∑
ν
hν(z)
1+λγν

hν(·) and Wλhν(·) = λγν
1+λγν

hν(·) under Assumption A.2.
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For future theoretical derivations, it is crucially important to give sufficient conditions on As-
sumption A.2 in terms of the underlying eigensystem. When `(y; a) = −(y−a)2/2 and H = Hm

0 (I),
Assumption A.2 is known to satisfy if (γν , hν) is chosen as the trigonometric basis (6.2) specified in
Example 6.1. However, in the more general `(y; a) with H = Hm(I), we will show that Assumption
A.2 is still valid if (γν , hν)’s are chosen as the (normalized) solutions of the problem

(2.11) (−1)mh(2m)
ν (·) = γνI(·)π(·)hν(·), h(j)

ν (0) = h(j)
ν (1) = 0, j = m,m+ 1, . . . , 2m− 1,

where π(·) is the marginal density function of covariate Z. Our proof heavily relies on the ODE
techniques developed in [6, 50].

Let Cm(I) be the class of m-th order continuously differentiable functions over I.

Proposition 2.2. If π(z), I(z) ∈ C2m−1(I) and are both bounded away from zero and infinity
over I, then the eigenvalues γνs and corresponding normalized eigenfunctions hνs, i.e., V (hν , hν) =
1, solved from (2.11) satisfy Assumption A.2.

Our Proposition 2.2 can be viewed as a nontrivial extension of Utreras (1988) in which I = π = 1.
In the end, we summarize the notations on Frechét derivatives to be used later. The Frechét

derivatives of `n,λ can be shown to be, for any ∆g,∆gj ∈ Hm(I) and j = 1, 2, 3,

D`n,λ(g)∆g =
1
n

n∑
i=1

˙̀
a(Yi; g(Zi))〈KZi ,∆g〉 − 〈Wλg,∆g〉

≡ 〈Sn(g),∆g〉 − 〈Wλg,∆g〉 ≡ 〈Sn,λ(g),∆g〉

Note that Sn,λ(ĝn,λ) = 0. In particular, Sn,λ(g0) is of interest, which can be expressed by

Sn,λ(g0) =
1
n

n∑
i=1

εiKZi −Wλg0.(2.12)

The Frechét derivative of Sn,λ (DSn,λ) is defined as DSn,λ(g)∆g1∆g2 (D2Sn,λ(g)∆g1∆g2∆g3), and
can be written as D2`n,λ(g)∆g1∆g2 = n−1∑n

i=1
῭
a(Yi; g(Zi))〈KZi ,∆g1〉〈KZi ,∆g2〉− 〈Wλ∆g1,∆g2〉

(D3`n,λ(g)∆g1∆g2∆g3 = n−1∑n
i=1 `

′′′
a (Yi; g(Zi))〈KZi ,∆g1〉〈KZi ,∆g2〉〈KZi ,∆g3〉).

Define S(g) = E{Sn(g)}, Sλ(g) = S(g)−Wλg andDSλ(g) = DS(g)−Wλ, whereDS(g)∆g1∆g2 =
E{῭a(Y ; g(Z))〈KZ ,∆g1〉〈KZ ,∆g2〉}. According to the fact 〈DSλ(g0)f, g〉 = −〈f, g〉, for any f, g ∈
Hm(I), we have the following result:

Proposition 2.3. DSλ(g0) = −id, where recall that id is the identity operator on Hm(I).

3. Functional Bahadur Representation. In this section, we first develop the key technical
tool of this paper: Functional Bahadur Representation, and then present the local asymptotics of
the smoothing spline estimate as its straightforward application. In fact, FBR provides the rigorous
theoretical foundation for the series of inference tools to be established in Sections 4 and 5.

3.1. Functional Bahadur Representation. We first state the relationship between the ‖ · ‖sup-
norm and ‖ · ‖-norm in Lemma 3.1 below, and then derive a concentration inequality in Lemma 3.2
as the preliminary step in obtaining FBR. Denote h as λ1/(2m).

Lemma 3.1. There exists a constant cm > 0 s.t. |g(z)| ≤ cmh
−1/2‖g‖ for any z ∈ I and g ∈

Hm(I). In particular, cm is not dependent on the choice of z and g. Hence, ‖g‖sup ≤ cmh−1/2‖g‖.
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Define
G = {g(z) ∈ Hm(I) : ‖g‖sup ≤ 1, J(g, g) ≤ c−2

m hλ−1},

where the constant cm is specified in Lemma 3.1. Recall here that Ti = (Yi, Zi)s denote the full data
variables with domain T . Our Lemma 3.2 below proves a concentration inequality on the empirical
processes Zn(g) defined as, for any g ∈ G and z ∈ I,

Zn(g)(z) =
1√
n

n∑
i=1

[ψn(Ti; g)KZi(z)− E(ψn(T ; g)KZ(z))],(3.1)

where ψn(T ; g) is a real-valued function (possibly depending on n) defined on T × G.

Lemma 3.2. Suppose that ψn satisfies the following Lipschitz continuity:

(3.2) |ψn(T ; f)− ψn(T ; g)| ≤ c−1
m h1/2‖f − g‖sup for any f, g ∈ G,

where cm is specified in Lemma 3.1. Then we have

lim
n→∞

P

(
sup
g∈G

‖Zn(g)‖
h−(2m−1)/(4m)‖g‖1−1/(2m)

sup + n−1/2
≤ (5 log log n)1/2

)
= 1.

To obtain FBR, we need to further assume some proper convergence rate for ĝn,λ:

Assumption A.3. ‖ĝn,λ − g0‖ = OP ((nh)−1/2 + hm).

A set of simple (but unnecessarily weakest) sufficient conditions for Assumption A.3 is provided
in Proposition 3.3 below. Before stating this result, we introduce another norm in the space H
which is more commonly used in the functional analysis. For any g ∈ H, define

(3.3) ‖g‖2H = E{I(Z)g(Z)2}+ J(g, g).

When λ ≤ 1, ‖ · ‖H is one type of Sobolev norm dominating ‖ · ‖ defined in (2.8). Denote

λ∗ � n−2m/(2m+1), equivalently, h∗ � n−1/(2m+1).(3.4)

Note that λ∗ is known as the optimal order of smoothing parameter when estimating g0 ∈ Hm(I).

Proposition 3.3. Suppose that Assumption A.1 holds, and further that ‖ĝn,λ− g0‖H = oP (1).
If h satisfies (n1/2h)−1(log log n)m/(2m−1)(log n)2m/(2m−1) = o(1), then Assumption A.3 is valid. In
particular, ĝn,λ achieves the optimal rate of convergence, i.e., OP (n−m/(2m+1)), when λ = λ∗.

Now we are ready to present the key technical tool: Functional Bahadur Representation, which
is also of independent interest. By incorporating λ into the norm (2.8), we obtain a more powerful
version of Shang (2010) that naturally applies to our general setting for inference purposes.

Theorem 3.4. (Functional Bahadur Representation) Suppose that Assumptions A.1 – A.3 hold,
h = o(1) and nh2 →∞ are satisfied. Recall that Sn,λ(g0) is defined in (2.12). Then we have

(3.5) ‖ĝn,λ − g0 − Sn,λ(g0)‖ = OP (an log n),

where an = n−1/2((nh)−1/2 + hm)h−(6m−1)/(4m)(log log n)1/2 + C`h
−1/2((nh)−1 + h2m)/ log n and

C` = supz∈IE{supa∈I |`′′′a (Y ; a)|
∣∣Z = z}. Also, the RHS of (3.5) is oP (n−m/(2m+1)) when h = h∗.



8 Z. SHANG AND G. CHENG

3.2. Local Asymptotic Behaviors. In this section, we obtain the point-wise asymptotics of ĝn,λ as
a direct application of FBR. The equivalent kernel idea may be used for deriving similar results but
only restricted to the L2 regression, e.g., [48]. In contrast, our FBR-based proof applies to the more
general regression and tackles the problems from a totally new perspective. Notably, our results
reveal that some well known global convergence properties continue to hold in the local sense; see
Remarks 3.1, and three types of under-smoothing conditions are summarized in Remarks 3.1 – 3.3.

Theorem 3.5. (General Regression) Let the Assumptions A.1 through A.3 be satisfied. Suppose
that h = o(1), nh2 →∞, and an log n = o(n−1/2), where an is defined in Theorem 3.4, as n→∞.
Furthermore, assume that, for any z0 ∈ I,

(3.6) hV (Kz0 ,Kz0)→ σ2
z0 as n→∞.

Denote g∗0 = (id−Wλ)g0 as the biased “true parameter”. Then we have

(3.7)
√
nh(ĝn,λ(z0)− g∗0(z0)) d−→ N(0, σ2

z0),

where

(3.8) σ2
z0 = lim

h→0

∑
ν

h|hν(z0)|2

(1 + λγν)2
.

From Theorem 3.5, we immediately have the following result.

Corollary 3.6. Suppose that Conditions in Theorem 3.5 hold, and

(3.9) lim
n→∞

(nh)1/2(Wλg0)(z0) = −bz0 ,

then we have

(3.10)
√
nh(ĝn,λ(z0)− g0(z0)) d−→ N(bz0 , σ

2
z0),

where σ2
z0 is defined as in (3.8).

We want to emphasize that our Theorem 3.5 covers a general class of nonparametric models under
penalized estimation. To illustrate Corollary 3.6 in more details, we consider the L2-regression in
which Wλg0(z0) (also bz0) has an explicit expression under the additional boundary condition:

(3.11) g
(j)
0 (0) = g

(j)
0 (1) = 0, for j = m, . . . , 2m− 1.

Specifically, we consider two separate cases, i.e., bz0 6= 0 and bz0 = 0. Our results also apply to the
boundary points after paying the price of boundary conditions (3.11). To gain more flexibility, we
provide an alternative set of conditions to (3.11), i.e., (3.14), which can be implied by the so-called
“exponential envelop condition” in [41].

Corollary 3.7. (L2 Regression) Let m > (3 +
√

5)/4 ≈ 1.309 and `(y; a) = −(y − a)2/2.
Suppose that Assumption A.3 and (3.6) hold, and also the normalized eigenfunctions hνs satisfy
(2.11). Assume that g0 ∈ H2m(I) and satisfies

∑
ν |V (g(2m)

0 , hν)hν(z0)| <∞.
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(i). Suppose that g0 satisfies the boundary conditions (3.11). If h/n−1/(4m+1) → c > 0, then we
have, for any z0 ∈ [0, 1],

(3.12)
√
nh(ĝn,λ(z0)− g0(z0))) d−→ N

(
(−1)m−1c2mg

(2m)
0 (z0)/π(z0), σ2

z0

)
.

If h � n−d for some 1
4m+1 < d ≤ 2m

8m−1 , then we have, for any z0 ∈ [0, 1],

(3.13)
√
nh(ĝn,λ(z0)− g0(z0))) d−→ N(0, σ2

z0).

(ii). If we replace the boundary condition (3.11) by the following reproducing kernel conditions
that, for any z0 ∈ (0, 1), as h→ 0

(3.14)
∂j

∂zj
Kz0(z)

∣∣∣∣
z=0

= o(1),
∂j

∂zj
Kz0(z)

∣∣∣∣
z=1

= o(1), for j = 0, . . . ,m− 1,

then (3.12) & (3.13) hold for any z0 ∈ (0, 1).

In (3.12), we note that the asymptotic bias bz0 is proportional to g(2m)
0 (z0), and the asymptotic

variance σ2
z0 can be expressed as a weighted sum of squares of the (infinitely many) basis functions

hν(z0)s, i.e., (3.8). It is worthy pointing out that these observations are consistent with those in the
polynomial spline setting that the former is proportional to g(2m)

0 (z0), and the latter is a weighted
sum of squares of the (finitely many) normalized B-spline basis functions evaluated at z0; see [61].

Remark 3.1. The existing smoothing spline literature are mostly concerned about global conver-
gence properties of the estimate. For example, Nychka (1995) (Rice and Rosenblatt (1983)) derived
the global convergence rate in terms of the (integrated) mean squared error. However, we mainly
focus on the local asymptotic behaviors here, and find that those well known global results actually
hold in the local (point-wise) sense as well. Stone (1982) showed that, when g0 ∈ Hm′(I), the op-
timal convergence rate of ĝn,λ (in the global sense) is OP (n−m

′/(2m′+1)). However, to achieve the
above optimal rate, the order of λ has to be chosen according to the degree of the regularization.
Specifically, λ needs to be chosen as h2m � n−2m/(2m′+1) under the m-th order Sobolev penalization.
Under the setting of Corollary 3.7 where g0 ∈ H2m(I) and the m-th order penalty is used, our local
result (3.12) shows that ĝn,λ(z0) has achieved the point-wise rate OP (n−2m/(4m+1)), which turns
out to be the optimal global rate, when λ � n−2m/(4m+1). To further remove the asymptotic esti-
mation bias, we have to sacrifice the convergence rate of ĝn,λ(z0) in (3.13) by choosing some faster
convergent λ. This further coincides with the under-smoothing procedure known in the literature.

Remark 3.2. In practice, it might be more convenient to fix g0 ∈ Hm(I) and properly tune
the smoothing parameter for removing the estimation bias. For example, in the general regres-
sion, we can achieve this purpose by choosing some faster convergent λ than the optimal λ∗ �
n−2m/(2m+1), i.e., h∗ � n−1/(2m+1). Specifically, we can choose h � n−d with 1

2m < d < 2m
8m−1

when m > 1 +
√

3/2 ≈ 1.866. It can be checked that the above h satisfies the conditions in Theo-
rem 3.5. By reproducing kernel property and (2.9), |Wλg0(z0)| = |〈Wλg0,Kz0〉| = λ|J(g0,Kz0)| =
O(λJ(Kz0 ,Kz0)1/2). By Proposition 2.1 and Lemma 2.2 of [12], J(Kz0 ,Kz0) =

∑
ν
|hν(z0)|2γν
(1+λγν)2

�
h−(2m+1), which implies Wλg0(z0) = O(λh−m−1/2) = O(hm−1/2) for any z0 ∈ I. Thus,

√
nhWλg0(z0) =

O(n1/2hm) = o(1), i.e., bz0 = 0 in (3.9), implied by the above range of h.
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Remark 3.3. In fact, we can also remove the estimation bias while fixing H = Hm(I) and
employing λ = λ∗ by assuming

∑
ν |V (g0, hν)|γ1/2

ν < ∞, which might be “the weakest possible
conditions”. Below are the explanations. By Proposition 2.1, we have

|Wλg0(z0)| ≤ sup
ν
‖hν‖sup ·

∑
ν

|V (g0, hν)| λγν
1 + λγν

= λ1/2 sup
ν
‖hν‖sup ·

∑
ν

|V (g0, hν)|γ1/2
ν

(λγν)1/2

1 + λγν
.

Under the above assumption and the inequality that |V (g0, hν)|γ1/2
ν

(λγν)1/2

1+λγν
≤ |V (g0, hν)|γ1/2

ν , domi-

nated convergence theorem implies
∑
ν |V (g0, hν)|γ1/2

ν
(λγν)1/2

1+λγν
= o(1), as λ→ 0, and thus

√
nhWλg0(z0) =

o(
√
nhλ1/2) = o(1) when λ = λ∗. Since V (g(m)

0 , hν) = (−1)mνmV (g0, hν), the above assumption
holds when V (g(m)

0 , hν) are absolutely summable, e.g., g(m)
0 ∈ Lipα(I) with α ∈ (1/2, 1], the Lipschitz

functional class with index α; see the so-called Wiener algebra in [30].

4. Local Asymptotic Inferences. We consider inferring g(·) locally by constructing the
point-wise C.I. in Section 4.1 and testing the local hypothesis via likelihood ratio in Section 4.2. In
particular, the related inference optimality will also be discussed; see Remark 4.1 and Theorem 4.6.

4.1. Point-wise Confidence Interval. We consider the confidence interval for some real-valued
smooth function of g0(z0) at any fixed z0 ∈ I, , denoted as ρ0 = ρ(g0(z0)), e.g., ρ0 = F (g0(z0)) =
E(Y |Z = z0). An instance is ρ0 = exp(g0(z0))/(1 + exp(g0(z0))) for the logistic regression model.
Corollary 3.6 together with the Delta method immediately implies Proposition 4.1 on the point-wise
C.I. in which the asymptotic estimation bias is assumed to be removed, e.g., by under-smoothing.

Proposition 4.1. (Point-wise Confidence Interval) Suppose that Assumptions in Corollary
3.6 hold and the estimation bias asymptotically vanishes, i.e., limn→∞(nh)1/2(Wλg0)(z0) = 0. If
ρ′(g0(z0)) 6= 0, we have P

(
ρ0 ∈

[
ρ(ĝn,λ(z0))± Φ(α/2) ρ̇(g0(z0))σz0√

nh

])
−→ 1 − α, where Φ(α) is the

lower α-th quantile of N(0, 1) and ρ̇(·) is the first derivative of ρ(·).

From now on, we focus on the point-wise C.I. for g0(z0) and discuss its optimality in the end. For
simplicity, we consider the setting that `(y; a) = −(y − a)2/(2σ2), Z ∼ Unif [0, 1] and H = Hm

0 (I)
under which Proposition 4.1 implies the following asymptotic 95% C.I. for g0(z0):

(4.1) ĝn,λ(z0)± 1.96σ
√
I2/(nπh†),

where h† = hσ1/m and Il =
∫ 1
0 (1 + x2m)−ldx for l = 1, 2. See Case (I) in Example 6.1 for the

derivation of (4.1). When σ is unknown, we may replace it by any consistent estimate. Under mild
conditions, we further prove in Remark 5.2 that the same form of C.I. (4.1) also holds for the cubic
spline, i.e., H = H2(I), although the center ĝn,λ(z0) is different. As far as we are aware, (4.1) is the
first rigorously proven point-wise C.I. for the smoothing spline. However, the major contribution
of this section is the surprising comparison between (4.1) and the classical Bayesian Confidence
Interval proposed (studied) by Wahba (1983) (Nychka (1988)) even they are constructed based
on different principles, i.e., frequentist v.s. Bayesian. Firstly, we would like to emphasize that the
Bayesian C.I. is only shown to approximately achieve the 95% nominal level in an average sense. In
other words, its average coverage probability over the observed covariates is not exactly 95% even
asymptotically. Secondly, the Bayesian C.I. ignores the important issue of uniformity of coverage
across the design space, and thus may not be reliable if only evaluated at peaks or troughs as
pointed out in [40]. However, our asymptotic C.I. (4.1) is proven to be valid at any point. A more
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striking fact is that (4.1) even possesses the shorter length than those of Wahba’s and Nychka’s
Bayesian C.I.s at the same time. See the discussions below.

For the purpose of comparison, we first derive the asymptotic equivalent versions of the Bayesian
C.I.s. Wahba (1983) heuristically proposed the following Bayesian C.I.:

(4.2) ĝn,λ(z0)± 1.96σ
√
a(h†),

where a(h†) = n−1
(
1 + (1 + (πnh†))−4 + 2

∑n/2−1
ν=1 (1 + (2πνh†))−4

)
. Under the assumption that

h† = o(1) and (nh†)−1 = o(1), Lemma 6.1 in Example 6.1 implies that 2
∑n/2−1
ν=1 (1 + (2πνh†))−4 ∼

I1/(πh†) = 4I2/(3πh†) since I2/I1 = 3/4 when m = 2. The asymptotic equivalent version of
Wahba’s Bayesian C.I. is thus

(4.3) ĝn,λ(z0)± 1.96σ
√

(4/3) · I2/(nπh†).

Nychka (1988) further shortened the Wahba’s version (4.2) by proposing

(4.4) ĝn,λ(z0)± 1.96
√
V ar(b(z0)) + V ar(v(z0)),

where b(z0) = E{ĝn,λ(z0)} − g0(z0) and v(z0) = ĝn,λ(z0)− E{ĝn,λ(z0)}, and also showed that

(4.5) σ2a(h†)/(V ar(b(z0)) + V ar(v(z0)))→ 32/27 as n→∞ and V ar(v(z0)) = 8V ar(b(z0));

see his (2.3) and Appendix. Hence, we have

V ar(v(z0)) ∼ σ2 · (I2/(nπh†)) and V ar(b(z0)) ∼ (σ2/8) · (I2/(nπh†)).(4.6)

Therefore, Nychka’s Bayesian C.I. (4.4) is asymptotically equivalent to

(4.7) ĝn,λ(z0)± 1.96σ
√

(9/8) · I2/(nπh†).

In view of (4.3) and (4.7), we have discovered that Wahba’s Bayesian C.I. and Nychka’s Byesian
C.I. are asymptotically 15.4% and 6.1% wider than our C.I. (4.1), respectively. Similar conclusion
holds for m > 2. Furthermore, the simulations performed in Example 6.1 empirically verify the
superior performance of our C.I. in both periodic and non-periodic splines. Interestingly, we also
realize that our frequentist C.I. (4.1) turns out to be the corrected version of Nychka’s Bayesian
C.I. (4.4) by removing its random bias term b(z0); see (4.6). The inclusion of b(z0) in Nychka’s
C.I. is problematic in the sense that: (i) it makes the point-wise limit distribution non-normal
leading to the biased coverage probability; and (ii) it introduces additional variance unnecessarily
enlarging the interval length. Therefore, by removing b(z0) from (4.7), we are able to achieve both
the point-wise consistency and shorter interval in (4.1) without adding any computational burden.

Remark 4.1. It follows from Cai and Low (2004) that the lower bound on the length of the point-
wise C.I. relies on the modulous of continuity over the parameter space. When the parameter space
is Hm(I), Donoho and Liu (1991) showed that the modulous of continuity is of order n−m/(2m+1).
The length of our C.I. achieves this lower bound by adding a mild restriction on g0 ∈ Hm(I), i.e.,
g

(m)
0 has absolutely summable Fourier coefficients, and choosing λ = λ∗; see Remark 3.3.
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4.2. Local Likelihood Ratio Test. In this section, we propose the likelihood ratio method in
testing the value of g0(z0) at any point of interest z0 ∈ I. We first show that the null limit distribution
is a scaled non-central Chi-square distribution with degree of freedom one, whose specification is
jointly determined by the reproducing kernel and estimation bias, and then establish the central Chi-
square limit distribution after removing the estimation bias. We also note that, as the smoothness
of the regression function increases, the scaling constant will eventually converge to one. Therefore,
we have unveiled an interesting Wilk’s phenomenon (meaning that the asymptotic null distribution
is independent of any nuisance parameters) arising from this nonparametric local testing, which
injects new theoretical insight into the literature. Hence, the inversion of likelihood ratio test can
be conveniently used to constructing the point-wise C.I. for g0(z0), and also F (g0(z0)) due to the
monotonicity of F (·); see Table 1. We further address the tricky testing efficiency/senstivity issue by
studying its power behaviors under a sequence of local alternatives. The above issue is technically
challenging since the testing sensitivity relies on the whole estimated curve even the test itself is
local; see Theorem 4.6. An interesting testing sensitivity comparison will be made between the
local LRT and its global counterpart in Section 5.2 in terms of their minimum separation rates.
One related reference is Banerjee (2007) who considered similar test for the monotone functions,
but his estimation method and null limit distribution are different from ours.

For some pre-fixed point (z0, w0), we consider the following hypothesis:

(4.8) H0 : g(z0) = w0 versus H1 : g(z0) 6= w0.

The “constrained” penalized log-likelihood is defined as Ln,λ(g) = n−1∑n
i=1 `(Yi;w0 + g(Zi)) −

(λ/2)J(g, g), where g ∈ H0 = {g ∈ Hm(I) : g(z0) = 0}. We consider the LRT statistic defined as

(4.9) LRTn,λ = `n,λ(w0 + ĝ0
n,λ)− `n,λ(ĝn,λ),

where ĝ0
n,λ is the MLE of g under the local restriction, i.e., ĝ0

n,λ = arg maxg∈H0 Ln,λ(g).
Endowed with the norm associated with the inner product 〈·, ·〉, H0 is a closed subset in H =

Hm(I), and thus a Hilbert space. Proposition 4.2 below says that it also inherits the reproducing
kernel and the penalty operator from H. Its proof is trivial, and thus omitted.

Proposition 4.2. (a). Recall that K(z1, z2) is the reproducing kernel for Hm(I) under 〈·, ·〉. The
bivariate function K∗(z1, z2) = K(z1, z2)−(K(z1, z0)K(z0, z2))/K(z0, z0) is a reproducing kernel in
(H0, 〈·, ·〉). That is, for any z′ ∈ I and g ∈ H0, we have K∗z′ ≡ K∗(z′, ·) ∈ H0 and 〈K∗z′ , g〉 = g(z′).
(b). The operator W ∗λ defined by W ∗λg = Wλg − (Wλg)(z0)/K(z0, z0) ·Kz0 is bounded linear from
H0 to H0 and satisfies 〈Wλg, g̃〉 = λJ(g, g̃), for any g, g̃ ∈ H0.

Given Proposition 4.2, we are ready to derive the restricted FBR for ĝ0
n,λ that is used to obtaining

the null limit distribution. We first define the Frechét derivatives of Ln,λ (under H0) by modifying
those of `n,λ as follows: replace g, KZi and Wλ by w0 + g, K∗Zi and W ∗λ , respectively. For example,

DLn,λ(g)∆g = n−1
n∑
i=1

˙̀
a(Yi;w0 + g(Zi))〈K∗Zi ,∆g〉 − 〈W

∗
λg,∆g〉

≡ 〈S0
n(g),∆g〉 − 〈W ∗λg,∆g〉 ≡ 〈S0

n,λ(g),∆g〉.

Similarly, we have S0
n,λ(ĝ0

n,λ) = 0. Also define S0(g)∆g = E{〈S0
n(g),∆g〉} and S0

λ(g)∆g = S0(g)∆g−
〈W ∗λg,∆g〉. As for the second derivatives, we have DS0

n,λ(g)∆g1∆g2 = D2Ln,λ(g)∆g1∆g2 and
DS0

λ(g)∆g1∆g2 = DS0(g)∆g1∆g2 − 〈W ∗λ∆g1, g2〉, where

DS0(g)∆g1∆g2 = E{῭a(Y ;w0 + g(Z))〈K∗Zi ,∆g1〉〈K∗Zi ,∆g2〉}.
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Similar as Theorem 3.4, we need an additional rate assumption for the restricted FBR result:

Assumption A.4. Under H0, ‖ĝ0
n,λ−g0

0‖ = OP ((nh)−1/2+hm), where g0
0(·) = (g0(·)−w0) ∈ H0.

Assumption A.4 is easy to verify by assuming (2.3), (2.4) and ‖ĝ0
n,λ−g0

0‖H = oP (1). The argument
is similar as the proof of Proposition 3.3 by replacing H with its subspace H0.

Theorem 4.3. (Restricted FBR) Suppose that Assumptions A.1, A.2, A.4, and H0 are satisfied.
If h = o(1) and nh2 →∞, then ‖ĝ0

n,λ − g0
0 − S0

n,λ(g0
0)‖ = OP (an log n).

Our main result on the local LRT is presented below. Define rn = (nh)−1/2 + hm.

Theorem 4.4. (Local Likelihood Ratio Testing) Suppose that Assumptions A.1 through A.4 are
satisfied. Also assume that h = o(1), nh2 →∞, an = o(min{rn, n−1r−1

n (log n)−1, n−1/2(log n)−1}),
and r2

nh
−1/2 = o(an). Furthermore, for any z0 ∈ [0, 1], if n1/2(Wλg0)(z0)/

√
K(z0, z0)→ −cz0,

(4.10) lim
h→0

hV (Kz0 ,Kz0)→ σ2
z0 > 0 and lim

λ→0
E{I(Z)|Kz0(Z)|2}/K(z0, z0) ≡ c0 ∈ (0, 1],

then we obtain: (i). ‖ĝn,λ−ĝ0
n,λ−w0‖ = OP (n−1/2); (ii). −2n·LRTn,λ = n‖ĝn,λ−ĝ0

n,λ−w0‖2+oP (1);

(iii).− 2n · LRTn,λ
d→ c0χ

2
1(c2

z0/c0),(4.11)

with non-centrality parameter c2
z0/c0; under H0.

Note that the parametric convergence rate stated in (i) of Theorem 4.4 is reasonable since our
restriction is local. By Proposition 2.1, it can be explicitly shown that

c0 = lim
λ→0

Q2(λ, z0)
Q1(λ, z0)

, where Ql(λ, z) ≡
∑
ν∈N

|hν(z)|2

(1 + λγν)l
for l = 1, 2.(4.12)

The reproducing kernel K is uniquely determined for any Hilbert space if it exists; see [14]. So,
c0 defined in (4.10) is only determined by the parameter space. Hence, different choices of (γν , hν)
in (4.12) will give exactly the same value of c0 although some particular choice will facilitate the
computation of c0. For example, when H = Hm

0 (I), we can explicitly calculate the value of c0 as
0.75 (0.83) when m = 2 (3) by choosing the trigonometric basis (6.2). Interestingly, in the more
general H2(I), we can obtain the same value of c0 even without specifying its (rather different)
eigensystem under mild conditions; see Remark 5.2. However, the value of cz0 in (4.11) partly
depends on the asymptotic estimation bias (see (3.9)), whose estimation is notoriously difficult.
Fortunately, under various under-smoothing conditions, we can show cz0 = 0, and thus establish
the central Chi-square limit distribution. For example, we can choose faster convergent smoothing
parameter when fixing g0 ∈ Hm(I) as in Remark 3.2. Alternatively, we can also insist using λ∗ but
assume the parameter space with more smoothness; see Remark 3.1. In Corollary 4.5, we explore
the latter approach in more details.

Corollary 4.5. Suppose that Assumptions A.1 through A.4 are satisfied and H0 holds. Let
m > 1 +

√
3/2 ≈ 1.866. Also assume that the Fourier coefficients {V (g0, hν)}ν∈N of g0 satisfy∑

ν |V (g0, hν)|2γdν for some d > 1 + 1/(2m), which is implied by g0 ∈ Hmd(I). Furthermore, if
(4.10) is satisfied for any z0 ∈ [0, 1], then (4.11) holds with limiting distribution c0χ

2
1 given λ = λ∗.
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Corollary 4.5 discovers a nonparametric type of Wilk’s phenomenon arising from the local hypoth-
esis testing, which further converts into the classical one in the parametric setup as m→∞ since
limm→∞ c0 = 1. Our result delivers new theoretical insight into the nonparametric local hypothesis
testing; see it global counterpart in Section 5.2.

In the end, we discuss the efficiency/sensitivity of our local LRT by characterizing the limiting
power under a sequence of local alternatives converging to the null. Let ηn be any positive sequence
converging to zero. Consider the local alternative: H1n : g = gn0, where gn0 ≡ g∗ + ηnfn, and
g∗, fn ∈ Hm(I) satisfying g∗(z0) = w0, and as n→∞,

(4.13) |fn(z0)| → ∞, J(fn, fn) ≤ Ca(nλη2
n)−1 and nη2

nV (fn, fn)→ τ2
z0 ,

under g = g∗ for some constants Ca > 0 and τ2
z0 . Under the above design of H1n, we have g = gn0 ∈

Hm(I) and g(z0) = gn0(z0) 6= w0 (asymptotically), i.e., H0 does not hold. This well constructed
sequence of local alternatives can be used to examine how much deviation from gn0(z0) to g∗(z0) (or
equivalently, w0) within Hm(I) can trigger the rejection of H0 using LRTn,λ. Theorem 4.6 explicitly
says that H1n can be detected when gn0(z0) and w0 are separated by a distance converging to
zero at some rate no faster than n−m/(2m+1), which is further proven to be a sharp bound. This
minimum separation rate n−m/(2m+1) is achieved under the smoothing parameter of the same order
as the optimal one in the estimation, i.e., λ = λ∗. We also note that the minimum separate rate
coincides with the minimum length of the point-wise C.I. established in [36]; see Remark 4.1.
As for the global likelihood ratio testing, Theorem 5.4 derives a faster minimal separation rate,
i.e., n−2m/(4m+1), indicating that the global testing is actually more powerful/sensitive. The above
surprising difference in the minimum separation rates turns out to be reasonable after a second
thought. This is because, in the local testing, the data information is not as fully used as in the
global one, which leads to a slower minimum separation rate as a compensation/tradeoff.

Theorem 4.6. Let m > 1 +
√

3/2 ≈ 1.866, h � n−d for 1
2m+1 ≤ d < 2m

10m−1 and ηn ≥
(nh)−1/2 + hm. Assume that `(Y ; g) is the log-density. Suppose, under both g = g∗ and g = gn0,
Assumptions A.1 through A.4 are satisfied, e.g., Assumption A.1 holds with g0 therein replaced by
g∗ and gn0, respectively, and

∑
ν |V (g∗, hν)|γ1/2

ν ≤ C∗ for some positive constant C∗ unrelated to n,
and (4.10) holds. Then for any δ ∈ (0, 1), there exists a sufficiently large constant N such that

(4.14) inf
n≥N

P (reject H0|H1n is true) ≥ 1− δ.

The lower bound of ηn, i.e., n−m/(2m+1), is achieved when h = h∗. If ηn = o(n−m/(2m+1)), then
we can find a sequence of functions fn satisfying (4.13) such that (4.14) does not hold. Thus,
n−m/(2m+1) is the minimum separation rate for the local LRT to detect H1n.

The log-density condition in Theorem 4.6 is only assumed for simplicity, and can be easily relaxed
by assuming that Pngn0

is contiguous with respect to Png∗ , where Png is denoted as the distribution
function under the model parameter g. The above contiguity assumption can be verified using Le
Cam’s first lemma, i.e., Theorem 3.10.2 of [55]. We want to point out that the techniques in the
proof of Theorem 4.6 are very generic and can be applied to derive the minimum separation rate
in the local testing based on other test statistic, e.g., Tn,λ =

√
nh(ĝn,λ(z0) − w0)/σz0 , which is

essentially the same.

5. Global Asymptotic Inferences. Depicting the global behavior of a smooth function is
crucially important in practice. In Sections 5.1 and 5.2, we develop the global counterparts of
Section 4 by constructing the simultaneous confidence band and testing global hypothesis via
likelihood ratio. Again, the FBR is the key ingredient in the theoretical studies.
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5.1. Simultaneous Confidence Band. In this section, we establish the simultaneous confidence
band (SCB) for g(z) following the approach of Bickel and Rosenblatt (1973). The proposed SCB
centers around ĝn,λ(z) with the

√
log n-wider bandwidth than the asymptotic point-wise C.I., and

is proven to be asymptotically valid over any compact subset in (0, 1) based on the FBR and
strong approximation techniques. The approach of Bickel and Rosenblatt (1973) was originally
developed in the density estimation context, and then has been extended to M-estimation ([22])
and local polynomial estimation ([10]). For example, SCB is constructed for (generalized) varying-
coefficient models based on the latter method; see [17, 60]. The volume of tube method ([51])
is another approach, but requires the error distribution to be symmetric; see its application to
[61, 32]. All the models considered above require the error to be additive and Gaussian. Sun,
Loader and McCormick (2000) relaxed the restrictive error assumption of [51] in generalized linear
models, but had to translate the nonparametric estimation into the parametric one. As far as we
are aware, we construct the first SCB for the general class of nonparametric models including the
logistic regression. In particular, the minimum bandwidth of our SCB is shown to achieve the lower
bound established in Genovese and Wasserman (2008). In addition, the equivalent kernel conditions
assumed in this section imply an interesting by-product that the asymptotic lengths of our point-
wise C.I.s (also scaling constants in the null limit distribution (4.11)) based on the cubic spline and
periodic spline are actually the same despite their different eigensystems; see Remark 5.2.

One key set of conditions assumed in this section is the strong approximation conditions (5.1) –
(5.3). Specifically, we assume that there exists a real function ω(·) defined on R satisfying, for any
fixed 0 < ϕ < 1, hϕ ≤ z ≤ 1− hϕ and t ∈ I,∣∣∣∣∣ djdtj

(
h−1ω((z − t)/h)−K(z, t)

)∣∣∣∣∣ ≤ CKh−(j+1) exp(−C2h
−1+ϕ) for j = 0, 1,(5.1)

where C2, CK are some positive constants. Condition (5.1) implies that ω is an equivalent kernel of
the reproducing kernel function K with certain degree of approximation accuracy. Meanwhile, we
also require some regularity conditions on ω. In particular, we assume that

(5.2) |ω(u)| ≤ Cω exp(−|u|/C3), |ω′(u)| ≤ Cω exp(−|u|/C3), for any u ∈ R,

and that there exists a constant 0 < ρ ≤ 2 s.t.

(5.3)
∫ ∞
−∞

ω(t)ω(t+ z)dt = σ2
ω − Cρ|z|ρ + o(|z|ρ), as |z| → ∞,

where C3, Cω, Cρ are some positive constants and σ2
ω =

∫
R ω(t)2dt. The following exponential en-

velop condition is also needed

(5.4) sup
z,t∈I

∣∣∣∣ ∂∂zK(z, t)
∣∣∣∣ = O(h−2).

Theorem 5.1. (Simultaneous Confidence Band) Suppose Assumptions A.1 through A.3 are
satisfied, and Z is uniform on I. Let m > (3 +

√
5)/4 ≈ 1.3091 and h = n−δ for any δ ∈

(0, 2m/(8m − 1)). Furthermore, assume that there exist positive constants C0 and C1 such that
E{exp(|ε|/C1)|Z} ≤ C0, a.s., and that (5.1) – (5.4) hold. The conditional density of ε given Z = z,
namely π(ε|z), is assumed to be satisfied for some positive constants ρ1 and ρ2,

(5.5)
∣∣∣∣ ddz log π(ε|z)

∣∣∣∣ ≤ ρ1(1 + |ε|ρ2) for any ε ∈ R and z ∈ I.
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Then, we have, for any 0 < ϕ < 1 and u ∈ R,

P

(
(2δ log n)1/2

{
sup

hϕ≤z≤1−hϕ
(nh)1/2σ−1

ω I(z)−1/2|ĝn,λ(z)− g0(z) + (Wλg0)(z)| − dn

}
≤ u

)
−→ exp(−2 exp(−u)),(5.6)

where dn is some constant relying merely on h, ρ, ϕ and Cρ.

The FBR developed in Section 3.1 and the strong approximation techniques ([5]) are crucial to
the proof of Theorem 5.1. The uniform distribution condition on Z is only assumed for simplicity,
and can be relaxed to the density that is bounded away from zero and infinity. Condition (5.5) is
easy to check in various situations. For example, it holds for the conditional normal model, i.e.,
ε|Z = z ∼ N(0, σ2(z)), if σ2(z) satisfies infz σ(z)2 > 0, and σ(z) and σ′(z) both have finite upper
bounds. The existence of the bias term Wλg0(z) in the SCB (5.6) may lead to poor small sample
performances. We avoid the bias estimation by a slight under-smoothing which is also advocated
by [39], following earlier results of [24, 25] where it is shown that under-smoothing is more efficient
than explicit bias correction when the goal is to minimize the coverage error. Specifically, this bias
effect will asymptotically disappear if we assume:

(5.7) lim
n→∞

{
sup

hϕ≤z≤1−hϕ

√
nh log n|Wλg0(z)|

}
= 0.

Condition (5.7) is slightly stronger than the under-smoothing Condition that
√
nh(Wλg0)(z0) = o(1)

assumed for the C.I. in Proposition 4.1. Due to the uniform boundedness of hν ’s in Assumption A.2
and the generalized Fourier expansion of Wλg0, it is easy to show that (5.7) is satisfied if we (i)
increase the smoothness of g0; (ii) choose some suboptimal smoothing parameter; or (iii) assume
slightly stronger conditions on g

(m)
0 ; see Remarks 3.1 – 3.3.

Proposition 5.2 reveals the validity of Conditions (5.1) – (5.3) in the setting of L2 regression.
The proof relies on the explicit construction of an equivalent kernel for various m in [38]. Here we
only consider m = 2 for simplicity.

Proposition 5.2. (L2 regression) Consider the setting that `(y; a) = −(y − a)2/(2σ2), Z ∼
Unif [0, 1] and H = H2(I), i.e., m = 2. Then, (5.1)–(5.3) hold with ω(t) = σ2−1/mω0(σ−1/mt) for
t ∈ R, where ω0(t) = 1

2
√

2
exp(−|t|/

√
2)
(
cos(t/

√
2) + sin(|t|/

√
2)
)

. In particular, (5.3) holds for
arbitrary ρ ∈ (0, 2] and Cρ = 0.

Remark 5.1. In the setting of Proposition 5.2, we are able to explicitly find the constants
σ2
ω and dn in Theorem 5.1. Specifically, it is trivial to calculate that σ2

ω = 0.265165σ7/2 since
σ2
ω0

=
∫∞
−∞ |ω0(t)|2dt = 0.265165 and m = 2. Since Cρ = 0 for arbitrary ρ ∈ (0, 2], by the formula

B(t) in Theorem A1 of [5], we know that

dn = (2 log(h−1 − 2hϕ−1))1/2 +
(1/ρ− 1/2) log log(h−1 − 2hϕ−1)

(2 log(h−1 − 2hϕ−1))1/2
.(5.8)

When ρ = 2, the above dn is simplified as (2 log(h−1 − 2hϕ−1))1/2. In general, we know that dn ∼
(−2 log h)1/2 �

√
log n for sufficiently large n since h = n−δ. Given that the estimation bias is

removed, e.g., under (5.7), we have the following 100× (1− α)% SCB:

(5.9)
{[
ĝn,λ(z)± 0.5149418(nh)−1/2σ̂3/4

(
c∗α/

√
−2 log h+ dn

)]
: hϕ ≤ z ≤ 1− hϕ

}
,



ASYMPTOTIC INFERENCES FOR THE SMOOTHING SPLINE 17

where dn is given in (5.8), c∗α = − log(− log(1−α)/2) and σ̂ is a consistent estimate. Note that we
exclude the boundary points in (5.9). To obtain the uniform coverage, we have to sacrifice a bit by
increasing the bandwidth upto

√
log n-order over the length of the point-wise C.I., e.g., (4.1).

Remark 5.2. One interesting by-product we discover in the setting of Proposition 5.2 is that
the point-wise C.I.s for g0(z0) based on the cubic spline and periodic spline share the asymptotic
equivalent length at any fixed z0 ∈ (0, 1). This result is a bit surprising since these two splines have
very distinct eigensystem. Under (5.1), it can be shown that

σ2
z0 ∼ σ−2h

∫ 1

0
|K(z0, z)|2dz

∼ σ−2h−1
∫ 1

0

∣∣∣∣ω (z − z0

h

)∣∣∣∣2 dz
= σ−2

∫ (1−z0)/h

−z0/h
|ω(s)|2ds ∼ σ−2

∫
R
|ω(s)|2ds = σ3/2σ2

ω0
,

given the choice of ω in Proposition 5.2. Thus, Corollary 3.6 implies the following 95% C.I.

(5.10) ĝn,λ(z0)± 1.96(nh)−1/2σ3/4σω0 = ĝn,λ(z0)± 1.96(nh†)−1/2σσω0 .

Since σ2
ω0

= I2/π, the lengths of C.I.s (4.1) (based on periodic spline) and (5.10) (based on cubic
spline) surprisingly coincide with each other. Another useful application of Proposition 5.2 is to
find the value of c0 needed in the local LRT test when H = H2(I); see Theorem 4.3. According to
the definition of c0 in (4.10), we have c0 ∼ σ2

z0/(hK(z0, z0)). Under (5.1), we can show K(z0, z0) ∼
h−1ω(0) = h−1σ3/2ω0(0) = 0.3535534h−1σ3/2. Since σ2

z0 ∼ σ3/2σ2
ω0

and σ2
ω0

= I2/π, we have c0 =
0.75. This value coincides with the one found in periodic splines, i.e., H = H2

0 (I). These somewhat
amazing phenomena have never been observed in the literature and may be used to facilitate the
construction of C.I. and local LRT in practice.

Remark 5.3. Genovese and Wasserman (2008) showed that when g0 belongs to a m-order
Sobolev ball, the lower bound for the average length of the SCB is proportional to bnn

−m/(2m+1)

with bn merely depending on log n. We next show that the (minimum) bandwidth of our SCB can
achieve this lower bound with bn = (log n)(m+1)/(2m+1). Based on Theorem 5.1, the bandwidth of our
SCB has the shrinking rate dn(nh)−1/2, where dn is of the order

√
log n; see Remark 5.1. Meanwhile,

Condition (5.7) is crucial for our band to maintain the desired coverage probability. Suppose that
the Fourier coefficients of g0 satisfy the condition in Remark 3.3. It can be verified that (5.7) holds
when nh2m+1 log n = O(1) which sets an upper bound for h. When h is chosen as the above upper
bound, i.e., O(n log n)−1/(2m+1), and dn �

√
log n, our SCB has achieved its minimum bandwidth,

i.e., n−m/(2m+1)(log n)(m+1)/(2m+1), which turns out to be rate optimal according to [20].

In practice, the construction of our SCB requires a delicate choice of (h, ϕ). Otherwise, over/under-
coverage of the true function may occur near the boundary points. Unfortunately, as pointed by
[5], there is no practical/theoretical guideline on how to find the optimal (h, ϕ), although one can
choose proper h to make the band as thin as possible. Hence, in next section, we propose a more
practically feasible approach to explore the global behaviors, which only requires the tuning of h.
Moreover, we are able to specify an optimal h under which our likelihood-ratio-based approach
achieves the optimal minimax rate of hypothesis testing specified by Ingster (1993).
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5.2. Global Likelihood Ratio Test. Nonparametric hypothesis testing is of equal importance in
studying the global behaviors; see an overview and references in [23]. There is a vast literature deal-
ing with this problem among which the Generalized Likelihood Ratio Testing (GLRT) ([18]) arises
as a fundamental approach. Due to the technical tractability, Fan et al (2001) only focused on the
local polynomial fitting in the GLRT; also see [19] for the sieve extension. Based on the smoothing
spline estimate, we propose an alternative method called as the Penalized Likelihood Ratio Test-
ing (PLRT), which not only applies to the simple hypothesis but also to a very general class of
composite hypothesis; see Remark 5.4. The null limit distribution is proven to be nearly χ2 with
diverging degree of freedom. Therefore, the Wilk’s phenomenon observed in local LRT continues to
hold in nonparametric penalized likelihood but with a more nonparametric form. Besides the much
more concise assumptions, one major advantage of our PLRT over GLRT is that the specifications
of the former null limit distribution are only determined by the parameter space, while the latter
heavily depends on the choice of kernel function; see Table 2 in [18]. In other words, the PLRT is
closer to the nature of nonparametric models. Furthermore, we show that the PLRT achieves the
optimal minimax rate for hypothesis testing in the sense of Ingster (1993). In practice, the power
performances of PLRT are superior and better than those of GLRT for small sample sizes in both
periodic and non-periodic splines; see Example 6.1. In summary, our PLRT is not only intuitive
to use but also powerful to apply. However, most other smoothing spline based tests, e.g., LMP
and GML tests ([13, 57, 27, 8, 43]), use ad-hoc discrepancy measure leading to complicated null
distributions with nuisance parameters, and have not addressed the optimality issues at all. Hence,
their applicability is restricted; see more review in [34].

Consider the following “global” hypothesis:

(5.11) Hglobal
0 : g = g0 versus Hglobal

1 : g ∈ H − {g0},

where g0 ∈ H can be either known or unknown. The PLRT statistic is defined as

(5.12) PLRTn,λ = `n,λ(g0)− `n,λ(ĝn,λ).

Even when g0 is unknown, the limit distribution of PLRT under Hglobal
0 can still be derived, though

the value of test statistic is not calculable. More importantly, this nice property can be used to test
composite hypothesis; see Remark 5.4.

Theorem 5.3 below derives the null limiting distribution of PLRTn,λ based on the FBR result.
Theorem 5.3. Let the Assumptions A.1 through A.3 be satisfied. Also assume that nh2m+1 =

O(1), nh2 → ∞, an = o(min{rn, n−1r−1
n h−1/2(log n)−1, n−1/2(log n)−1}) and r2

nh
−1/2 = o(an).

Furthermore, under Hglobal
0 , E{ε4|Z} ≤ C, a.s., for some constant C > 0, where ε = ˙̀

a(Y ; g0(Z))
represents the “model error”. Under Hglobal

0 , we have

(5.13) (2un)−1/2
(
−2nrK · PLRTn,λ − nrK‖Wλg0‖2 − un

)
d−→ N(0, 1),

where un = h−1σ4
K/ρ

2
K , rK = σ2

K/ρ
2
K ,

σ2
K = hE{ε2K(Z,Z)} =

∑
ν

h

(1 + λγν)
, ρ2
K = hE{ε21ε22K(Z1, Z2)2} =

∑
ν

h

(1 + λγν)2
,(5.14)

and (εi, Zi), i = 1, 2 are iid copies of (ε, Z).

Direct examination reveals that h � n−d with 1
2m+1 ≤ d < 2m

8m−1 satisfies the rate conditions
required in the above Theorem when m > (3 +

√
5)/4 ≈ 1.309. In Theorem 5.4, we further show

that some particular choice of h in the above range will guarantee the minimax optimality of PLRT.
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Theorem 5.3 implies that −2nrK · PLRTn,λ is asymptotically N(un, 2un) since n‖Wλg0‖2 =
o(h−1) = o(un) implied by the proof of Theorem 5.3 and the definition of un. As n approaches
∞, i.e., un → ∞, we know that N(un, 2un) is nearly the same as χ2

un in distribution. Hence,
−2nrK · PLRTn,λ is approximately distributed as χ2

un , denoted as

(5.15) − 2nrK · PLRTn,λ
a∼ χ2

un .

Therefore, we claim that the fundamental Wilk’s phenomenon also holds under nonparametric
penalized estimation but with a more nonparametric form, i.e., the diverging degree of freedom.
Obviously, the specifications of (5.15), i.e., σ2

K and ρ2
K , are only determined by the parameter

space and model setup. This is in stark contrast with the null limit distribution of GLRT whose
specifications vary with the used kernel functions; see Table 2 of [18]. Unfortunately, there is no
theoretical guideline in choosing the most suitable kernel function. Hence, our PLRT tests the
nonparametric models in a more fundamental way. In addition, we find that the under-smoothing is
not needed in carrying out the valid global testing, i.e., (5.15), unlike the other inference procedures.

We next discuss the calculation of (rK , un) and its implications in some important setup. In the
setting of Proposition 5.2, we can show σ2

K = hσ−2
∫ 1

0 K(z, z)dz ∼ hσ−2(h−1ω(0)) = σ−1/2ω0(0) =
0.3535534σ−1/2 by applying this Proposition. Similarly, we have ρ2

K ∼ σ−1/2σ2
ω0

= 0.265165σ−1/2.
So rK = 1.3333 and un = 0.4714h−1σ−1/2. Surprisingly, if we replace H2(I) by H2

0 (I) in the above
setup, our direct calculations in Case (I) of Example 6.1 reveal that (rK , un) share exactly the
same values. We also note that rK → 1 when H = Hm

0 (I) as the degree of smoothness m tends
to ∞. This is consistent with the scaling constant 2 in the classical likelihood ratio theory. Note
that the possibly unknown parameter σ in un can be essentially profiled out without affecting
the null limit distribution. We keep it here only for the consistency with our general modeling
framework. Alternatively, we can directly simulate the null limit distribution by fixing the nuisance
parameters, e.g., the null value g0, at reasonable values or estimates (e.g., by wild bootstrap) even
without calculating the values of (rK , un). This is one major advantage of the Wilk’s type of results.

Remark 5.4. In this Remark, we will discuss the composite hypothesis testing via PLRT and
the related Wilk’s phenomenon. Specifically, we are able to test whether g belongs to some finite
dimensional class of functions with bounded Sobolev norm, which is much larger than the null space
Nm considered in the literature. As an example, we consider testing, for any integer q ≥ 0,

(5.16) Hglobal
0 : g ∈ Lq(I)

where Lq(I) ≡ {g(z) =
∑q
l=0 alz

l : a = (a0, a1, . . . , aq)T ∈ Rq+1} represents the class of q-
th polynomials over I. Let â∗ = arg maxa∈Rq+1{(1/n)

∑n
i=1 `(Yi;

∑q
l=0 alZ

l
i) − (λ/2)aTDa}, where

D =
∫ 1

0 (0, 0, 2, 6z, . . . , q(q − 1)zq−2)T (0, 0, 2, 6z, . . . , q(q − 1)zq−2)dz is a (q + 1) × (q + 1) matrix.
Hence, under Hglobal

0 , the penalized MLE ĝ∗(z) =
∑q
l=0 â∗lz

l. Let g0q denote some unknown “true”
parameter in Lq(I) with some polynomial coefficient a0 = (a0

0, a
0
1, . . . , a

0
q)
T . For testing the com-

posite hypothesis (5.16), we first decompose the PLRT statistic PLRT comn,λ as Ln1 − Ln2, where
Ln1 = `n,λ(g0q)− `n,λ(ĝn,λ) and Ln2 = `n,λ(g0q)− `n,λ(ĝ∗). By formulating

H ′0 : a = a0 versus H ′1 : a 6= a0,

we notice that Ln2 appears to be the PLRT in the parametric setup. We can prove the order of Ln2

as OP (n−1) no matter q < m (by applying the parametric theory in [47]) or q ≥ m (by slightly
modifying the proof of Theorem 4.4). On the other hand, Ln1 is exactly the PLRT for testing

H ′0 : g = g0q versus Hglobal
1 : g 6= g0q.
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Since Theorem 5.3 also applies to the unknown null value g0q, Ln1 follows the limit distribution
(5.15). So does PLRT comn,λ under the composite hypothesis (5.16) considering Ln2 = OP (n−1).

To the end of this section, we remark that PLRT achieves the optimal minimax rate of hypothesis
testing specified in Ingster (1993). By developing the uniform version of FBR, we rigorously prove
the above claim in Theorem 5.4. For convenience, we only consider `(Y ; a) = −(Y − a)2/2. The
extension to the more general setup can be found in [46] under stronger assumptions, e.g., more
restrictive Ga defined below. Write the local alternative as H1n : g = gn0, where gn0 = g0 +
gn, g0 ∈ Hm(I) and gn belongs to some alternative value set Ga ≡ {g ∈ Hm(I)|V ar(g(Z)2) ≤
ζE2{g(Z)2}, J(g, g) ≤ ζ} for some constant ζ > 0.

Theorem 5.4. Let m > (3 +
√

5)/4 ≈ 1.309, and h � n−d for 1
2m+1 ≤ d < 2m

8m−1 . Suppose
that Assumption A.2 is satisfied, and uniformly over gn ∈ Ga, ‖ĝn,λ − gn0‖ = OP (rn) holds under
H1n : g = gn0. Then for any δ ∈ (0, 1), there exist positive constants C and N such that

(5.17) inf
n≥N

inf
gn∈Ga
‖gn‖≥Cηn

P
(

reject Hglobal
0 |H1n is true

)
≥ 1− δ,

where ηn ≥
√
h2m + (nh1/2)−1. The minimal lower bound of ηn, i.e., n−2m/(4m+1), is achieved when

h = h∗∗ ≡ n−2/(4m+1).

The condition “uniformly over gn ∈ Ga, ‖ĝn,λ − gn0‖ = OP (rn) holds under H1n : g = gn0”
means that for any δ̃ > 0, there exist constants C̃ and Ñ both unrelated to gn ∈ Ga such that
inf

n≥Ñ infgn∈Ga Pgn0

(
‖ĝn,λ − gn0‖ ≤ C̃rn

)
≥ 1− δ̃.

Theorem 5.4 proves that, when h = h∗∗, PLRT can detect any local alternatives with a separation
rate no faster than n−2m/(4m+1), which turns out to be the optimal minimax rate in the sense of [26];
see more discussions in Remark 5.5. The above rates are consistent with those derived in the local
polynomial estimation ([18]) although our nonparametric models are more general and conditions
in Theorem 5.4 are more concise. In contrast with the local LRT studied in Theorem 4.6, we note an
interesting fact that two different smoothing parameters are employed for obtaining the minimum
separation rates, i.e., λ = λ∗ = n−2m/(2m+1) for the local testing and λ = λ∗∗ ≡ n−4m/(4m+1) for the
global testing. Such a distinction might be caused by the different nature of these two testing, i.e.,
local v.s. global, which is reflected by their different minimum separation rates; see the discussions
right below Theorem 4.6. In Example 6.1, a simulation study was conducted to compare the powers
of PLRT and GLRT for both periodic and non-periodic splines; see Tables 3 & 4. As n grows, we
find that the powers in both tests rapidly approach to one, and, more interestingly, that PLRT
appears to be more powerful in the small sample size such as n = 20.

Remark 5.5. We note that the optimal minimax rate of testing established in Ingster (1993)
is under the usual ‖ · ‖L2-norm (w.r.t. Lebesgue measure). However, our minimum separation rate
derived under ‖ ·‖-norm is still optimal due to the trivial domination of ‖ ·‖ over ‖ ·‖L2 (under con-
ditions of Theorem 5.4). We next heuristically explain why the minimax rates of testing associated
with ‖ · ‖, denoted as b′n, and with ‖ · ‖L2, denoted as bn, are essentially the same under conditions
of Theorem 5.4, which may not be easy to see. By definition, whenever ‖gn‖ ≥ b′n or ‖gn‖L2 ≥ bn,
Hglobal

0 can be rejected with large probability, or equivalently, the local alternatives can be detected.
Note that b′n and bn are the minimum rates that satisfy this property. Ingster (1993) has shown
that bn � n−2m/(4m+1). Since ‖gn‖L2 ≥ b′n implies ‖gn‖ ≥ b′n, Hglobal

0 is rejected. This means b′n is
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an upper bound for detecting local alternatives in terms of ‖ · ‖L2, and so bn ≤ b′n. On the other
hand, suppose h = h∗∗ � n−2/(4m+1) and ‖gn‖ ≥ Cn−2m/(4m+1) � bn for some large C > ζ1/2.
Since λJ(gn, gn) ≤ ζλ � ζn−4m/(4m+1), it follows that ‖gn‖L2 ≥ (C2− ζ)1/2n−2m/(4m+1) � bn. This
means bn is a upper bound for detecting the local alternatives in terms of ‖ · ‖, and so b′n ≤ bn.
Therefore, b′n and bn are of the same order.

6. Examples. This section illustrates the applicability of our theories with three examples,
and demonstrates the empirical performances of our inference procedures via some simulations.

Example 6.1. (L2 Regression) Consider the nonparametric regression model

(6.1) Y = g0(Z) + ε,

where ε ∼ N(0, σ2) with unknown σ2. Hence, we have I(Z) = σ−2 and V (g, g̃) = σ−2E{g(Z)g̃(Z)}.
For simplicity, we assume that the true value of σ is one and Z is uniformly distributed over I. In
the simulations, the unknown σ can be either consistently estimated or profiled out as in [18]. The
function “ssr()” in R package assist was used to select the smoothing parameter λ, i.e., h, based on
CV or GCV; see [58]. Note that, in the simulations, we implicitly perform the under-smoothing using
the GCV-selected smoothing parameter since the employed test function is sufficiently smooth; see
Remark 3.1. We first consider H = Hm

0 (I) in Case (I), and then H = Hm(I) in Case (II).
Case (I). H = Hm

0 (I): In this case, we can choose the basis functions hµ’s as

(6.2) hµ(z) =


σ, µ = 0,√

2σ cos(2πkz), µ = 2k, k = 1, 2, . . . ,√
2σ sin(2πkz), µ = 2k − 1, k = 1, 2, . . . ,

with the eigenvalues γ2k−1 = γ2k = σ2(2πk)2m for k ≥ 1 and γ0 = 0. Assumption A.2 is trivially
satisfied for the above choice of (hµ, γµ)’s. We first prove a useful Lemma below.

Lemma 6.1. Recall that Il =
∫∞

0 (1 + x2m)−ldx for l = 1, 2 and h† = hσ1/m. Then, we have

(6.3)
∞∑
k=1

1
(1 + (2πh†k)2m)l

∼ Il
2πh†

.

Proposition 4.1 implies the asymptotic 95% point-wise C.I. for g(z0) as ĝn,λ(z0)±1.96σz0/
√
nh by

choosing proper h; see (3.13). To obtain an explicit form of σ2
z0 , which is the limit of hV (Kz0 ,Kz0)

as h→ 0, we note that hV (Kz0 ,Kz0) = σ2h
(
1 + 2

∑∞
k=1(1 + (2πh†k)2m)−2

)
∼ (I2σ

2−1/m)/π based
on Lemma 6.1. Hence, in practice, we use

(6.4) ĝn,λ(z0)± 1.96σ̂1−1/(2m)
√
I2/(πnh),

where σ̂2 = n−1∑
i(Yi − ĝn,λ(Zi))2. Alternatively, according to Theorem 4.4, we can also establish

the asymptotic C.I. by inverting the local likelihood ratio. The above trigonometric basis (6.2) gives

Ql(λ, z0) = σ2 +
∑
k≥1

{
|h2k(z0)|2

(1 + λσ2(2πk)2m)l
+

|h2k−1(z0)|2

(1 + λσ2(2πk)2m)l

}

= σ2 + 2σ2
∑
k≥1

1
(1 + λσ2(2πk)2m)l

= σ2 + 2σ2
∑
k≥1

1
(1 + (2πh†k)2m)l

.
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Combining (4.12) with Lemma 6.1, we have c0 = I2/I1. Hence, c0 = 0.75 (0.83) when m = 2 (3).
In Table 2 below, we compare the coverage probability (CP) between our asymptotic C.I. (6.4),

denoted as ACI, and Nychka’s Bayesian C.I. (4.7), denoted as NCI, at three quartiles (Q1, Q2, Q3)
of the observed covariates Z. We assume the true periodic function g0(z) = 12 sin(πz) and estimate
it using periodic spline under m = 2. The CP was computed as the proportion of the C.I.s that
cover g0 at that point over 10, 000 replications. From Table 2, it is observed that the CPs of ACIs
and NCIs are both reasonably close to the 95% nominal level. However, as n grows, the CPs of the
ACIs are getting closer to 95% while those of NCIs always stay a bit above 95% with the increasing
gap, in particular when n = 800. This somewhat unsatisfactory performance of NCI is consistent
with the observations in [40]. Except for better CP, our ACI also has shorter length; see Table 2.
Our simulation results empirically verify our claim in Section 4.1 that the Bayesian C.I. has biased
coverage probability and larger interval length.

Q1 Q2 Q3

n NCI ACI NCI ACI NCI ACI
100 95.12 93.74 95.43 94.17 95.33 93.99
200 95.94 94.64 95.75 94.47 95.79 94.51
300 95.81 94.60 95.97 94.74 95.92 94.62
400 95.93 94.60 96.03 94.90 95.92 94.60
800 96.20 94.75 96.14 94.94 96.34 95.15

Table 2
Comparison of 100× CP% of CIs in Case (I). The lengths of the NCI are 1.14, 0.88, 0.75, 0.68, 0.52, and those of

ACIs are 1.08, 0.83, 0.71, 0.64, 0.49, for n = 100, 200, 300, 400, 800. Nominal level is 95%.

In Figure 1, we constructed the SCB for g over (0, 1) based on (5.9) by taking dn = (−2 log h)1/2,
and compared it with three so-called point-wise confidence bands constructed by linking the end-
points of the ACI (6.4), Wahba’s Bayesian C.I. (4.3) and NCI (4.7) at each observed covariate,
denoted as ACB, BCB1 and BCB2, respectively. Data were generated under the same setup as
above. From Figure 1, it is observed that the coverage properties of all the confidence bands are
reasonably good, and getting better as n grows. Meanwhile, all band areas clearly shrink to zero
as n. We also note that the ACBs possess the smallest band area, while the SCBs have the largest
one, which is not surprising by its definition. The more technical reason is due to the dn factor in
the construction of SCB, which is of

√
log n-order; see Remark 5.1.

In the end of Case (I), we considered testing H0 : g is linear at the 95% significance level by
both our PLRT and the GLRT ([18]). By Lemma 6.1 and (6.2), some direct calculations reveal
that rK = 1.3333 and un = 0.4714(hσ1/2)−1 in (5.15) when m = 2. In the simulations, we replaced
σ by σ̂ defined above. Data were generated under the same setup except that a more linear true
function g(z) = 3.2 sin(πz) (than the previous g(z) = 12 sin(πz)) was used for the purpose of power
comparison. For the GLRT method, the Epanechnikov kernel function is used under the R function
“glkerns()”. For PLRT method, GCV was used to select the smoothing parameter considering
the slight difference between h∗ and h∗∗. Table 3 compares the powers (proportions of rejections
in 10, 000 replications) for four sample sizes. When n = 40 or larger, both test methods achieve
almost 100% power. We also note that PLRT shows moderate advantage in smaller sample even
though the chosen smoothing parameter (by GCV) is not optimal in terms of testing. An intuitive
reason is that the smoothing spline estimate in PLRT uses the full data information; while the
local polynomial estimate used in GLRT only uses local data information, which might not be
sufficient when sample size is small. Of course, as n grows, such difference rapidly vanishes due to
the increasing data information.
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Fig 1. 95% point-wise and simultaneous confidence bands for periodic g in Case (I). The upper and lower bands
are indicated by green curves, while the central black curve represents the true function. The numerical band area is
denoted as “ba”.

Case (II). H = Hm(I): For this more general H, we repeated most of the inference procedures in
Case (I) by assuming the non-periodic true function g(z) = 6 sin(2.8πz) and using the cubic spline
for estimation. Hence, we only point out the differences. Figure 2 summarizes the simultaneous
confidence band and point-wise confidence bands in which BCB1 was computed by (4.2) and BCB2
was constructed by scaling the length of the BCB1 by a factor

√
27/32 ≈ 0.919. We tested the

linearity of g at significance level 95%, and assumed g(z) = 1.5 sin(2.8πz). Table 4 summarizes the
powers of the PLRT and GLRT. From Figure 2 and Table 4, we conclude that all the observations
and findings for the periodic spline in Case (I) remain the same for the non-periodic spline.

Example 6.2. (Nonparametric Gamma Model) Consider the two-parameter exponential model

Y |Z ∼ Gamma(α, exp(g0(Z))),

where α > 0, g0 ∈ Hm
0 (I) and Z is uniform over [0, 1]. This framework corresponds to `(y; g(z)) =

αg(z) + (α − 1) log y − y exp(g(z)). Thus, it can be shown that I(z) = α, leading us to choose
the basis functions to be hνs defined as in (6.2) with σ = α−1/2, and the eigenvalues to be γ2k =
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100× Power%
n = 20 n = 30 n = 40 n = 100

PLRT 92.7 98.6 99.7 100
GLRT 90.1 98.2 99.7 100

Table 3
Power comparison of the PLRT and GLRT for four sample sizes in Case (I). Significance level is 95%.

100 × Power%
n = 20 n = 30 n = 40 n = 100

PLRT 92.5 99.1 99.7 100
GLRT 90.3 98.9 99.5 100

Table 4
Power comparison of the PLRT and GLRT for four sample sizes in Case (II). Significance level is 95%.

γ2k−1 = α−1(2πk)2m for k ≥ 1, and γ0 = 0. One can conduct the local and global inferences in the
similar manner as Case (I) of Example 6.1.

Example 6.3. (Nonparametric Logistic Regression) In this example, we consider the binary
response Y ∈ {0, 1} modeled by the following logistic model

(6.5) P (Y = 1|Z = z) =
exp(g0(z))

1 + exp(g0(z))
,

where g0 ∈ Hm(I). A straightforward calculation gives I(z) = exp(g0(z))
(1+exp(g0(z)))2

. In this example, c0 has
no explicit form since the pair (hµ, γµ) has no explicit form. Therefore, we have to find an accurate
estimate of c0. To achieve this, we will use (2.11) to approximate hνs and γνs. Thus, accurate
estimates Î(z) and π̂(z) are needed. Observe that I(z) = P (Y = 1|Z = z)P (Y = 0|Z = z). To
approximate I(z), we thus have to plug in an estimate of P (Y = 1|Z = z). Note P (Y = 1|Z =
z) = [P (Z = z|Y = 1)P (Y = 1)]/P (Z = z). Denote π1(z) = P (Z = z|Y = 1), r = P (Y = 1)
and π(z) = P (Z = z). Let π̂1 and π̂ be consistent estimate of π1 and π, such as the kernel
density estimators. Let r̂ be the proportion of Y = 1, which is a consistent estimate of r. Then we
can approximate I(z) by Î(z) = π̂1(z)r̂

π̂(z)

(
1− π̂1(z)r̂

π̂(z)

)
. One may find the approximated eigensystem

(ĥµ, λ̂µ)s by solving the approximate version of (2.11) in which I(·) and π(·) are replaced by Î(·)
and π̂(·), respectively. Obviously, the approximated eigensystem are needed in the local and global
inferences. For example, to perform PLRT test based on Theorem 5.3, we can use (ĥµ, λ̂µ)s to specify
the null limiting distribution and the theoretical 95% cutoff value in (5.15). Meanwhile, we are also
aware that solving the approximated eigensystem could be computationally tricky. Fortunately, in
the PLRT, it can be avoided by directly simulating the null limit distributions, e.g., by the wild
bootstrap in [37], as long as the Wilk’s type of results holds.

Acknowledge: We appreciate helpful discussions with Professor Chong Gu.

APPENDIX

A.1. Proof of Proposition 2.1. Based on the definition (2.8), we can write ‖g‖2 = V (g, g) +
λJ(g, g), and then plug in the Fourier expansion of g to obtain the explicit expression of ‖g‖2. A
direct calculation reveals that

(A.1) 〈g, hν〉 = 〈
∑
µ

V (g, hµ)hµ, hν〉 = V (g, hν)(1 + λγν),



ASYMPTOTIC INFERENCES FOR THE SMOOTHING SPLINE 25

0.0 0.4 0.8

−
5

0
5

z

g(
z)

BCB1, n = 100

ba = 1.092594

0.0 0.4 0.8

−
5

0
5

z

g(
z)

BCB2, n = 100

ba = 1.003611

0.0 0.4 0.8

−
5

0
5

z

g(
z)

ACB, n = 100

ba = 0.9302145

0.0 0.4 0.8

−
5

0
5

z

g(
z)

SCB, n = 100

ba = 2.4125

0.0 0.4 0.8

−
5

0
5

z

g(
z)

BCB1, n = 200

ba = 0.840578

0.0 0.4 0.8

−
5

0
5

z

g(
z)

BCB2, n = 200

ba = 0.7721202

0.0 0.4 0.8

−
5

0
5

z
g(

z)

ACB, n = 200

ba = 0.7099861

0.0 0.4 0.8

−
5

0
5

z

g(
z)

SCB, n = 200

ba = 1.582709

0.0 0.4 0.8

−
5

0
5

z

g(
z)

BCB1, n = 400

ba = 0.6030603

0.0 0.4 0.8

−
5

0
5

z

g(
z)

BCB2, n = 400

ba = 0.5539463

0.0 0.4 0.8

−
5

0
5

z

g(
z)

ACB, n = 400

ba = 0.5083777

0.0 0.4 0.8
−

5
0

5

z

g(
z)

SCB, n = 400

ba = 1.199456

Fig 2. 95% point-wise and simultaneous confidence bands for non-periodic g in Case (II). The upper and lower bands
are indicated by green curves, while the central black curve represents the true function. The numerical band area is
denoted as “ba”.

for any g ∈ Hm(I) and ν ∈ N. It follows by (A.1) that V (Kz, hν) = 〈Kz, hν〉/(1+λγν) = hν(z)/(1+
λγν). Hence, we can obtain the expression of Kz(·) by considering Kz(·) =

∑
ν V (Kz, hν)hν(·).

Furthermore, (A.1) implies that V (Wλhν , hµ) = 〈Wλhν , hµ〉/(1 + λγµ) = λγµδµν/(1 + λγµ), for
any ν, µ ∈ N. In the end, we can conclude the proof of Proposition 2.1 by considering Wλhν(·) =∑
µ V (Wλhν , hµ)hµ.

A.2. Proof of Proposition 2.2. The usual L2-inner product is defined to be 〈g, ξ〉L2 =
∫ 1

0 g(z)ξ(z)dz.
Let D be the differential operator, i.e., Dφ = d

dzφ, and ω = 1/(Iπ). Thus, ω ∈ Cm(I) is positive and
finitely upper bounded. It follows from [6] that the growing rates for γν is of order ν2m. Since the
operator L0 = (−1)mωD2m is self-adjoint under the inner product V , that is, V (L0g, ξ) = V (g, L0ξ)
for any ξ, g ∈ C2m(I) satisfying the boundary conditions in (2.11), the orthogonality and complete-
ness of hνs under V thus follow from Theorem 2.1 (pp. 189) and Theorem 4.2 (pp. 199) of [11]
with the usual L2-inner product 〈, 〉L2 replaced with V . Therefore, when hνs are normalized to
V (hν , hν) = 1, they form an orthonormal and complete set in L2(I;V ).

Next we show that h(m)
ν , ν ≥ m, are complete in L2(I) under 〈, 〉L2 . The idea follows by arguments

in page 147 of [35]. The eigenspace corresponding to zero eigenvalue contains functions φs that
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satisfy (−1)mφ(2m) = 0 with boundary conditions φ(j)(0) = φ(j)(1) = 0 for j = m, . . . , 2m − 1,
thus, it follows from [54] that this eigenspace is Pm−1, the set of all polynomials of degree at most
m − 1. Let hν , ν = 0, . . . ,m − 1, be the orthonormal basis (under V ) of Pm−1 corresponding
to γ0 = . . . = γm−1 = 0. Note γν > 0 for ν ≥ m. If g ∈ L2(I) such that for any ν ≥ m,∫ 1
0 gh

(m)
ν = 0. Let ξ be a solution of ξ(m) = g, then using integration by parts we have 0 =∫ 1

0 ξh
(2m)
ν = (−1)mγνV (ξ, hν). Therefore V (ξ, hν) = 0 for any ν ≥ m. By completeness of hνs,

ξ must be a linear combination of h0, . . . , hm−1, a polynomial with degree at most m − 1. So
g = ξ(m) = 0 implying the completeness of h(m)

ν /γ
1/2
ν , ν ≥ m, in L2(I) under 〈, 〉L2 . Now, for any

g̃ ∈ Hm(I), by completeness of hνs in L2(I) under V -norm, g̃ =
∑
ν∈N V (g̃, hν)hν with convergence

in V -norm; since V (g̃, hν) =
∫ 1

0 g̃
(m)h

(m)
ν /γν , by completeness of h(m)

ν /γ
1/2
ν , ν ≥ m in L2(I) in usual

‖ · ‖L2-norm, g̃(m) =
∑
ν≥m〈g̃(m), h

(m)
ν 〉L2h

(m)
ν /γν =

∑
ν≥m V (g̃, hν)h(m)

ν with convergence in usual
L2-norm, implying g̃ =

∑
ν V (g̃, hν)hν converges in ‖ · ‖.

Next we show the uniform boundedness of hν . We only consider those hνs corresponding to
nonzero γνs. If γν 6= 0 and hν satisfy (−1)mh(2m)

ν = γνIπhν and V (hν , hν) = 1, then using boundary
conditions in (2.11) and integration by parts one can check that J(hν , hν) = γν . On both sides, divid-
ing Iπ and taking m-order derivatives one obtains Lh(m)

ν = γνh
(m)
ν with h(m+j)

ν (0) = h
(m+j)
ν (1) = 0,

j = 0, . . . ,m − 1, where L = (−1)m
∑m
j=0

(m
j

)
ω(j)D2m−j . Therefore, h(m)

ν is an eigenfunction
of L with eigenvalue γν . Denote the eigenfunctions and eigenvalues of L to be ψν and λν sub-
ject to ψ

(j)
ν (0) = ψ

(j)
ν (1) = 0, j = 0, . . . ,m − 1. We need to transform L to normal form. Let

t(z) =
∫ z

0 [I(s)π(s)]1/(2m)ds/C, C =
∫ 1

0 [I(z)π(z)]1/(2m)dz. Define φν(t(z)) = ψν(z). Then by a
direct examination, φν satisfies the following differential equation
(A.2)
φ(2m)
ν (t) + q2m−1(t)φ(2m−1)

ν (t) + . . .+ q0(t)φν(t) = ρνφν(t), φ(j)
ν (0) = φ(j)

ν (1) = 0, j = 0, . . . ,m− 1

where qjs, j = 0, . . . , 2m−1, are coefficient functions depending only on Iπ and m, and ρν = λνC
2m.

In general the forms of qjs are complicated though they can be determined by Faá di Bruno’s
formula ([28]). As an illustration, when m = 2, q0(t) = 0, q3(t) = −(K/4)ω(1)(z(t))ω(z(t))−3/4,
q2(t) = −(K2/4)(ω(1)(z(t)))2ω(z(t))−3/2, and

q1(t) = K3(−5ω(z(t))−9/4(ω(1)(z(t)))3/64+3ω(z(t))−5/4ω(1)(z(t))ω(2)(z(t))/16−ω(z(t))−1/4ω(3)(z(t))),

where z(t) is the inverse function of t(z) and b2(z) = [I(z)π(z)]1/4. Define

(A.3) uν(t) = φν(t) exp
(

1
2m

∫ t

0
q2m−1(s)ds

)
,

then (A.2) is equivalent to

(A.4) L̃uν ≡ u(2m)
ν (t) + ?+ p2m−2(t)u(2m−2)

ν + . . .+ p0(t)uν(t) = ρνuν(t),

with the boundary conditions u(j)
ν (0) = u

(j)
ν (1) = 0, j = 0, . . . ,m − 1. Note (A.4) is the classic

form of differential systems discussed in [6]. According to [6], ρνs are simple due to the regular
boundary conditions, and the residue of the Green function G(z1, z2; ρ) for L̃ − ρI at pole ρν is
given by uν(t1)uν(t2)

‖uν‖2L2

, where ‖ · ‖L2 denotes the usual L2-norm. On the other hand, the residue can

also be represented by 1
2π
√
−1

∫
Γρν

2mζ2m−1G(t1, t2, ζ2m)dζ (pp. 722, [50]), where ζ = ρ1/(2m), Γρν
denotes the contour centered around pole ρν with suitably small radius. By equation (56) and the
discussions below in [6], 2mζ2m−1G(t1, t2; ζ2m) is uniformly bounded for t1, t2 ∈ I, thus, the residue
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is uniformly abounded for all t1, t2. In particular, letting t1 = t2 = t, we get |uν(t)| ≤ c‖uν‖L2 for
any t ∈ I with a universal constant c > 0. Since q2m−1 achieves finite upper and lower bounds on
I, by (A.3), there is a universal constant c1 > 0 such that for any ν, ‖φν‖sup ≤ c1‖φν‖L2 . Now use
φν(t(z)) = ψν(z) we get

‖ψν‖2sup = ‖φν‖2sup ≤ c2
1‖φν‖2L2

= c2
1

∫ 1

0
|φν(t)|2dt = c2

1

∫ 1

0
|φν(t(z))|2|I(z)π(z)|1/(2m)dz ≤ c2

1c
2
Iπ‖ψν‖2L2

,

where cIπ is a constant depending only on Iπ and m. So ‖ψν‖sup ≤ c1cIπ‖ψν‖L2 . Letting ψν = h
(m)
ν

and using the fact that ‖h(m)
ν ‖2L2

= γν , we have ‖h(m)
ν ‖sup ≤ c1cIπγ

1/2
ν , for any ν ∈ N.

By Sobolev embedding theorem ([1]), ‖hν‖2sup ≤ c2(V (hν , hν) + J(hν , hν)) = c2(1 + γν). Using

Theorem 5 of [54], for any j = 1, . . . ,m, there is constant Cj > 0 such that ‖h(j)
ν ‖sup ≤ Cj(1 +

γν)1/2, ∀ν ∈ N. Therefore, taking m-order derivative on both sides of (−1)mh(2m)
ν = γνIπhν , one

has for some constant c2 > 0, for any ν, ‖h(3m)
ν ‖sup ≤ γν

∑m
j=0

(m
j

)
‖(Iπ)(m−j)‖sup · ‖h(j)

ν ‖sup ≤
c2(1 + γν)3/2.

Again, by Theorem 5 of [54] for h(m)
ν and ε = γ

−1/(2m)
ν , we have ‖h(2m)

ν ‖sup ≤ C ′m(1 + γν), which
implies ‖hν‖sup ≤ C ′m(infz |I(z)|)−1(1 + γν)/γν ≤ C ′′m, with a universal constant C ′′m unrelated to
ν. This proves the desired uniform boundedness of hνs.

A.3. Proof of Lemma 3.1. For any z ∈ I, |〈Kz, g〉| ≤ ‖Kz‖ · ‖g‖, so we only need to find the
upper bound for ‖Kz‖. By Proposition 2.1 and the boundedness of hµs,

(A.5) ‖Kz‖2 = K(z, z) =
∑
µ∈Z

|hµ(z)|2

1 + λγµ
≤ C

∑
µ∈Z

1
1 + λγµ

≤ c2
mλ
−1/(2m) = c2

mh
−1,

where cm > 0 is a constant that does not rely on z and h. So ‖Kz‖ ≤ cmh−1/2.

A.4. Proof of Lemma 3.2. For any g, f ∈ G, by Lemma 3.1,

‖(ψn(T ; f)− ψn(T ; g))KZ‖ ≤ c−1
m h1/2‖f − g‖sup · ‖KZ‖

≤ c−1
m h1/2‖f − g‖sup · cmh−1/2 = ‖f − g‖sup.

By Theorem 3.5 of [42], for any t > 0, P (‖Zn(f)− Zn(g)‖ ≥ t) ≤ 2 exp
(
− t2

8‖f−g‖2sup

)
. Then by

Lemma 8.1 in [31], we have ‖‖Zn(g)− Zn(f)‖‖ψ2
≤ 8‖g − f‖sup, where ‖ · ‖ψ2 denotes the Orlicz

norm associated with ψ2(s) ≡ exp(s2)−1. It follows by Theorem 8.4 of [31] that for arbitrary δ > 0,∥∥∥∥∥∥∥∥ sup
g,f∈G

‖g−f‖sup≤δ

‖Zn(g)− Zn(f)‖

∥∥∥∥∥∥∥∥
ψ2

≤ C ′
(∫ δ

0

√
log(1 +N(δ,G, ‖ · ‖sup)) + δ

√
log(1 +N(δ,G, ‖ · ‖sup)2)

)

� h−(2m−1)/(4m)δ1−1/(2m).

So, again, by Lemma 8.1 in [31],

(A.6) P

 sup
g∈G

‖g‖sup≤δ

‖Zn(g)‖ ≥ t

 ≤ 2 exp(−h(2m−1)/(2m)δ−2+1/mt2).
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Let bn = n1/2h−(2m−1)/(4m), ε = b−1
n , γ = 1−1/(2m), Tn = (5 log log n)1/2, and Qε = [− log ε−1],

where [a] denotes the integer part of a. Then by (A.6),

P

(
sup
g∈G

√
n‖Zn(g)‖

an‖g‖γsup + 1
≥ Tn

)
≤ P

 sup
g∈G

‖g‖sup≤ε1/γ

√
n‖Zn(g)‖

an‖g‖γsup + 1
≥ Tn



+
Qε∑
l=0

P

 sup
g∈G

(2lε)1/γ≤‖g‖sup≤(2l+1ε)1/γ

√
n‖Zn(g)‖

an‖g‖γsup + 1
≥ Tn



≤ P

 sup
g∈G

‖g‖sup≤ε1/γ

√
n‖Zn(g)‖ ≥ Tn



+
Qε∑
l=0

P

 sup
g∈G

‖g‖sup≤(2l+1ε)1/γ

√
n‖Zn(g)‖ ≥ (1 + 2l)Tn


≤ 2 exp

(
−h(2m−1)/(2m)(ε1/γ)−2+1/mT 2

n/n
)

+
Qε∑
l=0

2 exp
(
−h(2m−1)/(2m)[(2l+1ε)1/γ ]−2+1/mT 2

n(2l + 1)2/n
)

= 2 exp
(
−T 2

n

)
+

Qε∑
l=0

2 exp
(
−2−2(l+1)T 2

n(2l + 1)2
)

≤ 2(Qε + 2) exp
(
−T 2/4

)
≤ const · log n(log n)−5/4 → 0,

as n→∞. This proves the result.

A.5. Proof of Theorem 3.4. By Assumption A.1 (a), it is not difficult to check the following

(A.7) max
1≤i≤n

sup
a∈I
|῭a(Yi; a)| = OP (log n).

By (A.7) we can let C > C0 be sufficiently large so that the eventBn1 = {max1≤i≤n supa∈I |῭a(Yi; a)| ≤
C log n} has large probability.

Denote g = ĝn,λ− g0. By Assumption A.3, the event Bn2 = {‖g‖ ≤ rn ≡M((nh)−1/2 +hm)} has
large probability with some preselected large M , so Bn = Bn1 ∩ Bn2 has large probability. Define
g̃ = d−1

n g, where dn = cmrnh
−1/2. Since h = o(1) and nh2 → ∞, dn = o(1). Then by Lemma 3.1,

on Bn, ‖g̃‖sup ≤ 1. Note that J(g̃, g̃) = d−2
n λ−1(λJ(g, g)) ≤ d−2

n λ−1‖g‖2 ≤ d−2
n λ−1r2

n ≤ c−2
m hλ−1.

Thus, when event Bn holds, g̃ is an element in G.
Define ψ(T ; g) = ˙̀

a(Y ; g(Z) + g0(Z)) − ˙̀
a(Y ; g0(Z)). By the definition of Sn, and a direct cal-

culation, one can verify that Sn(g + g0) − S(g + g0) − (Sn(g0) − S(g0)) = 1
n

∑n
i=1[ψ(Ti; g)KZi −

E{ψ(T ; g)KZ}].
Let ψ̃n(T ; g̃) = C−1c−1

m (log n)−1h1/2d−1
n ψ(T ; dng̃) and ψn(Ti; g̃) = ψ̃n(Ti; g̃)IAi , where Ai =

{supa∈I |῭a(Yi; a)| ≤ C log n} for i = 1, . . . , n. Observe that Bn implies ∩iAi.
Next we show that ψn satisfies (3.2). For any g1, g2 ∈ G, and z ∈ I, since g0(z) ∈ I0 and

dn = o(1), both g0(z) +dng1(z) and g0(z) +dng2(z) fall in I when n is sufficiently large (recall that
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I0 and I are specified in Assumption A.1). Therefore,

|ψn(Ti; dng1)− ψn(Ti; dng2)| = C−1c−1
m (log n)−1h1/2d−1

n |ψ(Ti; g1)− ψ(Ti; g2)| · IAi

= C−1c−1
m (log n)−1h1/2d−1

n

∣∣ ∫ g0(Zi)+dng1(Zi)

g0(Zi)

῭
a(Yi; a) · IAida

−
∫ g0(Zi)+dng1(Zi)

g0(Zi)

῭
a(Yi; a) · IAida

∣∣
≤ C−1c−1

m (log n)−1h1/2d−1
n · dn‖g1 − g2‖sup · sup

a∈I
|῭a(Yi; a)| · IAi

≤ C−1c−1
m (log n)−1h1/2d−1

n · dn · C log n · ‖g1 − g2‖sup

= c−1
m h1/2‖g1 − g2‖sup.

Thus, ψn satisfies (3.2). By Lemma 3.2, with large probability

(A.8) ‖
n∑
i=1

[ψn(Ti; g̃)KZi − E{ψn(T ; g̃)KZ}]‖ ≤ (n1/2h−(2m−1)/(4m) + 1)(5 log log n)1/2.

On the other hand, by Chebyshev’s inequality

P (Aci ) = exp(−(C/C0) log n)E{exp(sup
a∈I
|῭a(Yi; a)|/C0)} ≤ C1n

−C/C0 .

Since h = o(1) and nh2 →∞, we may choose C to be large so that 21/2C−1C0C1(log n)−1n−C/(2C0) <
a′nh

1/2d−1
n , where a′n = n−1/2((nh)−1/2 + hm)h−(6m−1)/(4m)(log log n)1/2. By (2.3), which implies

E{supa∈I |῭a(Yi; a)|
∣∣Zi} ≤ 2C1C

2
0 , we have, on Bn, E{|ψ(T ; dng̃)|2} ≤ 2C1C

2
0d

2
n, where expectation

is taken with respect to T = (Y,Z). So when n is large, on Bn, by Chebyshev’s inequality

‖E{ψn(Ti; g̃)KZi} − E{ψ̃n(Ti; g̃)KZi}‖ = ‖E{ψ̃n(Ti; g̃)KZi · IAci }‖

≤ C−1(log n)−1d−1
n

(
E{|ψ(Ti; dng̃)|2}

)1/2
P (Aci )

1/2

≤ 21/2C−1C0C1(log n)−1n−C/(2C0)

≤ a′nh
1/2d−1

n ,

where the expectation is taken with respect to Ti. Therefore, by (A.8) and on Bn,

‖Sn(g + g0)− S(g + g0)− (Sn(g0)− S(g0))‖

=
Ccm(log n)h−1/2dn

n
‖

n∑
i=1

[ψ̃n(Ti; g̃)KZi − E{ψ̃n(T ; g̃)KZ}]‖

≤ Ccm(log n)h−1/2dn
n

(‖
n∑
i=1

[ψn(Ti; g̃)KZi − E{ψn(T ; g̃)KZ}]‖

+n‖E{ψn(Ti; g̃)KZi} − E{ψ̃n(Ti; g̃)KZi}‖)

≤ Ccm(log n)h−1/2dn
n

· [(n1/2h−(2m−1)/(4m) + 1)(5 log log n)1/2 + na′nh
1/2d−1

n ]

≤ C ′cma
′
n log n,(A.9)

for some constant C ′ > 0 that only depends on C, cm,M .
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By Taylor’s expansion, by the fact Sn,λ(g + g0) = 0, and by Proposition 2.3,

‖Sn(g + g0)− S(g + g0)− (Sn(g0)− S(g0))‖
= ‖Sn,λ(g + g0)− Sλ(g + g0)− Sn,λ(g0) + Sλ(g0)‖
= ‖Sλ(g + g0) + Sn,λ(g0)− Sλ(g0)‖

= ‖DSλ(g0)g +
∫ 1

0

∫ 1

0
sD2Sλ(g0 + ss′g)ggdsds′ + Sn,λ(g0)‖

= ‖ − g +
∫ 1

0

∫ 1

0
sD2Sλ(g0 + ss′g)ggdsds′ + Sn,λ(g0)‖

≥ ‖ − g + Sn,λ(g0)‖ − ‖
∫ 1

0

∫ 1

0
sD2Sλ(g0 + ss′g)ggdsds′‖.

Therefore,

‖g − Sn,λ(g0)‖

≤ ‖Sn(g + g0)− S(g + g0)− (Sn(g0)− S(g0))‖+ ‖
∫ 1

0

∫ 1

0
sD2Sλ(g0 + ss′g)ggdsds′‖

≤ ‖Sn(g + g0)− S(g + g0)− (Sn(g0)− S(g0))‖+
∫ 1

0

∫ 1

0
s‖D2Sλ(g0 + ss′g)gg‖dsds′.(A.10)

Next we find an upper bound for ‖D2Sλ(g0 +ss′g)gg‖. The Frechét derivative of DSλ is found to
beD2Sλ = D2S, therefore,D2Sλ(g0+ss′g)gg = D2S(g0+ss′g)gg = E{`′′′a (Y ; (g0+ss′g)(Z))g(Z)2KZ},
where expectation is taken with respect to T . Hence, by (2.4), on Bn,

‖D2Sλ(g0 + ss′g)gg‖ = ‖E{`′′′a (Y ; (g0 + ss′g)(Z))g(Z)2KZ}‖ ≤ E{E{sup
a∈I
|`′′′a (Y ; a)|

∣∣Z}g(Z)2‖KZ‖}

≤ C`cmh
−1/2‖g‖2,(A.11)

where C` = supz∈IE{supa∈I |`′′′a (Y ; a)|
∣∣Z = z}. Thus, from (A.9), (A.10) and (A.11), with large

probability, ‖g− Sn,λ(g0)‖ ≤ C ′cma′n log n+C`cmh
−1/2((nh)−1/2 + hm)2. This completes the proof

of Theorem 3.4.

A.6. Proof of Theorem 3.5. Define Remn = ĝn,λ − g∗0 − 1
n

∑n
i=1 εiKZi . By Theorem 3.4, Remn

satisfies ‖Remn‖ = OP (an log n). By assumption an log n = o(n−1/2), ‖Remn‖ = oP (n−1/2). Since
E{‖

∑n
i=1 εiKZi‖2} = nE{ε2‖KZ‖2} = O(nh−1), ‖ 1

n

∑n
i=1 εiKZi‖ = OP ((nh)−1/2). Thus, Remn is

ignorable compared with
∑n
i=1 εiKZi .

Next we show the limiting distribution of (nh)1/2(ĝn,λ(z0) − g∗0(z0)). Note that this is equal to
(nh)1/2〈Kz0 , ĝn,λ − g∗0〉. Using the fact

|(nh)1/2〈Kz0 , ĝn,λ − g∗0 −
1
n

n∑
i=1

εiKZi〉| ≤ (nh)1/2‖Kz0‖ · ‖Remn‖

= OP ((nh)1/2h−1/2an log n) = oP (1),

we just need to find the limiting distribution of (nh)1/2〈Kz0 ,
1
n

∑n
i=1 εiKZi〉 = (nh−1)−1/2∑n

i=1 εiKZi(z0).
By Assumption A.1 (c), i.e., E{ε2|Z} = I(Z), we have

V ar(
n∑
i=1

εiKZi(z0)) = nE{ε2|KZ(z0)|2} = nE{E{ε2|Z}|KZ(z0)|2} = nE{I(Z)|KZ(z0)|2} = nV (Kz0 ,Kz0).

By assumption, as h→ 0, hV (Kz0 ,Kz0)→ σ2
z0 . Thus, (nh−1)−1/2∑n

i=1 εiKZi(z0) d−→ N(0, σ2
z0) by

CLT. The expression of σ2
z0 , i.e., (3.8), follows from Proposition 2.1. This completes the proof.
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A.7. Proof of Theorem 4.4. For notational convenience, denote ĝ = ĝn,λ, ĝ0 = ĝ0
n,λ, g =

w0 + ĝ0 − ĝ. By Assumptions A.3 and A.4, with large probability, ‖g‖ = OP (rn), where rn =
M((nh)−1/2 + hm) for some large M . By Assumption A.1 (a), for some large constant C > 0, the
event Bn1 ∩ Bn2 has large probability, where Bn1 = {max1≤i≤n supa∈I |῭a(Yi; a)| ≤ C log n} and
Bn2 = {max1≤i≤n supa∈I |`′′′a (Yi; a)| ≤ C log n}. Let an be defined as in (3.5).

By Taylor expansion,

LRTn,λ = `n,λ(w0 + ĝ0)− `n,λ(ĝ)

= Sn,λ(ĝ)g +
∫ 1

0

∫ 1

0
sDSn,λ(ĝ + ss′g)ggdsds′

=
∫ 1

0

∫ 1

0
sDSn,λ(ĝ + ss′g)ggdsds′

=
∫ 1

0

∫ 1

0
s{DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg}dsds′

+
1
2

(DSn,λ(g0)gg − E{DSn,λ(g0)gg}) +
1
2
E{DSn,λ(g0)gg},(A.12)

denote the above three sums by I1, I2 and I3. Next we will study the asymptotic behavior of these
sums. Denote g̃ = ĝ + ss′g − g0, for any 0 ≤ s, s′ ≤ 1. So ‖g̃‖ = OP (rn).

We first study I1. By calculations of the Frechét derivatives, we have

DSn,λ(ĝ + ss′g)gg = DSn,λ(g̃ + g0)gg =
1
n

n∑
i=1

῭
a(Yi; g0(Zi) + g̃(Zi))g(Zi)2 − 〈Wλg, g〉/2,

and DSn,λ(g0)gg = 1
n

∑n
i=1

῭
a(Yi; g0(Zi))g(Zi)2 − 〈Wλg, g〉/2. On Bn1 ∩Bn2,

|DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg|

≤ 1
n
C(log n)‖g̃‖sup

n∑
i=1

g(Zi)2

= C(log n)‖g̃‖sup〈
1
n

n∑
i=1

g(Zi)KZi , g〉

= C(log n)‖g̃‖sup〈
1
n

n∑
i=1

g(Zi)KZi − E{g(Z)KZ}, g〉+ C(log n)‖g̃‖supE{g(Z)2},(A.13)

where the expectations are taken with respect to Z. Now we look at 1
n‖
∑n
i=1 g(Zi)KZi−E{g(Z)KZ}‖.

Let dn = cmh
−1/2rn and ḡ = d−1

n g. Consider ψ(T ; g) = g(Z) and ψn(T ; ḡ) = c−1
m h1/2d−1

n ψ(T ; dnḡ)
(which satisfies (3.2)). Then by Lemma 3.2,∥∥∥∥∥ 1
n

n∑
i=1

[g(Zi)KZi − E{g(Z)KZ}]
∥∥∥∥∥ =

cmh
−1/2dn
n

∥∥∥∥∥
n∑
i=1

[ψn(Ti; ḡ)KZi − E{ψn(T ; ḡ)KZ}]
∥∥∥∥∥ = OP (a′n),

(A.14)

where a′n = n−1/2((nh)−1/2 + hm)h−(6m−1)/(4m)(log log n)1/2. Obviously, E{g(Z)2} = O(‖g‖2) =
OP (r2

n). So by a′n = o(rn),

|DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg| = ‖g̃‖sup(OP (a′nrn log n) +OP (r2
n log n))

= h−1/2rnOP (r2
n log n)

= OP (r3
nh
−1/2 log n).(A.15)



32 Z. SHANG AND G. CHENG

Thus, |I1| = OP (r3
nh
−1/2 log n).

Next we study I2. By an argument similar to (A.9), it can be shown that

(A.16)
1
n
‖

n∑
i=1

῭
a(Yi; g0(Zi))g(Zi)KZi − E{῭a(Yi; g0(Z))g(Z)KZ}‖ = OP (a′n log n).

Thus, |I2| = OP (a′nrn log n).
Note I3 = −‖g‖2/2. Therefore, combining the above approximations of I1 and I2, we have −2n ·

LRTn,λ = n‖w0 + ĝ0− ĝ‖2 +OP (nrna′n log n+nr3
nh
−1/2 log n) = n‖w0 + ĝ0− ĝ‖2 +OP (nrnan log n+

nr3
nh
−1/2 log n). By r2

nh
−1/2 = o(an) and nrnan = o((log n)−1), it is easy to see thatOP (nrnan log n+

nr3
nh
−1/2 log n) = oP (1). Thus, part (ii) holds. So, to find the limiting distribution of the LRT test,

we only focus on n‖w0 + ĝ0 − ĝ‖2. By Theorems 3.4 and 4.3,

(A.17) n1/2‖w0 + ĝ0 − ĝ − S0
n,λ(g0

0) + Sn,λ(g0)‖ = OP (n1/2an log n) = oP (1),

so we just have to focus on n1/2{S0
n,λ(g0

0)− Sn,λ(g0)}. Recall that

S0
n,λ(g0

0) =
1
n

n∑
i=1

εiK
∗
Zi −W

∗
λg

0
0

=
1
n

n∑
i=1

εi(KZi −KZi(z0)Kz0/K(z0, z0))−Wλg0 + (Wλg0)(z0)Kz0/K(z0, z0),

where εi = ˙̀
a(Yi; g0(Zi)), and Sn,λ(g0) = 1

n

∑n
i=1 εiKZi −Wλg0. Thus,

S0
n,λ(g0

0)− Sn,λ(g0) =

(
− 1
n

n∑
i=1

εiKZi(z0) + (Wλg0)(z0)

)
Kz0/K(z0, z0).(A.18)

So n‖S0
n,λ(g0

0) − Sn,λ(g0)‖2 = | 1√
n

∑n
i=1 εiKZi(z0)/

√
K(z0, z0) −

√
n(Wλg0)(z0)/

√
K(z0, z0)|2. By

central limit theorem, (4.10) and
√
n(Wλg0)(z0)/

√
K(z0, z0)→ −cz0 , we have

(A.19)
1√
n

n∑
i=1

εiKZi(z0)/
√
K(z0, z0)−

√
n(Wλg0)(z0)/

√
K(z0, z0) d→ N(cz0 , c0).

It follows by (A.17)–(A.19) that −2n ·LRTn,λ
d−→ c0χ

2
1(c2

z0/c0), the scaled non-central χ2 distri-
bution with degree of freedom one and noncentrality parameter c2

z0/c0, which shows (iii). It follows
immediately that ‖w0 + ĝ0 − ĝ‖ = OP (n−1/2), i.e., part (i) holds. This completes the proof.

A.8. Proof of Theorem 5.1. By Theorem 3.4 and Lemma 3.1,

(A.20) ‖ĝ − g∗0 −
1
n

n∑
i=1

εiKZi‖sup = OP (anh−1/2 log n).

So the key is to study the leading process Hn(z) = n−1/2∑n
i=1 εiKZi(z).

Since E{exp(|ε|/C1)|Z} ≤ C2, a.s., we may fix a sufficiently large constant C > (1 + 3δ)C1

such that the event En = {max1≤i≤n |εi| ≤ bn = C log n} has large probability. Define Hb
n(z) =

n−1/2∑n
i=1 εiI(|εi| ≤ bn)KZi(z). Write Hn(z) = Hn(z) − Hb

n(z) − E{Hn(z) − Hb
n(z)} + Hb

n(z) −
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E{Hb
n(z)}. Obviously, on En, Hn(z) −Hb

n(z) = 0. By Chebyshev’s inequality and Lemma 3.1, we
have

|E{Hn(z)−Hb
n(z)}| = n1/2|E{εI(|ε| ≥ bn)KZ(z))}|

≤ O(1)h−1/2n1/2E{|ε| · I(|ε| ≥ bn)}
≤ O(1)h−1/2n1/2E{|ε|2}1/2P (|ε| > bn)1/2

= O(h−1/2n1/2 exp(−bn/(2C1))).

Thus,

(A.21) sup
z∈I
|Hn(z)−Hb

n(z)− E{Hn(z)−Hb
n(z)}| = OP (h−1/2n1/2 exp(−bn/(2C1))).

Denote Rn(z) = Hb
n(z)− E{Hb

n(z)}, then by (A.21),

(A.22) sup
z∈I
|Hn(z)−Rn(z)| = OP (h−1/2n1/2 exp(−bn/(2C1))).

Let Zn(ε, z) = n1/2(Pn(ε, z)−P (ε, z)), where Pn(ε, z) and P (ε, z) are empirical and population distri-
bution of (ε, Z). Then by Theorem 1 of [53], supε∈R,z∈I |Zn(ε, z)−W (τ(ε, z))| = OP (n−1/2(log n)2),
where W is Brownian bridge indexed by [0, 1]×[0, 1], τ(ε, z) = (PZ(z), Pε|Z(ε|z)), PZ is the marginal
distribution of Z, and Pε|Z is the conditional distribution of ε given Z. Write

Rbn(z) =
∫ 1

0

∫ bn

−bn
εK(z, t)dZn(ε, t) =

∫ 1

0
K(z, t)dVn(t), and

R0
n(z) =

∫ 1

0

∫ bn

−bn
εK(z, t)dW (τ(ε, t)) =

∫ 1

0
K(z, t)dV 0

n (t),

where Vn(t) =
∫ bn
−bn εdεZn(ε, t) and V 0

n (t) =
∫ bn
−bn εdεW (τ(ε, t)). By integration by parts,

Vn(t) = Zn(ε, t)ε
∣∣∣∣bn
−bn
−
∫ bn

−bn
Zn(ε, t)dε, and

V 0
n (t) = W (τ(ε, t))ε

∣∣∣∣bn
−bn
−
∫ bn

−bn
W (τ(ε, t))dε.

So supt∈I |Vn(t)− V 0
n (t)| = OP (bnn−1/2(log n)2).

By integration by parts again, we have

Rn(z) = Vn(t)K(z, t)
∣∣∣∣1
t=0

−
∫ 1

0
Vn(t)

d

dt
K(z, t)dt, and

R0
n(z) = V 0

n (t)K(z, t)
∣∣∣∣1
t=0

−
∫ 1

0
V 0
n (t)

d

dt
K(z, t)dt.

Therefore, by assumption supz,t | ddtK(z, t)| = O(h−2), we have

(A.23) sup
z∈I
|Rn(z)−R0

n(z)| = OP (h−2bnn
−1/2(log n)2).
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Write W (t1, t2) = B(t1, t2) − t1t2B(1, 1), where B is standard Brownian motion indexed on
[0, 1]× [0, 1]. Define R̄0

n(z) =
∫ 1

0 K(z, t)dŪ0
n(t), where Ū0

n(t) =
∫ bn
−bn εdεB(τ(ε, t)). Direct calculations

lead to R0
n(z) − R̄0

n(z) = B(1, 1)
∫ 1

0 K(z, t)
∫ bn
−bn ε dP (ε, t). Therefore, by Lemma 3.1 and the finite

exponential moment of |ε|,

sup
z∈I
|R0

n(z)− R̄0
n(z)| = |B(1, 1)| · sup

z∈I
|
∫ 1

0
K(z, t)

∫ bn

−bn
ε dPε|Z(ε|t)dPZ(t)|

= |B(1, 1)| · sup
z∈I
|
∫ 1

0
K(z, t)E{εI(|ε| ≤ bn)|Z = t}dPZ(t)|

= |B(1, 1)| · sup
z∈I
|
∫ 1

0
K(z, t)E{εI(|ε| > bn)|Z = t}dPZ(t)|

≤ c2
mh
−1|B(1, 1)|E{|ε|I(|ε| > bn)}

= OP (h−1 exp(−bn/(2C1))).(A.24)

Define R̃0
n(z) =

∫ 1
0 h
−1ω((z−t)/h)dŪ0

n(t). Using integration by parts, we get Ū0
n(t) = B(τ(ε, t))ε

∣∣∣∣bn
ε=−bn

−∫ bn
−bn B(τ(ε, t))dε, so we have supt∈I |Ū0

n(t)| = OP (bn). Again, by integration by parts, R̄0
n(z) −

R̃0
n(z) = Ū0

n(t)
(
h−1ω((z − t)/h)−K(z, t)

) ∣∣∣∣1
t=0

−
∫ 1
0 Ū

0
n(t) ddt

(
h−1ω((z − t)/h)−K(z, t)

)
dt, which,

by assumption (5.1), leads to

(A.25) sup
hϕ≤z≤1−hϕ

|R̄0
n(z)− R̃0

n(z)| = OP (h−2bn exp(−C2h
−1+ϕ)).

By proof of Lemma 3.7 in [22], the process R̃0
n(z) is Gaussian with mean zero and has the

same distribution as the process Y (n)
z = h−1

∫ 1
0 (In(t))1/2ω((z − t)/h)dW (t), where W is standard

one-dimensional Brownian motion indexed on R, and In(z) = E{ε2I(|ε| ≤ bn)|Z = z}. Define
Y

(n)
0,z = h−1

∫ 1
0 (I(t))1/2ω((z− t)/h)dW (t). Obviously, supz∈I |I(z)− In(z)| = O(exp(−bn/(2C1))). It

follows from the assumption (5.5) and E{exp(|ε|/C1)|Z} ≤ C, a.s., that

sup
z∈I
| d
dz

(I(z)− In(z))| = sup
z∈I
|
∫
|ε|>bn

ε2
d

dz
π(ε|z)dε|

≤ sup
z∈I

∫
|ε|>bn

ε2ρ1(1 + |ε|ρ2)π(ε|z)dε

= sup
z∈I

ρ1E{ε2(1 + |ε|ρ2)I(|ε| > bn)|Z = z} = O(exp(−bn/(2C1))).

By (5.5) and trivial calculations, it can be shown that supt∈I | ddtI(t)| <∞. Since when n is large,
both I and In are bounded below from zero,∣∣∣∣ ddt

(
I(t)1/2 − In(t)1/2

) ∣∣∣∣ = (1/2)
∣∣∣∣I(t)′In(t)1/2 − In(t)′I(t)1/2

I(t)1/2In(t)1/2

∣∣∣∣
≤ (1/2)

|I(t)′| · |I(t)1/2 − In(t)1/2|+ I(t)1/2|I(t)′ − In(t)′|
I(t)1/2In(t)1/2

= O(exp(−bn/(2C1))),
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where for convenience we denote I ′(t) to be the derivative of I(t). By integration by parts,

Y
(n)

0,z − Y
(n)
z = h−1W (t)(I(t)1/2 − In(t)1/2)ω((z − t)/h)

∣∣∣∣1
t=0

−h−1
∫ 1

0
W (t)

d

dt

(
(I(t)1/2 − In(t)1/2)ω((z − t)/h)

)
dt

= h−1W (t)(I(t)1/2 − In(t)1/2)ω((z − t)/h)
∣∣∣∣1
t=0

−h−1
∫ 1

0
W (t)

d

dt

(
I(t)1/2 − In(t)1/2

)
· ω((z − t)/h)

+h−2
∫ 1

0
W (t)

(
I(t)1/2 − In(t)1/2

)
· ω′((z − t)/h)dt,

for which we have

(A.26) sup
z∈Z
|Y (n)

0,z − Y
(n)
z | = OP (h−2 exp(−bn/(2C1))).

Next we define Ȳ (n)
0,z = h−1I(z)1/2

∫ 1
0 ω((z − t)/h)dW (t). Then we have

Y
(n)

0,z − Ȳ
(n)

0,z = h−1
∫ 1

0
(I(t)1/2 − I(z)1/2)ω((z − t)/h)dW (t)

= h−1
∫ (z−1)/h

z/h
(I(z − sh)1/2 − I(z)1/2)ω(s)dW (z − sh)

= h−1W (z − sh)(I(z − sh)1/2 − I(z)1/2)ω(s)
∣∣∣∣(z−1)/h

s=z/h

−h−1
∫ (z−1)/h

z/h
W (z − sh)

d

ds

(
(I(z − sh)1/2 − I(z)1/2)ω(s)

)
ds.

Using the fact that |I(z − sh)1/2 − I(z)1/2| ≤ CI |s|h, for some positive constant CI and any
z, s ∈ I, that |ω(s)| ≤ Cω exp(−|s|/C3) which implies |ω(z/h)| ≤ Cω exp(−hϕ−1/C3) = O(h) and
|ω((z− 1)/h)| ≤ Cω exp(−hϕ−1/C3) = O(h) for hϕ ≤ z ≤ 1−hϕ, and that ω′ is bounded, it can be
verified that

(A.27) sup
hϕ≤z≤1−hϕ

|Y (n)
0,z − Ȳ

(n)
0,z | = OP (1).

The last random process we will consider is L(n)
z = h−1I(z)1/2

∫
R ω((z − t)/h)dW (t). We will

establish the rate of convergence for suphϕ≤z≤1−hϕ |L
(n)
z − Ȳ

(n)
0,z |. For this purpose, we need the

following result.

Lemma A.1. For any κ > 1/2, limd→∞ P
(
sups∈R

|W (s)|
(1+|s|)κ > d

)
= 0.

Proof of Lemma A.1. Let Dκ = sups>0
|W (s)|
(1+s)κ , we will only show limd→∞ P (Dκ > d) = 0.

The proof for sups≤0
|W (s)|
(1+s)κ is similar. Let Z+ = {0, 1, . . .} be the set of nonnegative integers. Note
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sups>0
|W (s)|
(1+s)κ = supm∈Z+

supm<s≤m+1
|W (s)|
(1+s)κ . Choose a constant β > 0 such that (β+1)(κ−1/2) >

1. Then

P (Dκ > d) = P

(
sup
m∈Z+

sup
m<s≤m+1

|W (s)|
(1 + s)κ

> d

)

≤
∞∑
m=0

P

(
sup

m<s≤m+1

|W (s)|
(1 + s)κ

> d

)

≤
∞∑
m=0

P

(
sup

m<s≤m+1
|W (s)| > (1 +m)κd

)

≤
∞∑
m=0

P

(
sup

0<s≤m+1
|W (s)| > (1 +m)κd

)

≤ 4
(2π)1/2

∞∑
m=0

exp(−(d(1 +m)κ−1/2)2/2)
d(1 +m)κ−1/2

(A.28)

≤ 4
(2π)1/2

∞∑
m=0

1
(d(1 +m)κ−1/2)β+1

= O(d−(β+1)),

where (A.28) follows by [29]. Therefore, the desired result holds.

Now define En,1 =
{

sups∈R
|W (s)|

(1+|s|)κ ≤ d
}

for some fixed d > 0 so that En,1 has large probability.
By integration by parts and a straightforward calculation,

L(n)
z − Ȳ

(n)
0,z = h−1I(z)1/2

(∫ 0

−∞
ω((z − t)/h)dW (t) +

∫ ∞
1

ω((z − t)/h)dW (t)
)

= h−1I(z)1/2

(
W (t)ω((z − t)/h)

∣∣∣∣0
t=−∞

−
∫ 0

−∞
W (t)ω′((z − t)/h)h−1dt

)

+h−1I(z)1/2

(
W (t)ω((z − t)/h)

∣∣∣∣∞
t=1

−
∫ ∞

1
W (t)ω′((z − t)/h)h−1dt

)
.

On E1,n, for any z, |W (z)| ≤ d(1 + |z|)κ. By assumption (5.1), |ω((z − t)/h))| ≤ Cω exp(−|z −
t|/(hC3)), |ω′((z − t)/h))| ≤ Cω exp(−|z − t|/(hC3)). Thus we have, for any fixed z, as |t| → ∞

|W (t)ω((z − t)/h)| ≤ dCω(1 + |t|)κ exp(−|z − t|/(hC3))→ 0.
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Meanwhile, on E1,n, |W (1)ω((z − 1)/h)| ≤ 2d exp(−hϕ−1/C3), and

|
∫ ∞

1
W (t)ω′((z − t)/h)dt| ≤

∫ ∞
1

d(1 + t)κ · Cω exp(−|z − t|/(C3h))dt

=
∫ ∞

1
d(1 + t)κ · Cω exp(−(t− z)/(C3h))dt

=
∫ ∞

1−z
d(1 + t+ z)κ · Cω exp(−t/(C3h))dt

≤
∫ ∞
hϕ

d(2 + t)κ · Cω exp(−t/(C3h))dt

= hϕ
∫ ∞

1
d(2 + hϕt)κ · Cω exp(−t/(C3h

1−ϕ))dt

≤ hϕ
∫ ∞

1
d(2 + t)κ · Cω(t/(C3h

1−ϕ))−adt

= Ca3dCωh
ϕ+a(1−ϕ)

∫ ∞
1

(2 + t)κt−adt = O(hϕ+a(1−ϕ)) = O(h3),

where a is constant with a > κ + 2 and ϕ + a(1 − ϕ) > 3. Using similar technique, one can show
that on E1,n,

∣∣∣∫ 0
−∞W (t)ω′((z − t)/h)dt

∣∣∣ ≤ O(h exp(−hϕ−1/C3)). Consequently,

(A.29) sup
hϕ≤z≤1−hϕ

|L(n)
z − Ȳ

(n)
0,z | = OP (h).

Since h1/2L
(n)
z I(z)−1/2/σω = h−1/2

∫
ω((t − z)/h)dW (t)/σω is stationary Gaussian with mean

zero, the process h1/2L
(n)
hz I(hz)−1/2/σω is Gaussian with mean zero and covariance function

∫∞
−∞ ω(t)ω(t+

·)dt/σ2
ω. Then by [5], we have as n→∞,

P

(
(2δ log n)1/2

{
sup

hϕ≤z≤1−hϕ
|h1/2L(n)

z I(z)−1/2σ−1
ω | − dn

}
≤ u

)

= P

(
(2δ log n)1/2

{
sup

0≤z≤1−2hϕ
|h1/2L(n)

z I(z)−1/2σ−1
ω | − dn

}
≤ u

)

= P

(
(2δ log n)1/2

{
sup

0≤z≤h−1(1−2hϕ)
|h1/2L

(n)
hz I(hz)−1/2σ−1

ω | − dn

}
≤ u

)
→ exp(− exp(−2u)),(A.30)

where σω = (
∫
R ω(u)2du)1/2. By assumption C > (3δ + 1)C1, m > (3 +

√
5)/4 and 0 < δ <

2m/(8m − 1), the remainders in (A.20), (A.22)–(A.29) are all oP ((h log n)−1/2). Thus the desired
conclusion holds.

A.9. Proof of Theorem 5.3. For simplicity, denote ĝ = ĝn,λ and g = ĝ − g0. Using arguments
similar to (A.12), (A.13) and (A.16), and by assumption an = o(rn), nrnan log n = o(h−1/2),
nr3

nh
−1/2 log n = o(nrnan log n) = o(h−1/2), it can be shown that

(A.31) −2n ·PLRTn,λ = n‖ĝ−g0‖2 +OP (nrnan log n+nr3
nh
−1/2 log n) = n‖ĝ−g0‖2 +oP (h−1/2).

Under the hypothesis Hglobal
0 that g0 is the “true” parameter, by Theorem 3.4, we have ‖ĝ − g0 −

Sn,λ(g0)‖ = OP (an log n), where an is defined as in (3.5). It thus follows from n1/2an log n = o(1)
that n1/2‖ĝ − g0‖ = n1/2‖Sn,λ(g0)‖+ oP (1).
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Next we study the leading term ‖Sn,λ(g0)‖. We first approximate ‖Wλg0‖. By Proposition 2.1
and dominated convergence theorem, it can be established that

(A.32) ‖Wλg0‖2 = o(λ).

To see (A.32), define fλ(ν) = |V (g0, hν)|2γν λγν
1+λγν

, for ν = 0, 1, . . . ,, λ > 0. Then fλ is a sequence
of functions satisfying |fλ(ν)| ≤ |V (g0, hν)|2γν ≡ f(ν). From g0 ∈ Hm(I),

∑
ν∈N |V (g0, hν)|2γν =∫

N f(ν)dm(ν) <∞, where recall that N = {0, 1, 2, . . .} and m(·) denotes the discrete measure over
N. So f is an integrable function over N which dominates fλ(ν). Since limλ→0 fλ(ν) = 0, from
Lebesgue dominated convergence theorem

∑
ν |V (g0, hν)|2 λγ2

ν
1+λγν

=
∫
N fλ(ν)dm(ν) → 0. That is,

‖Wλg0‖2 =
∑
ν |V (g0, hν)|2 λ2γ2

ν
1+λγν

= o(λ).
By (2.12), n‖Sn,λ(g0)‖2 = n−1‖

∑n
i=1 εiKZi‖2 − 2

∑n
i=1 εi(Wλg0)(Zi) + n‖Wλg0‖2. It follows by

the Fourier expansion of g0 and Proposition 2.1 that

E

{
|
n∑
i=1

εi(Wλg0)(Zi)|2
}

= nE{ε2|(Wλg0)(Z)|2} = nV (Wλg0,Wλg0) = n
∑
ν

|V (g0, hν)|2
(

λγν
1 + λγν

)2

= o(nλ),

where the last equality follows by
∑
ν |V (g0, hν)|2γν <∞ and dominated convergence theorem; see

(A.32) for similar arguments examining ‖Wλg0‖. So
∑n
i=1 εi(Wλg0)(Zi) = oP ((nλ)1/2) = oP (h−1/2).

Thus, n‖Wλg0‖2 = o(nλ). Consequently, n‖Sn,λ(g0)‖2 = n−1‖
∑n
i=1 εiKZi‖2+n‖Wλg0‖2+oP (h−1/2) =

n−1‖
∑n
i=1 εiKZi‖2+o(nλ)+oP (h−1/2). In what follows, we study the limiting property of n−1‖

∑n
i=1 εiKZi‖2.

Write n−1‖
∑n
i=1 εiKZi‖2 = n−1∑n

i=1 ε
2
iK(Zi, Zi)+n−1W (n), where W (n) =

∑
i 6=j εiεjK(Zi, Zj).

If we denote Wij = 2εiεjK(Zi, Zj), then we can rewrite W (n) as
∑

1≤i<j≤nWij so that W (n) is
clean (see [15]). Next we will derive the limiting distribution for W (n). Let σ(n)2 = V ar(W (n)),
and GI , GII , GIV be defined as

GI =
∑
i<j

E{W 4
ij},

GII =
∑
i<j<k

(E{W 2
ijW

2
ik}+ E{W 2

jiW
2
jk}+ E{W 2

kiW
2
kj}), and

GIV =
∑

i<j<k<l

(E{WijWikWljWlk}+ E{WijWilWkjWkl}+ E{WikWilWjkWjl}).

It follows by Proposition 3.2 of [15] that, to show σ(n)−1W (n) d→ N(0, 1), it is sufficient to show that
GI , GII , GIV are of lower order than σ(n)4. By assumption E{ε4|Z} ≤ C, a.s., we have E{ε4|Z} ≤
C ≤ CC2I(Z), a.s. It then follows from (A.5) that E{W 4

ij} = 16E{ε4i ε4jK(Zi, Zj)4} = O(h−4),
implying GI = O(n2h−4). Obviously, E{W 2

ijW
2
ik} ≤ E{W 4

ij} = O(h−4), implying GII = O(n3h−4).
To approximate GIV , for pairwise different i, j, k, l, from direct examinations, we have

E{WijWikWljWlk} = 16E{ε2i ε2jε2l ε2kK(Zi, Zj)K(Zi, Zk)K(Zl, Zj)K(Zl, Zk)}

=
∑
ν

1
(1 + λγν)4

= O(h−1).

Therefore, GIV = O(n4h−1).
Next we obtain the exact order of σ(n)4 which is n4h−2. This follows from the observation

E{W 2
ij} = 4E{ε2i ε2jK(Zi, Zj)2} = 4h−1ρ2

K . Thus, σ(n)4 =
((n

2

)
E{W 2

ij}
)2

has the same order as
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4n4h−2ρ4
K . It follows by h = o(1) and (nh2)−1 = o(1) that GI , GII and GIV are of lower order

than σ(n)4, which implies by Proposition 3.2 of [15] that

(A.33)
1√

2h−1nρK
W (n) d→ N(0, 1).

To conclude, we approximate the term
∑n
i=1 ε

2
iK(Zi, Zi). By E{ε4|Z} ≤ C, a.s., we have E{ε4K(Z,Z)2} =

O(h−2). Therefore, a direct calculation leads to E{|
∑n
i=1[ε2iK(Zi, Zi)−h−1σ2

K ]|2} ≤ nE{ε4K(Z,Z)2} =
O(nh−2), where recall that σ2

K = hE{ε2K(Z,Z)}. This implies
∑n
i=1[ε2iK(Zi, Zi) − h−1σ2

K ] =
OP (n1/2h−1). Therefore,

(A.34) n−1
n∑
i=1

ε2iK(Zi, Zi) = h−1σ2
K +OP (n−1/2h−1) = h−1σ2

K +OP (1).

From (A.33) and (A.34), (h/n)‖
∑n
i=1 εiKZi‖2 = σ2

K + oP (1), implying n‖Sn,λ(g0)‖2 = OP (h−1 +
nλ+ h−1/2) = OP (h−1), and hence n1/2‖Sn,λ(g0)‖ = OP (h−1/2). Thus,

− 2n · PLRTn,λ = n‖ĝ − g0‖2 + oP (h−1/2)

=
(
n1/2‖Sn,λ(g0)‖+ oP (1)

)2
+ oP (h−1/2)

= n‖Sn,λ(g0)‖2 + 2n1/2‖Sn,λ(g0)‖ · oP (1) + oP (h−1/2)

= n−1‖
n∑
i=1

εiKZi‖2 + n‖Wλg0‖2 + oP (h−1/2).(A.35)

It follows by (A.33)–(A.35) and Slutsky’s theorem that (2h−1σ4
K/ρ

2
K)−1/2(−2nrK · PLRTn,λ −

nrK‖Wλg0‖2 − h−1σ4
K/ρ

2
K) d→ N(0, 1).

A.10. Proof of Lemma 6.1. We need the following two inequalities in establishing (6.3):∫ ∞
0

1
(1 + x2m)l

dx =
∞∑
k=0

∫ 2πh†(k+1)

2πh†k

1
(1 + x2m)l

dx ≤
∞∑
k=0

2πh†

(1 + (2πh†k)2m)l
,

and by a similar argument,
∫∞

0
1

(1+x2m)l
dx ≥

∑∞
k=1

2πh†

(1+(2πh†k)2m)l
. This completes the proof.
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[22] Härdle, W. (1989). Asymptotic maximal deviation of M-smoothers. Journal of Multivariate Analysis, 29, 163–
179.

[23] Hart, J.D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York.

[24] Hall, P. (1991). Edgeworth expansions for nonparametric density estimators, with applications. Statistics, 22,
215-232

[25] Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability
density. Annals of Statistics, 20, 675–694.

[26] Ingster, Yu I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives I–III. Mathe-
matical Methods of Statistics, 2, 85–114; 3, 171–189; 4, 249–268.

[27] Jayasuriya, B.R. (1996). Testing for Polynomial Regression using Nonparametric Regression Techniques. Journal
of the American Statistical Association, 91, 1626–1630.
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In this document, we give the proofs of several results that were not included in Appendix.
We also give a minimax rate result of PLRT testing in the more general modeling framework.
The reference labels of the equations, Theorems, Propositions and Lemmas in this document are
consistent with those in the main text of the paper.

We organize this document as follows. In Section S.1, we prove Proposition 3.3, i.e., the rates of
convergence of ĝn,λ. In Section S.2, we prove Corollary 3.7 on the pointwise asymptotic normality of
ĝn,λ in a special setting. In Section S.3, we sketch the proof of another technical tool, the restricted
FBR, which is used to establish the asymptotic null distribution of the local LRT test. In Section
S.4, we prove Corollary 4.5. In Section S.5, we prove Theorem 4.6, that is, our local LRT attains
minimum separation rates in a general framework. In Section S.6, we prove Proposition 5.2, i.e.,
the equivalent kernel conditions in cubic spline. In Section S.7, we prove Theorem 5.4, i.e., when
data are normal, the PLRT attains minimax rates of testing. We further extend this result to a
more general modeling framework in Section S.8.

S.1. Proof of Proposition 3.3. To prove Proposition 3.3, we first need the following Lemma.
Denote N(δ,G, ‖ · ‖sup) as the δ-covering number of the function class G in terms of the uniform
norm.

Lemma S.1. Suppose that c−2
m hλ−1 > 1. Then for any δ > 0, logN(δ,G, ‖ · ‖sup) ≤ C(hλ−1)1/(2m)δ−1/m,

where C > 0 is an universal constant.

Proof of Lemma S.1. Note that by c−2
m hλ−1 > 1,

G = (c−2
m hλ−1)1/2 · {g ∈ Hm(I)|‖g‖sup ≤ (c−2

m hλ−1)−1/2, J(g, g) ≤ 1} ⊂ (c−2
m hλ−1)1/2T ,

where T = {g ∈ Hm(I)|‖g‖sup ≤ 1, J(g, g) ≤ 1}. So by [31],

logN(δ,G, ‖ · ‖sup) ≤ logN(δ, (c−2
m hλ−1)1/2T , ‖ · ‖sup)

= logN((c−2
m hλ−1)−1/2δ, T , ‖ · ‖sup)

≤ c((c−2
m hλ−1)−1/2δ)−1/m = cc−1/m

m (hλ−1)1/(2m)δ−1/m.

Consider the function class F = {g(z) ∈ Hm(I)|‖g‖sup ≤ 1, J(g, g) ≤ 1}. By Lemma S.1, for any
δ > 0, logN(δ,F , ‖ · ‖sup) ≤ cδ−1/m, where c is some universal constant. Then a modification of
Lemma 3.2 leads to
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Lemma S.2. Suppose that ψn satisfies Lipschitz continuity, namely,

(S.1) |ψn(T ; f)− ψn(T ; g)| ≤ c−1
m h1/2‖f − g‖sup, for all f, g ∈ F ,

where cm is specified in Lemma 3.1. Then we have

lim
n→∞

P

 sup
g∈F

‖g‖sup≤1

‖Zn(g)‖
‖g‖1−1/(2m)

sup + n−1/2
≤ (5 log log n)1/2

 = 1,

where the empirical process Zn(f) is defined in (3.1).

Denote g = ĝn,λ − g0. By consistency of ĝn,λ in ‖ · ‖H-norm and Sobolev embedding Theorem
(see [1]), we know that ĝn,λ(z) falls in I for any z ∈ I and large enough n. By Taylor’s expansion,

`n,λ(g0 + g)− `n,λ(g0) = Sn,λ(g0)g +
1
2
DSn,λ(g0)gg +

1
6
D2Sn,λ(g?)ggg ≥ 0,

where g? = g0 + t?g for some t? ∈ [0, 1]. Denote the three sums on the right side of the above equa-
tion by I1, I2, I3. Next we will study the rates for these terms. Denote Ai = {supa∈I |῭a(Yi; a)| +
supa∈I |`′′′a (Yi; a)| ≤ C log n}. By (2.4), we may choose C to be large so that ∩iAi has large proba-
bility, and P (Aci ) = O(n−2). Then on ∩iAi,

|6I3| ≤
1
n

n∑
i=1

sup
a∈I
|`′′′a (Yi; a)| · |g(Zi)|3

≤ 1
n
‖g‖sup

n∑
i=1

sup
a∈I
|`′′′a (Yi; a)| · g(Zi)2

=
1
n
‖g‖sup〈

n∑
i=1

ψ(Ti; g)KZi , g〉

=
1
n
‖g‖sup〈

n∑
i=1

[ψ(Ti; g)KZi − E{ψ(T ; g)KZ}], g〉+ ‖g‖supE{ψ(T ; g)g(Z)},

where ψ(Ti; g) = supa∈I |`′′′a (Yi; a)|g(Zi)IAi . Let ψn(Ti; g) = (C log n)−1c−1
m h1/2ψ(Ti; g), which sat-

isfies (S.1). Thus, by Lemma S.2, for large n and with large probability,

‖
n∑
i=1

[ψn(Ti; g)KZi − E{ψn(T ; g)KZ}]‖ ≤ (n1/2‖g‖1−1/(2m)
sup + 1)(5 log log n)1/2.

So by Cauchy’s inequality,∣∣∣∣〈 n∑
i=1

[ψ(Ti; g)KZi − E{ψ(T ; g)KZ}], g〉
∣∣∣∣ ≤ ‖g‖ · (n1/2‖g‖1−1/(2m)

sup + 1)(5 log log n)1/2.

On the other hand, by Assumption A.1 (a),

E{ψ(T ; g)g(Z)} ≤ E{sup
a∈I
|`′′′a (Y ; a)|g(Z)2} ≤ 2C2

0C1‖g‖2.
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By (n1/2h)−1(log log n)m/(2m−1)(log n)2m/(2m−1) = o(1), which implies (n1/2h)−1(log log n)1/2 log n =
o(1), we have

|6I3| ≤
1
n
‖g‖sup · ‖g‖(C log n)cmh−1/2(n1/2‖g‖1−1/(2m)

sup + 1)(5 log log n)1/2 + 2C2
0C1‖g‖sup · ‖g‖2

= c2
mC
′(n1/2h)−1(log log n)1/2(log n)‖g‖2 + 2C2

0C1‖g‖sup · ‖g‖2

= oP (1) · ‖g‖2.(S.2)

To approximate I2, by Cauchy’s inequality we have∣∣∣∣E{῭a(Y ; g0(Z))IAcg(Z)2}
∣∣∣∣ ≤ E{|῭a(Y ; g0(Z))|2IAcg(Z)4}1/2 · P (Ac)1/2

≤ O(1) · (log n)‖g‖sup‖g‖n−1 = ‖g‖2O((nh)−1/2) = o(1)‖g‖2.

By changing ψ and ψn in the proof of (S.2) to ψ(Ti; g) = ῭
a(Yi; g0(Zi))gIAi and ψn(Ti; g) =

(C log n)−1c−1
m h1/2ψ(Ti; g), and using an argument similar to the proof of (S.2), we have

|[DSn,λ(g0)− E{DSn,λ(g0)}]gg| ≤ Ccmh
−1+1/(4m)n−1/2(log log n)1/2(log n)‖g‖2−1/(2m)

+Ccm(nh1/2)−1(log log n)1/2(log n)‖g‖+ oP (1)‖g‖2.

Thus,

2I2 = −‖g‖2 + Ccmh
−1+1/(4m)n−1/2(log log n)1/2(log n)‖g‖2−1/(2m)

+Ccm(nh1/2)−1(log log n)1/2(log n)‖g‖+ oP (1)‖g‖2.(S.3)

Note that E{‖
∑n
i=1 εiKZi‖2} = O(nh−1), by (A.32) in the main paper, we have

(S.4) ‖Sn,λ(g0)‖ = OP ((nh)−1/2 + λ1/2).

Combining (S.2), (S.3), and (S.4), and by (nh1/2)−1(log log n)1/2(log n) = o((nh)−1/2), we have
for some large C ′

(1 + oP (1))‖g‖2 ≤ C ′((nh)−1/2 + λ1/2)‖g‖+ Ccmh
−1+1/(4m)n−1/2(log log n)1/2(log n)‖g‖2−1/(2m).

Solving this inequality, and using (n1/2h)−1(log log n)m/(2m−1)(log n)2m/(2m−1) = o(1), we get ‖g‖ =
OP ((nh)−1/2 + λ1/2).

S.2. Proof of Corollary 3.7. By Proposition 2.2, Assumption A.2 holds. We first show part (i).
By `′′′a (y; a) = 0 for any y and a, that is, in (3.5) C` = 0, we obtain an = n−1/2((nh)−1/2 +
hm)h−(6m−1)/(4m)(log log n)1/2. Since h � n−1/(4m+1), we have h = o(1) and nh2 → ∞. By m >
(3 +

√
5)/4, it can be verified that an log n = o(n−1/2).

On the other hand, by expression of K in terms of hνs (see Proposition 2.1), as h→ 0,∫ 1

0
g

(2m)
0 (z)K(z0, z)dz − g(2m)

0 (z0)/π(z0) =
∑
ν

1
1 + λγν

V (g(2m)
0 /π, hν)hν(z0)−

∑
ν

V (g(2m)
0 /π, hν)hν(z0)

= −
∑
ν

λγν
1 + λγν

V (g(2m)
0 /π, hν)hν(z0)→ 0,(S.5)
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where the limit in (S.5) follows from
∑
ν |V (g(2m)

0 , hν)hν(z0)| < ∞ and dominated convergence
theorem. Then, by (3.11) and integration by parts, it can be shown that

(Wλg0)(z0) = 〈Wλg0,Kz0〉 = λJ(g0,Kz0)

= (−1)mh2m
∫ 1

0
g

(2m)
0 (z)K(z0, z)dz = (−1)mh2m(g(2m)

0 (z0)/π(z0) + o(1)).(S.6)

So, as n→∞, (nh)1/2(Wλg0)(z0)→ (−1)mg(2m)
0 (z0)/π(z0). Therefore all the assumptions in The-

orem 3.6 hold. Then (3.12) directly follows from (3.10).
The proof of (3.13) is similar to that of (3.12). One only notes, by (S.6) and h � n−d for
1

4m+1 < d ≤ 2m
8m−1 , (nh)1/2(Wλg0)(z0) = O((nh)1/2h2m) = o(1). Then (3.13) follows from (3.10).

The proof of part (ii) is similar in spirit to that of part (i). The only difference is that since g0

does not satisfy the boundary conditions, and by integration by parts, (S.6) should be replaced by
the following
(S.7)

(Wλg0)(z0) = h2m
m∑
j=1

(−1)j−1

[(
∂m−j

∂zm−j
Km−j
z0 (z)

)
· g(m+j−1)

0 (z)
∣∣∣∣1
0

]
+(−1)mh2m

∫ 1

0
g

(2m)
0 (z)K(z0, z)dz.

The first sum, by (3.14), is o(h2m). The second sum, by (S.5), is (−1)mh2m(g(2m)
0 (z0)/π(z0)+o(1)).

Thus, (Wλg0)(z0) = (−1)mh2mg
(2m)
0 (z0)/π(z0) + o(h2m). Note this is not true for z0 = 0 or 1. Then

the proof can be finished by similar arguments in the proof of part (i).

S.3. Proof of Theorem 4.3. The proof is similar to those in Theorem 3.4, so we only sketch
the idea. Let g = ĝ0

n,λ − g0
0. Assumption A.4 guarantees that with large probability, ‖g‖ ≤ rn ≡

M((nh)−1/2 +hm) for a proper large M . By a modification of the proof of Lemma 3.2, we have the
following lemma.

Lemma S.3. Suppose that ψn satisfies Lipschitz continuity, namely, there exists a constant
Cψ > 0 such that

(S.8) |ψn(T ; g1)− ψn(T ; g2)| ≤ c−1
m h1/2‖g1 − g2‖sup, for all g1, g2 ∈ H0,

where recall that T = (Y,Z) denotes the full data variable. Then we have

lim
n→∞

P

 sup
g∈G0
‖g‖sup≤1

‖Z0
n(g)‖

n1/2h−(2m−1)/(4m)‖g‖1−1/(2m)
sup + 1

≤ (5 log log n)1/2

 = 1,

where G0 = {g ∈ H0|‖g‖sup ≤ 1, J(g, g) ≤ c−2
m hλ−1} and Z0

n(g) =
∑n
i=1[ψn(Ti; g)K∗Zi−E{ψn(T ; g)K∗Z}].

By a reexamination of the proof of Theorem 3.4, we have, with large probability, g ∈ G0 and
ψn satisfies Lipschitz continuity (S.8), where ψn(T ; g) = C−1c−1

m (log n)−1h1/2d−1
n { ˙̀

a(Y ; g0(Z) +
dng(Z))− ˙̀

a(Y ; g0(Z))}, and dn = cmrnh
−1/2. This leads to, with large probability,

(S.9) ‖
n∑
i=1

[ψn(Ti; g)K∗Zi − E{ψn(T ; g)K∗Z}]‖ ≤ (n1/2h−(2m−1)/(4m) + 1)(5 log log n)1/2.

The remainder of the proof follows by (A.7), and by an argument similar to (A.9) – (A.11).
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S.4. Proof of Corollary 4.5. By Fourier expansion of g0 andWλhν = λγν
1+λγν

, we have (Wλg0)(z0) =∑
ν V (g0, hν) λγν

1+λγν
hν(z0). By the assumption that

∑
ν |V (g0, hν)|2γdν < ∞, one obtains the bound

|(Wλg0)(z0)| = O((λdh−1)1/2) = O(hmd−1/2) by using Cauchy’s inequality. Thus, by h � n−1/(2m+1)

and d > 1 + 1/(2m), (nh)1/2(Wλg0)(z0) = o(1). Direct calculations verify h = o(1), nh2 → ∞,
an = o((nh)−1/2 + hm), an = o(n−1/2(log n)−1), an = o(n−1((nh)−1/2 + hm)−1(log n)−1), and
an � ((nh)−1/2 + hm)2h−1/2. Thus, the desired result follows from Theorem 4.3.

S.5. Proof of Theorem 4.6. It is easy to check that h � n−d with 1/(2m+1) ≤ d < 2m/(10m−1)
and m > 1+

√
3/2 satisfies all the rate conditions on an and h stated in Theorem 4.3. Before formally

giving the proof, we establish the contiguity between Pngn0
and Png∗ . It can be shown that the log

likelihood ratio
(S.10)

log(Pngn0
/Png∗) = n−1/2

n∑
i=1

˙̀
a(Yi; g∗(Zi))n1/2ηnfn(Zi)+(1/2)n−1

n∑
i=1

῭
a(Yi; g∗(Zi))nη2

n|fn(Zi)|2+oPng∗ (1).

Thus, under g = g∗ and using (4.13), Pngn0
/Png∗

d→ exp(ξ), where ξ ∼ N(−τ2
z0/2, τ

2
z0). Since

E{exp(ξ)} = 1, by Theorem 3.10.2 of [55], Pngn0
is contiguous with respect to Png∗ .

Next we prove the theorem. For notational convenience, denote ĝ = ĝn,λ and ĝ0 = ĝ0
n,λ. Under g =

g∗, since g∗(z0) = w0, H0 : g(z0) = w0 automatically holds. It then follows from Assumptions A.3
and A.4, and the proof of Theorem 4.3 that under g = g∗, −2n ·LRTn,λ = n‖w0 + ĝ0− ĝ‖2 +oPng∗ (1).
Applying Theorems 3.4 and 4.3, we have −2n·LRTn,λ = n‖Sn,λ(g∗)−S0

n,λ(g0
∗)‖2+oPng∗ (1), under g =

g∗, where recall g0
∗ = g∗−w0. Also, under g = g∗, 1

n

∑n
i=1

(
˙̀
a(Yi; g∗(Zi))Kz0(Zi)− E{ ˙̀

a(Y ; g∗(Z))Kz0(Z)}
)

=

OPng∗ ((nh)−1/2). By contiguity between Pngn0
and Png∗ , under g = gn0, −2n · LRTn,λ = n‖Sn,λ(g∗)−

S0
n,λ(g0

∗)‖2+oPngn0
(1), and 1

n

∑n
i=1

(
˙̀
a(Yi; g∗(Zi))Kz0(Zi)− E{ ˙̀

a(Y ; g∗(Z))Kz0(Z)}
)

= OPngn0
((nh)−1/2).

On the other hand, using hK(z0, z0) � σ2
z0 and a direct examination leads to

n‖Sn,λ(g∗)− S0
n,λ(g0

∗)‖2 =
n

K(z0, z0)
| 1
n

n∑
i=1

˙̀
a(Yi; g∗(Zi))Kz0(Zi)− (Wλg∗)(z0)|2

� σ−2
z0 |

(nh)1/2

n

n∑
i=1

˙̀
a(Yi; g∗(Zi))Kz0(Zi)− (nh)1/2(Wλg∗)(z0)|2.(S.11)

Note under g = gn0, by assumptions of the theorem and Taylor’s expansion,

1
n

n∑
i=1

˙̀
a(Yi; g∗(Zi))Kz0(Zi)

=
1
n

n∑
i=1

(
˙̀
a(Yi; g∗(Zi))Kz0(Zi)− E{ ˙̀

a(Y ; g∗(Z))Kz0(Z)}
)

+ E
{(

˙̀
a(Y ; g∗(Z))− ˙̀

a(Y ; gn0(Z))
)
Kz0(Z)

}
= OPngn0

((nh)−1/2) + E{
∫ 1

0

῭
a(Y ; gn0(Z)− sηnfn(Z))ηnfn(Z)Kz0(Z)ds}

= OPngn0
((nh)−1/2) + E{

∫ 1

0
[῭a(Y ; gn0(Z)− sηnfn(Z))− ῭

a(Y ; gn0(Z))]ηnfn(Z)Kz0(Z)ds} − ηnV (f,Kz0)

= OPngn0
((nh)−1/2) + η2

nh
−1‖fn‖2L2

O(1)− ηnfn(z0) + ηn(Wλfn)(z0).

(S.12)
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Since nη2
nV (fn, fn) = O(1) under g = g∗, which also holds under g = gn0 by contiguity between

Pngn0
and Png∗ , we have η2

nh
−1‖fn‖2L2

= O((nh)−1) = O((nh)−1/2). Since J(fn, fn) ≤ Ca(nλη2
n)−1,

by Fourier expansion and Cauchy’s inequality, it can be shown that

ηn|(Wλfn)(z0)| ≤ ηn
√
J(fn, fn)(λh−1)1/2O(1) = O((nh)−1/2).

Therefore, 1
n

∑n
i=1

˙̀
a(Yi; g∗(Zi))Kz0(Zi) = OPngn0

((nh)−1/2)−n−1/2fn(z0). Since
∑
ν |V (g∗, hν)|γ1/2

ν <

∞ implying (Wλg∗)(z0) = O(hm) (see Remark 4.1), (nh)1/2(Wλg∗)(z0) = O((nh)1/2hm). By as-
sumption ηn ≥ (nh)−1/2 + hm and |fn(z0)| → ∞ as n → ∞, and by (S.11) and (S.12), the
leading term in the approximation of −2n · LRTn,λ is σ−2

z0 (nhη2
n)|fn(z0)|2 which goes to infinity as

n→∞. Therefore, there exists some sufficiently large N such that for any n ≥ N , under g = gn0,
−2n · LRTn,λ > cα with probability (in terms of Pngn0

) greater than 1− δ, where cα is the α-cutoff
associated with the limiting distribution described in Theorem 4.4. Balancing the lower bound of
ηn one obtains when h = h∗ the minimum rate ηn = n−m/(2m+1) is achieved.

To show n−m/(2m+1) is the sharp lower bound for ηn, assume otherwise ηn � n−m/(2m+1).
Let ω be a function defined over R satisfying ω(0) = 1, ω and ω(m) are square integrable. Since
ηn � n−m/(2m+1) and (nh)1/2 = O(nm/(2m+1)), we have ηn(nh)1/2 = o(1). Choose cn such that,
as n → ∞, cn → ∞, cnηnn1/2 → ∞ and cnηn(nh)1/2 = o(1). For instance, one can choose
cn = max{(ηnn1/2)−1h−1/4, [ηn(nh)1/2]−1/2}. Define fn(z) = cnω(c2

nnη
2
n(z − z0)) for z ∈ I. By

a direct calculation, J(fn, fn) = c2
n(c2

nnη
2
n)2m

∫ 1
0 |ω(m)(cnnη2

n(z − z0))|2dz = O(c4m
n (nη2

n)2m−1).
Since cnηn(nh)1/2 = o(1), we have J(fn, fn) = o(η−4m

n (nh)−2m(nη2
n)2m−1) = o((nλη2

n)−1). Clearly,
fn(z0) = cn →∞. Since cnηnn1/2 →∞, we have under g = g∗,

nη2
nV (fn, fn) = c2

nnη
2
n

∫ 1

0
I(z)π(z)|ω(c2

nnη
2
n(z − z0))|2

=
∫ c2nnη

2
n(1−z0)

−c2nnη2
nz0

(Iπ)(z0 + (c2
nnη

2
n)t)|ω(t)|2dt

→ I(z0)π(z0)
∫

R
|ω(t)|2dt,

where recall that π is the density of Z and I(z) = −E{῭a(Y ; g∗(Z))|Z = z}. Therefore, fn satisfies
(4.13). Following (S.10) and the arguments below, it can be shown that Png∗ and Pgnn0

are con-
tiguous. Then by the proofs of (S.11) and (S.12), under g = gn0 = g∗ + ηnfn, −2n · LRTn,λ =
(hK(z0, z0))−1|OPngn0

(1) + (nh)1/2ηnfn(z0) + O((nh2m+1)1/2)|2 + oPngn0
(1). Since h � n−d with

d ∈ [1/(2m + 1), 2m/(10m − 1)], (nh2m+1)1/2 = O(1). Note when n → ∞, (nh)1/2ηnfn(z0) =
cnηn(nh)1/2 = o(1) eventually vanishes. So −2n·LRTn,λ = OPngn0

(1). This means, −2n·LRTn,λ > cα
with probability (in terms of Pngn0

) bounded by 1 − δ0 for some δ0 ∈ (0, 1) unrelated to n. This
proves the sharpness of the lower bound n1/(2(2m+1)) for ηn.

S.6. Proof of Proposition 5.2. We first consider (5.2) and (5.3). (5.2) trivially holds. By bound-
edness and absolute integrability of ω, for any ρ ∈ (0, 2], lim|z|→∞

∫∞
−∞

ω(t)(ω(t+z)−ω(t))
|z|ρ dt = 0,

implying Cρ in (5.3) is actually zero.
For general m, let h̃νs and γ̃νs be the normalized (with respect to the usual L2-norm) eigenfunc-

tions and eigenvalues of the boundary value problem (−1)mh̃(2m)
ν = γ̃ν h̃ν , h̃(j)

ν (0) = h̃
(j)
ν (1) = 0,

j = m,m+ 1, . . . , 2m− 1. Thus, it is easy to see that hν = σh̃ν and γν = σ2γ̃ν satisfy (2.11) with
π(z)I(z) ≡ σ−2, implying that hνs and γνs form an effective eigensystem in Hm(I). Let λ† = σ2λ



48 Z. SHANG AND G. CHENG

and h† = σ1/mh. Define K̃(s, t) =
∑
ν
h̃ν(s)̃hν(t)

1+λ†γ̃ν
. Then K̃ is the reproducing kernel function associ-

ated with the inner product 〈f, g〉1 =
∫ 1
0 f(t)g(t)dt+λ†

∫ 1
0 f

(m)(t)g(m)(t)dt. Thus, K̃ is the Green’s
function associated with the differential equation (2.1) in [41], with the penalty parameter therein
replaced by λ†.

Next we restrict m = 2. By Theorem 4.1 in [38], for j = 0, 1,

(S.13) sup
s,t∈I

∣∣∣∣ djdtj
(
K̃(s, t)− K̄(s, t)

) ∣∣∣∣ ≤ C ′K(h†)−(j+1) exp(− sin(π/(2m))/h†),

where by equation (6) in [38], K̄ satisfies for any s, t ∈ I and j = 0, 1,
(S.14)∣∣∣∣ djdtj

(
K̄(s, t)− 1

h†
ω0

(
s− t
h†

)) ∣∣∣∣ ≤ C ′′K(h†)−(j+1)(exp(−|1− s|/(
√

2h†)) + exp(−|s|/(
√

2h†))),

with C ′K , C
′′
K both being positive constants. By (S.13) and (S.14), it is easy to see that for any

s, t ∈ I and j = 0, 1,∣∣∣∣ djdtj
(
K̃(s, t)− 1

h†
ω0

(
s− t
h†

)) ∣∣∣∣(S.15)

≤ CK(h†)−(j+1)(exp(− sin(π/(2m))/h†) + exp(−|1− s|/(
√

2h†)) + exp(−|s|/(
√

2h†))),

where C ′, CK are positive constant. By Proposition 2.1, K(s, t) =
∑
ν
hν(s)hν(t)

1+λγν
= σ2K̃(s, t). There-

fore, K(s, t)− h−1ω((s− t)/h) = σ2(K̃(s, t)− (h†)−1ω0((s− t)/h†)). It can thus be shown that, by
(S.15), Condition (5.1) holds.

S.7. Proof of Theorem 5.4. First of all, by direct calculations, one can verify by 1
2m+1 ≤ d <

2m
8m−1 and m > 3+

√
5

4 that h � n−d satisfies the conditions in Theorem 5.3.
Next we prove our theorem. We write

(S.16) − 2n · PLRTn,λ = −2n(`n,λ(g0)− `n,λ(gn0))− 2n(`n,λ(gn0)− `n,λ(ĝn,λ)).

The proof proceeds by two parts. We first note that −2n·PLRT ′ ≡ −2n(`n,λ(gn0)−`n,λ(ĝn,λ)) is ac-
tually the PLRT test for testing H1n against Hglobal

1 . Under H1n, −2n ·PLRT ′ has the same asymp-
totic distribution as in Theorem 5.3, but uniformly for all gn ∈ Ga. That is to say, (2un)−1/2(−2nrK ·
PLRT ′ − n‖Wλgn0‖2 − un) = OP (1) uniformly for gn ∈ Ga, where un = h−1σ4

K/ρ
2
K with σ2

K and
ρ2
K given in (5.14). Second, we show that −2n(`n,λ(g0) − `n,λ(gn0)) = n‖gn‖2 + OP (n1/2‖gn‖ +
n1/2‖gn‖2 + nλ). Then (2un)−1/2(−2nrK · PLRT − un) ≥ n(2un)−1/2‖gn‖2(1 +OP (n−1/2‖gn‖−1 +
n−1/2 +λ‖gn‖−2))+(2un)−1/2n‖Wλg0‖2 +OP (1) ≥ n(2un)−1/2‖gn‖2(1+OP (n−1/2‖gn‖−1 +n−1/2 +
λ‖gn‖−2)) +OP (1), where OP (·) holds uniformly for gn0 ∈ Ga. Let n−1/2‖gn‖−1 ≤ 1/C, λ‖gn‖−2 ≤
1/C and ‖gn‖2 ≥ C(nh1/2) for sufficiently large C, which implies that |−2nrK ·PLRT−un

(2un)1/2
| ≥ cα with

large probability, where cα is the cutoff value (based on N(0, 1)) for rejecting Hglobal
0 at level α.

This means we have to assume ‖gn‖2 ≥ C(λ+ (nh1/2)−1) to achieve large power.
Next we complete the above two parts. First, it can be established that the following “uniform”

FBR holds, i.e., for any δ ∈ (0, 1), there exist positive constants C̃ and N such that

(S.17) inf
n≥N

inf
gn0∈Ga

Pgn0

(
‖ĝn,λ − gn0 − Sn,λ(gn0)‖ ≤ C̃an

)
≥ 1− δ,
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where recall that an is defined as in (3.5), The proof of (S.17) follows by a careful reexamination
of Theorem 3.4. Specifically, one can choose C and M (to be unrelated to gn ∈ Ga) to be large so
that the event Bn1 ∩Bn2, defined in the proof of Theorem 3.4, has probability greater than 1− δ

4 .
Then by going through exactly the same proof, it can be shown that when n ≥ N for some suitably
selected N , for any gn ∈ Ga, (A.9) holds with probability greater than 1− δ/2 (by properly tunning
the probability), with the constant C ′ therein only depending on C,M, cm. By going through the
proofs of (A.10) and (A.11), it can be shown that for n ≥ N and gn ∈ Ga, with probability larger
than 1− δ, ‖ĝn,λ − gn0 − Sn,λ(gn0)‖ ≤ C̃an, where the constant C̃ and N are unrelated to gn ∈ Ga.
Using (S.17) and by exactly the same proof of Theorem 5.3, it can be shown that −2n · PLRT ′
follows the same asymptotic normal distribution under H1n : g = gn0 as in Theorem 5.3, uniformly
for gn ∈ Ga.

Second, for notational simplicity, denote Ri = `(Yi; g0(Zi))− `(Yi; gn0(Zi)) for i = 1, . . . , n. Then

E{|
n∑
i=1

[Ri − E(Ri)]|2} ≤ nE{R2
i } = nE{|εign(Zi) + gn(Zi)2|2} = O(n‖gn‖2 + n‖gn‖4).

Therefore, uniformly over gn ∈ Ga, n(`n,λ(g0)−`n,λ(gn0)−E{`n,λ(g0)−`n,λ(gn0)}) = OP (n1/2‖gn‖+
n1/2‖gn‖2).

On the other hand, E{DSn,λ(gn0)gngn} = −E{|gn(Z)|2} − λJ(gn, gn) = −‖gn‖2. Therefore,

E{`n,λ(g0)− `n,λ(gn0)} = E{Sn,λ(gn0)(−gn) + (1/2)DSn,λ(gn0)gngn} = λJ(gn0, gn)− ‖gn‖2/2.

Since |J(gn0, gn)| ≤ |J(g0, gn)|+J(gn, gn) ≤ J(g0, g0)1/2ζ1/2+ζ, we get that 2n(`n,λ(g0)−`n,λ(gn0)) =
−n‖gn‖2 +OP (nλ+ n1/2‖gn‖+ n1/2‖gn‖2) uniformly for gn ∈ Ga. This completes the proof.

S.8. Minimax separation rates of PLRT test in general modeling framework. To the end of this
supplement document, we remark that in a more general modeling framework PLRT achieves the
optimal minimax rate of hypothesis testing specified in Ingster (1993). The proofs are similar to
those of Theorem 5.4 but requires a deeper tachnical tool, i.e., the mapping principle which builds
equivalence between the eigenvalues obtained under null and contiguous alternatives. We still write
the local alternative as H1n : g = gn0, where gn0 = g0 + gn, g0 ∈ Hm(I) and gn belongs to some
alternative value set Ga.

Theorem 6.2. Let m > (3 +
√

5)/4 ≈ 1.309, and h � n−d for 1
2m+1 ≤ d < 2m

8m−1 . Let
Assumption A.1 (a) hold for constants C0, C1, a compact interval I0 and an open interval I with
I0 ⊂ I. There is a constant C2 > 0 such that 1/C2 ≤ −῭

a(Y ; a) ≤ C2 holds for any a ∈ I. The
values of 2g0 belong to I0. Consider the alternative value set

Ga = {g ∈ Hm(I)|2g(z) ∈ I0 for any z ∈ I, ‖g‖sup ≤ ζ, J(g, g) ≤M},

where ζ = 1/(2C0C1C2) and M is a positive constant. Suppose under H1n : g = gn0 for gn ∈ Ga,
Assumptions A.1 (c) and A.2 hold (with g0 therein replaced by gn0), E{ε4n0|Z} ≤ C, a.s., for some
constant C > 0, with εn0 = ˙̀

a(Y ; gn0(Z)), and uniformly over gn0 ∈ Ga, ‖ĝn,λ − gn0‖ = OP (rn)
holds under H1n : g = gn0. Then for any δ ∈ (0, 1), there exist positive constants C ′ and N such
that

(S.18) inf
n≥N

inf
gn∈Ga

‖gn‖≥C′ηn

P
(

reject Hglobal
0 |H1n is true

)
≥ 1− δ,

where ηn ≥
√
h2m + (nh1/2)−1. The minimal lower bound of ηn, i.e., n−2m/(4m+1), is achieved when

h = h∗∗ ≡ n−2/(4m+1).
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Proof of Theorem 6.2. First of all, by direct calculations, one can verify by 1
2m+1 ≤ d <

2m
8m−1

and m > 3+
√

5
4 that h � n−d satisfies the conditions in Theorem 5.3. Throughout, we only consider

gn0 = g0 + gn for gn ∈ Ga.
Next we prove our theorem. We write

(S.19) − 2n · PLRTn,λ = −2n(`n,λ(g0)− `n,λ(gn0))− 2n(`n,λ(gn0)− `n,λ(ĝn,λ)).

The proof proceeds by two parts. We first note that −2n · PLRT ′ ≡ −2n(`n,λ(gn0) − `n,λ(ĝn,λ))
is actually the PLRT test for testing H1n against Hglobal

1 . Under H1n, −2n · PLRT ′ has the same
asymptotic distribution as described in Theorem 5.3, but uniformly for all gn ∈ Ga. That is to
say, (2un0)−1/2(−2n · PLRT ′n,λ − n‖Wλgn0‖2 − h−1σ2

Kn0) = OP (1) uniformly for gn0 = g0 + gn
with gn ∈ Ga, where un0 = h−1σ4

Kn0/ρ
2
Kn0 under g = gn0 and σ2

Kn0, ρ2
Kn0 are given in (5.14) with

eigenvalues therein derived under g = gn0. Denote un = h−1σ4
K/ρ

2
K under g = g0 with σ2

K , ρ2
K

given in (5.14). Let Vgn0 and Vg0 be the V functionals defined as in Section 2.2 under g = gn0 and
g = g0 respectively. Then for any f ∈ Hm(I), by Assumption A.1 (a) and (b)

|Vgn0(f, f)− Vg0(f, f)| = |E{[῭a(Y ; gn0(Z))− ῭
a(Y ; g0(Z))]|f(Z)|2}|

≤ E{sup
a∈I
|`′′′a (Y ; a)| · |gn(Z)| · |f(Z)|2}

≤ C0C1C2‖gn‖supVgn0(f, f) = ζ0‖gn‖supVgn0(f, f),

where ζ0 = C0C1C2 = 1/(2ζ) is a universal constant. Therefore, (1 − ζ0‖gn‖sup)Vgn0(f, f) ≤
Vg0(f, f) ≤ (1 + ζ0‖gn‖sup)Vgn0(f, f). By mapping principle (see Theorem 6.1 in [59]), the eigen-
values induced by the functional pairs (Vgn0 , J) and (Vg0 , J) are thus equivalent in the sense that
(1 − ζ0‖gn‖sup)γn0

ν ≤ γν ≤ (1 + ζ0‖gn‖sup)γn0
ν for any ν ∈ N, where γn0

ν denotes the eigenvalue
corresponding to Vgn0 and γν is the eigenvalue corresponding to Vg0 . Therefore, uniformly for gn0,

σ2
Kn0 − σ2

K =
∑
ν

hλ(γν − γn0
ν )

(1 + λγn0
ν )(1 + λγν)

= O(‖gn‖sup) = O(h−1/2‖gn‖).

Secondly, we show that −2n(`n,λ(g0)− `n,λ(gn0)) ≥ nC ′‖gn‖2 +OP (n1/2‖gn‖+ nλ), where C ′ is
some positive constant unrelated to f . Then

(2un)−1/2(−2nrK · PLRT − un)
= rK(2un)−1/2(−2n · PLRT ′n,λ − n‖Wλgn0‖2 − h−1σ2

Kn0) + rK(2un)−1/2n‖Wλgn0‖2

−rK(2un)−1/2 · 2n(`n,λ(g0)− `n,λ(gn0)) + rK(2un)−1/2h−1(σ2
Kn0 − σ2

K)

≥ OP (1) + nC ′rK(2un)−1/2‖gn‖2(1 +OP (n−1/2‖gn‖−1 + λ‖gn‖−2)) +O(h−1‖gn‖),

where OP (·) holds uniformly for gn ∈ Ga. Let n−1/2‖gn‖−1 ≤ 1/C, λ‖gn‖−2 ≤ 1/C, Ch−1‖gn‖ ≤
nh1/2‖gn‖2, and ‖gn‖2 ≥ C(nh1/2)−1 for sufficiently large C, which implies that |−2nrK ·PLRT−un

(2un)1/2
| ≥

cα with large probability, where cα is the cutoff value (based on N(0, 1)) for rejecting Hglobal
0 at

nominal level α . This means we have to assume ‖gn‖2 ≥ C(λ+ (nh1/2)−1) to achieve large power.
Next we complete the above two parts. First, it can be established that the following “uniform”

FBR holds, i.e., for any δ ∈ (0, 1), there exist positive constants C̃ and N such that

(S.20) inf
n≥N

inf
gn∈Ga

Pgn0

(
‖ĝn,λ − gn0 − Sn,λ(gn0)‖ ≤ C̃an

)
≥ 1− δ,
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where recall that an is defined as in (3.5), The proof of (S.20) follows by a careful reexamination
of Theorem 3.4. Specifically, one can choose C and M (to be unrelated to gn ∈ Ga) to be large so
that the event Bn1 ∩Bn2, defined in the proof of Theorem 3.4, has probability greater than 1− δ

4 .
Then by going through exactly the same proof, it can be shown that when n ≥ N for some suitably
selected N , for any gn ∈ Ga, (A.9) holds with probability greater than 1− δ/2 (by properly tunning
the probability), with the constant C ′ therein only depending on C,M, cm. By going through the
proofs of (A.10) and (A.11), it can be shown that for n ≥ N and gn ∈ Ga, with probability larger
than 1− δ, ‖ĝn,λ − gn0 − Sn,λ(gn0)‖ ≤ C̃an, where the constant C̃ and N are unrelated to gn ∈ Ga.
Using (S.20) and by exactly the same proof of Theorem 5.3, it can be shown that −2n · PLRT ′
follows the same asymptotic normal distribution under H1n : g = gn0 as in Theorem 5.3, uniformly
for gn ∈ Ga.

For simplicity, denote Ri = `(Yi; g0(Zi))− `(Yi; gn0(Zi)) for i = 1, . . . , n. Then

(S.21) E{|
n∑
i=1

[Ri − E(Ri)]|2} ≤ nE{R2
i } = nE{| − εign(Zi) + ῭

a(Yi; g∗n0(Zi))gn(Zi)2|2},

where g∗n0(z) = g0(z) + t∗gn(z) for t∗ ∈ (0, 1), implying g∗n0(z) ∈ I0 for any z. By Assumption
A.1, we get that (S.21) is uniformly O(n‖gn‖2) over gn ∈ Ga. Therefore, uniformly over gn ∈ Ga,
n(`n,λ(g0)− `n,λ(gn0)− E{`n,λ(g0)− `n,λ(gn0)}) = OP (n1/2‖gn‖).

On the other hand, by supa∈I ῭
a(Y ; a) < 0, we can find C ′ > 0 (unrelated to gn ∈ Ga) such that

E{DSn,λ(g∗n0)gngn} = E{῭a(Y ; g∗n0(Z))|gn(Z)|2} − λJ(gn, gn) ≤ −C ′‖gn‖2/2. Therefore,

E{`n,λ(g0)− `n,λ(gn0)} = E{Sn,λ(gn0)(−gn) + (1/2)DSn,λ(g∗n0)gngn}
≤ λJ(gn0, gn)− C ′‖gn‖2/2 = O(λ)− C ′‖gn‖2/2,

where the last equality holds by J(gn, gn) ≤ M and |J(gn0, gn)| ≤ |J(g0, gn)| + J(gn, gn) ≤
J(g0, g0)1/2M1/2 + M . Consequently, 2n(`n,λ(g0)− `n,λ(gn0)) ≤ −nC ′‖gn‖2 + OP (nλ + n1/2‖gn‖).
This completes the proof.
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