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Generalized estimators for multiple testing: pro-
portion of true nulls and false discovery rate

Xiongzhi Chen and R.W. Doerge †
Department of Statistics, Purdue University, West Lafayette, USA.

Summary. Two new estimators are proposed: one for the proportion of true null
hypotheses and the other for the false discovery rate (FDR) of one-step multi-
ple testing procedures (MTPs). They outperform existing such estimators when
applied to discrete p-values whose null distributions dominate the uniform distribu-
tion and reduce to leading such estimators when applied to continuous p-values.
For the new estimator of the FDR, we establish its simultaneous asymptotic con-
servativeness and justify formally the stopping time property of its threshold for
p-values not necessarily independent or continuous. The superior performance
of the new estimators is demonstrated theoretically and by simulation studies and
an application to next-generation sequencing count data.

Keywords: Multiple testing; Discrete p-values; Generalized estimators; Stopping
time property

1. Introduction

In typical simultaneous testing, there are m null hypotheses Hi with associated
p-values pi, i = 1, ...,m, such that only m0 of them are true nulls but the rest
m1 false nulls. Further, the proportion π0 = m0/m is unknown. To better
balance the overall statistical error and power in multiple testing, Benjamini
and Hochberg (1995) proposed the concept of the false discovery rate (FDR)
and a linear step-up MTP (BH procedure) whose FDR is no larger than a
prespecified level. Let I0 be the set of indices i for the true nulls and I1 that for
the false nulls. A one-step MTP that uses a threshold t ∈ [0, 1] to decide the
status of each null hypothesis such that Hi is false if and only if pi ≤ t induces V (t) = # {i ∈ I0 : pi ≤ t} ,

S (t) = # {i ∈ I1 : pi ≤ t} ,
R (t) = V (t) + S (t) ,

†Corresponding Author. Email: doerge@purdue.edu. Address: Department of
Statistics, Purdue University, West Lafayette, IN 47907-1399, USA
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and its FDR is defined as

FDR (t) = E

[
V (t)

R (t)

∣∣∣∣R (t) > 0

]
.

Theorem 5.1 of Benjamini and Yekutieli (2001) shows that the FDR of the
BH procedure, FDRBH , satisfies

FDRBH ≤ π0α (1)

for independent p-values, where α ∈ [0, 1] is the prespecified FDR level. The
upper bound in (1) shows the role of the unknown π0 in quantifying FDRBH .
Specifically, using an estimator π̂0 of π0, such that π0 ≤ π̂0 < 1 when π0 < 1,
gives a tighter upper bound on FDRBH than using π0 = 1, and this in turn
yields a rejection threshold no smaller than that induced by the BH procedure
at the same FDR level. Consequently, incorporation of a proper π̂0 potentially
increases the power of the BH procedure. This observation has produced vari-
ous estimators (denoted by π̂0) of π0 and resulted in many adaptive FDR con-
trol and/or estimation procedures (Storey et al., 2004; Benjamini et al., 2006;
Blanchard and Roquain, 2009). However, almost all π̂0’s and adaptive FDR
procedures are developed for continuous p-values whose cumulative distribution
functions (c.d.f.’s) under true nulls (null p-value distributions) are uniform on
the unit interval.

Besides continuous p-values, discrete p-values of various exact tests, such as
the Fisher’s exact test (FET, Lehmann and Romano, 2005) and the exact nega-
tive binomial test (ENT, Robinson and Smyth, 2008), are widely used when con-
ditional inference is conducted with discrete test statistics in the analysis of data
produced by next-generation technologies (NGS). The null p-value distributions
induced by these tests are discrete and heterogeneous. Without proper adjust-
ment, these characteristics are very likely to make more conservative π̂0 and
FDR procedures that were originally designed for continuous p-values. Pounds
and Cheng (2006) discusses the effects of discrete, non-uniform p-value distri-
butions on π̂0 and FDR procedures. For permutation p-values, they showed
that the BH procedure and the procedure in Storey (2002) can be erroneous,
and proposed two robust estimators π̂PC0 and π̃PC0 of π0 whose resultant FDR
estimators outperform the previous two.

Despite these results and the ubiquity of discrete data, little progress has
been made in developing better π̂0’s for discrete p-values. In Section 2, we show
that Storey’s estimator π̂St0 (Storey, 2002), π̂PC0 and π̃PC0 all have excessive up-
ward biases when applied to discrete p-values. In Section 3, we develop a new
estimator π̂CD0 of π0 for discrete p-values such that π̂CD0 inherits all excellent
properties of π̂St0 for continuous p-values. Unlike existing estimators of π0, π̂CD0
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explicitly accounts for the deviations of discrete p-value distributions from the
uniform distribution and thus has less upward bias. We provide conditions to
ensure that π̂CD0 is less conservative than some of its competitors and discuss
the choice of tuning parameters for π̂CD0 . In Section 4, we propose a general-
ized FDR estimator for a one-step MTP, establish its simultaneous asymptotic
conservativeness, and show the stopping time property of the thresholds of
Storey-type FDR estimators. In Section 5, we compare π̂CD0 with π̂St0 , π̂PC0 and
π̃PC0 using two-sided p-values of FETs and ENTs from simulated data. Our
simulation studies demonstrate the superior performance of π̂CD0 in terms of
accuracy, conservativeness and stability. The generalized estimators are applied
to NGS count data for Arabidopsis thaliana and shown to result in improve-
ment. Section 6 concludes the paper with discussion. All proofs are relegated
into the Appendix.

2. Excessive bias of three existing estimators

Let the probability space be (Ω,A, P ) with Ω the sample space, A the sigma-
algebra on Ω, and P the probability measure on A. Without loss of generality
(WLOG), we assume π0 < 1. The conservativeness of adaptive FDR procedures
relies on a crucial property of an estimator π̂0 of π0, i.e., E [π̂0] ≥ π0 or π̂0 ≥ π0,
P -a.s., called “conservativeness” or “total conservativeness” of the estimator,
respectively. Without (total) conservativeness, an adaptive FDR procedure may
fail to control or conservatively estimate the FDR of an MTP. We show that
some existing estimators of π0 can be too conservative (i.e., too upwardly biased)
for discrete p-values.

To estimate π0, Storey (2002) introduces

π̂St0 (λ) =

∑m
i=1 1{pi>λ}

(1− λ)m
, λ ∈ [0, 1). (2)

Let U (a1, b1) denote the uniform distribution on a non-empty interval [a1, b1].

When pi ∼ U (0, 1) for all i ∈ I0, E
[
π̂St0 (λ)

]
= π0+

∑
i∈I1 {1− Fi (λ)}

(1− λ)m
= π0+b1

and b1 ≥ 0 (usually positive) is the bias caused by the unknown Fi, i ∈ I1, where
Fi, i = 1, ..,m, is the the c.d.f. of pi and any c.d.f. is taken to be right continuous
with left limits (i.e., càdlàg). However, when Fi (t) ≤ t for t ∈ [0, 1] Lebesgue
almost surely (denoted by “Fi � U (0, 1)” and referred to as “Fi dominates the
uniform distribution”), i ∈ I0,

E
[
π̂St0 (λ)

]
= π0 +

∑
i∈I0 {λ− Fi (λ)}

(1− λ)m
+ b1 = π0 + b0 + b1
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and b0 ≥ 0 (usually positive) is the extra bias.
Pounds and Cheng (2006) justified that, for randomized tests, FDR proce-

dures that do not account for the discreteness or non-uniformity of the p-values
are usually unreliable. They proposed two estimators of π0 as

π̃PC0 =

 min (1, 2p̄) for 2-sided p-values,
min (1, 2ā) for 1-sided, continuous p-values,
min (1, 8ā) for 1-sided, discrete p-values,

where p̄ = m−1
∑m
i=1 pi, ai = 2 min (pi, 1− pi), ā = m−1

∑m
i=1 ai, and

π̂PC0 = min

(
1,

1

m

m∑
i=1

pi
E [pi|Hi = 0]

)
,

where Hi = 0 or 1 is set depending on whether Hi is a true or false null. They
claimed that π̃PC0 is very robust to various types of p-value distributions, and
demonstrated its improvement over π̂St0 (λ). They further claimed π̂PC0 to be
better than π̃PC0 . Interestingly, these two estimators still may have excessive
upward bias when Fi � U (0, 1), i ∈ I0 as we show next. WLOG, we consider
two-sided discrete p-values and assume neither of π̃PC0 nor π̂PC0 is 1. For π̃PC0 ,
we see

E
[
π̃PC0

]
≥ 2m−1

∑
i∈I0

E [pi] + 2m−1
∑
i∈I1

E [pi] ≥ π0 + 2m−1
∑
i∈I1

E [pi] .

So π̃PC0 has extra (usually positive) bias 2m−1
∑
i∈I0 E [pi]− π0 ≥ 0. Similarly,

E
[
π̂PC0

]
= π0 +

1

m

∑
i∈I1

E [pi|Hi = 1]

E [pi|Hi = 0]
= π0 + b3,

and if some ratios in the summation are large, so will be its positive bias b3.

3. A generalized estimator of π0

Let F ∗i denote the null p-value distribution for pi, i = 1, ...,m. Unless otherwise
stated, it is assumed that F ∗i dominates U (0, 1). To accommodate the discrete-
ness of p-values, and to reduce the upward bias of π̂0 as much as possible whiling
preserving its conservativeness, we define

π̂CD0 (λ, ε) = max

[
0,min

{
1, π̂St0 (λ)− δ (λ, ε)

(1− λ)m

}]
, (3)
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where

δ (λ, ε) =

m∑
i=1

εi {λ− F ∗i (λ)} ,

and ε = (ε1, ..., εm) is a vector of prespecified or adaptively estimated constants
(usually in [0, 1]).

We denote π̂CD0 (λ, ε) by π̂CD0 . When εi = ε for some ε ∈ [0, 1] for all
1 ≤ i ≤ m, we write π̂CD0 (λ, ε) as π̂CD0 (λ, ε) and π̂CD0 (λ, 1) as π̂CD0 (λ). Clearly
π̂CD0 (λ, ε) ≤ π̂St0 (λ). Since π̂St0 (λ) ∈ [0, 1] has to hold even though (2) does
not ensure this, we see either π̂CD0 (λ, ε) = π̂St0 (λ) when each F ∗i , i = 1, ...,m
is U (0, 1) or π̂CD0 (λ, 0) = π̂St0 (λ). Hence, π̂CD0 (λ, ε) generalizes π̂St0 (λ). More-
over, it distinguishes itself from all existing estimators of π0 by explicitly sub-
tracting the excessive upward bias caused by discrete p-values in its expectation,
thus giving highly accurate and less conservative estimate.

3.1. Conservativeness of π̂CD0

We present conditions to ensure the conservativeness of π̂CD0 (λ, ε), and the
relationship between π̂CD0 (λ) , π̂St0 (λ) and π̂PC0 below.

Theorem 1. Suppose max
{
π̂CD0 (λ) , π̂CD0 (λ, ε) , π̂St0 (λ) , π̂PC0

}
< 1. Then

the following hold.
(a) π0 ≤ E

[
π̂CD0 (λ, ε)

]
if and only if∑m

i=1 {Fi (λ)− εF ∗i (λ)}
(1− λ)m

≤ 1− ελ
1− λ

− π0. (4)

(b) Let κi = E [pi|Hi = 1]− E [pi|Hi = 0] . Then E
[
π̂CD0 (λ)

]
≤ E

[
π̂PC0

]
if

and only if ∑
i∈I1

κi
E [pi|Hi = 0]

≤ 1

1− λ
∑
i∈I1

{Fi (λ)− F ∗i (λ)} .

The proof of Theorem 1 follows from the definitions and is omitted. From
this, we immediately have

Corollary 1. Suppose max
{
π̂CD0 (λ) , π̂St0 (λ) , π̂PC0

}
< 1. Then

π0 ≤ E
[
π̂CD0 (λ)

]
≤ min

{
E
[
π̂St0 (λ)

]
, E
[
π̂PC0

]}
if and only if

m−1
∑
i∈I1

κi
E [pi|Hi = 0]

≤ m−1
∑
i∈I1

Fi (λ)− F ∗i (λ)

1− λ
≤ π1. (5)
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The proof of Corollary 1 is also omitted. Though Corollary 1 gives the nec-
essary and sufficient condition to ensure that π̂CD0 (λ) is the least conservative
among the three, both (4) and (5) are not verifiable for λ 6= 0 due to the lack of
information on Fi, i ∈ I1. Nevertheless, surprisingly our simulation studies in
Section 5 show that π0 ≤ E

[
π̂CD0 (0.5)

]
≤ E

[
π̂PC0

]
for relatively large values

of π0.

3.2. Computing π̂CD0 (λ, ε) and choice of tuning parameters
The definition of π̂CD0 implies the following algorithm for its computation, which
we state only for discrete p-values. Assume each F ∗i is discontinuous and let its
support be

Si =

{
t ∈ R :

∫
{t}

dF ∗i (t) > 0

}
.

Clearly, for each λ, there must be a unique ti,λ ∈ Si such that

ti,λ = sup {t ∈ Si : λ ≥ t} .

Since F ∗i (t) = t if t ∈ Si and that F ∗i is càdlàg, it follows that∫
(λ,1]

dF ∗i (t) = 1− F ∗i (λ) = 1− ti,λ ≥ 1− λ.

Thus

π̂CD0 (λ, ε) =

∑m
i=1

[
1{pi>λ} − εi (λ− ti,λ)

]
(1− λ)m

,

where we have omitted the min, max operations in (3) for notational simplicity.
When m is large but there is little or no information on p-value distributions

under the alternative hypotheses, it is more feasible to set all εi = ε. So we
focus on π̂CD0 (λ, ε) and discuss choice of tuning parameters λ, ε. In the ideal
case where (4) is satisfied for (λ, ε) in a set K0 ⊆ [0, 1) × [0, 1] composed of
finitely many connected components, bootstrap method similar to that in Storey
et al. (2004) can be implemented to find the “best” tuning pair (λ∗, ε∗). For
completeness this method is described below:

Step 1: for two sufficiently small d∗, d∗1 > 0, form a finite, compact set K ⊆ K0

such that

min {|λ− λ′|+ |ε− ε′| : (λ, ε) ∈ K, (λ′, ε′) ∈ K0} ≤ d∗,

and
max {|λ− λ1|+ |ε− ε1| : (λ, ε) , (λ1, ε1) ∈ K} ≤ d∗1;

compute π̂CD0 (λ, ε) for each (λ, ε) ∈ K.
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Step 2: for each (λ, ε) ∈ K, form B bootstrap versions π̂CD0,b (λ, ε) of π̂CD0 (λ, ε),
b = 1, ..., B by taking bootstrap samples of the p-values.

Step 3: for each (λ, ε) ∈ K, estimate its respective mean-squared error (MSE)
as

M̂SE (λ, ε) =
1

B

B∑
b=1

[
π̂CD0,b (λ, ε)− min

(λ̃,ε̃)∈K

{
π̂CD0

(
λ̃, ε̃
)}]2

.

Step 4: set (λ∗, ε∗) = arg min(λ,ε)∈K

{
M̂SE (λ, ε)

}
, and the overall estimate

of π0 is π̂CD0 (λ∗, ε∗).

When ε = 0 or the p-values are continuously distributed with null distri-
bution being U (0, 1), π̂CD0 (λ, ε) = π̂St0 (λ) and the above bootstrap method
reduces to that in Storey et al. (2004) when K = {0, 0.05, ..., 0.95} × {0} is
used as the searching grid. However, knowing the impracticality of condition
(4), we will not compute π̂CD0 (λ∗, ε∗). Instead, we will empirically show in Sec-
tion 5 that π̂CD0 (0.5) is conservative, and less upwardly biased than π̂St0 (0.5),
π̂PC0 and π̃PC0 for relatively large values of π0. We provide a heuristic expla-
nation for the conservativeness of π̂CD0 (0.5). Let π = 1 − π0. Consider the
choice of λ = 1/2 and 0 ≤ ε ≤ 1. Then E

[
π̂CD0 (λ, ε)

]
= π0 + β0 + β1, where

β0 = 2m−1 (1− ε)
∑
i∈I0 {1/2− Fi (1/2)} ≥ 0 by definition and

β1 = 2 (1− ε/2)π − 2m−1
∑
i∈I1

{Fi (1/2)− εF ∗i (1/2)}

> 2 (1− ε/2)π − 2π = −επ.

When π0 is large and m is not too small, β0 ≥ επ1 for ε < 1; when ε = 1, β1 ≥ 0
can happen since Fi, i ∈ I1 does not have to dominate U (0, 1). Therefore, under
such circumstance, choosing ε close to or equal to 1 usually yields β0 + β1 ≥ 0
and E

[
π̂CD0 (λ, ε)

]
≥ π0.

4. FDR estimation using π̂CD0

With π̂CD0 it is natural to update some existing adaptive FDR procedures.
Storey’s FDR estimator (Storey et al., 2004) is defined as

F̂DRλ (t) =
π̂St0 (λ) t

m−1 {R (t) ∨ 1}
,
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whose variant is F̂DR
∗
λ (t) =

π̃St0 (λ) t

m−1 {R (t) ∨ 1}
1 (t ≤ λ)+1 (t > λ), where π̃St0 (λ) =

π̂St0 (λ) + (1− λ)
−1
m−1. We remark that π̃St0 (λ) may have non-negligible up-

ward bias when m is moderate because of its extra summand (1− λ)
−1
m−1.

Additionally, we point out that setting F̂DR
∗
λ (t) = 1 for t > λ in the definition

of F̂DR
∗
λ (t) is inappropriate in certain situations. For example, we can easily

construct m > 3 p-values such that R (1/2) > 2 (m+ 1) /3. For 1 ≥ t > 1/2
this implies

tπ̃St0 (1/2)

m−1 {R (t) ∨ 1}
=

2t {m−R (1/2) + 1}
R (t)

< 1.

Consequently setting F̂DR
∗
1/2 (t) = 1 in this case ignores the truth and may

lead to erroneous conclusions.
In view of the above, we propose the generalized FDR estimator as

F̃DRλ (t) = min

[
1,

π̂CD0 (λ, ε) t

m−1 {R (t) ∨ 1}

]
.

Further, for a function f with domain [0, 1], we define the threshold of f at level
α as

tα (f) = sup {t ∈ [0, 1] : f (t) ≤ α} ,

and let
Ft = σ

(
1{pi≤s}, t ≤ s ≤ 1, i = 1, ...,m

)
.

4.1. Stopping time property of the threshold of F̃DRλ (t)
Recently, martingale methods have been applied to obtain the conservativeness
of FDR procedures using the stopping time property of relevant thresholds
with respect to certain filtrations. For example, the stopping time property of

tα

(
F̂DR

∗
λ

)
is claimed in Lemma 4 of Storey et al. (2004) without a formal

proof, so is that of α∗ (q∗) in (7.2) of Pena et al. (2011). These claims have not
been proved in the setting of independent, uniform null p-values, and it is not
clear whether this property holds for the generalized FDR estimator and for

general p-values. We show that tα

(
F̃DRλ

)
is a stopping time with respect to

the backward filtration
G = {Ft∧λ : 1 ≥ t ≥ 0}

for general p-values, discrete or continuous, independent or dependent. Further,

we claim that F̃DRλ is exhausted at level α at tα

(
F̃DRλ

)
under one simple

condition.
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To achieve this, we start with L (t) = t {R (t) ∨ 1}−1, t ∈ [0, 1], the scaled
inverse rejection process. Order the p-values into p(1) < p(2) < ... < p(n)
distinctly, where the multiplicity of p(i) is ni for i = 1, ..., n. Let p(n+1) =

max
{
p(n), 1

}
and p(0) = 0. Define Tj =

∑j
l=1 nl for j = 1, ..., n.

Lemma 1. The process {L (t) , t ∈ [0, 1]} is such that

L (t) =


t if t ∈ [0, p(1)),
tT−1j if t ∈ [p(j), p(j+1)) for j = 1, .., n− 1,

tm−1 if t ∈ [p(n), p(n+1)].
(6)

Moreover, it can only be discontinuous at p(i), 1 ≤ i ≤ n, where it can only have
a downward jump with size

L
(
p(i)−

)
− L

(
p(i)
)

=
p(i)ni

R
(
p(i)
) {
R
(
p(i)
)
− ni

} > 0.

The conclusion of Lemma 1 is right the contrary to the claim in the proof of
Theorem 2 in Storey et al. (2004) that “the process mt/R (t) has only upward
jumps and has a final value of 1”, since it says “the process mt/R (t) has only
downward jumps”. We construct a counterexample to their claim as follows.
For a small increase c in t which results increase ac in R (t), we see that

L (t+ c)− L (t) =
t+ c

R (t) + ac
− t

R (t)
=

cR (t)− tac
{R (t) + ac}R (t)

< 0

if and only if
c

ac
<

t

R (t)
. Construct m p-values with n ≥ 4 such that there

exists some 1 ≤ j0 < n − 2 with nj0+1 > Tj0 but p(j0+1) < 1. Choose c1 and

c2 such that 0 < c1 <
{
p(j0+1) − p(j0)

}
/2 and 0 < c2 < p(j0+1) − 2c1. Let

t0 = p(j0+1) − c1 and c = c1 + c2. Then p(j0) < t0 < p(j0+1), R (t0) = Tj0 and

R (t0 + c) = Tj0 + nj0+1. Further, 0 < c < t0 and ac = nj0+1. So
c

nj0+1
<

t0
Tj0

and L (t0 + c)− L (t0) < 0. Letting c→ 0 gives p(j0+1) as a point of downward
jump for L (t).

Equipped with the properties of L (·), we have

Theorem 2. tα

(
F̃DRλ

)
is a stopping time for G. Further,

F̃DRλ

{
tα

(
F̃DRλ

)}
= α

whenever π̂CD0 (λ, ε) > α and R (t) > 0.
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The conclusion of Theorem 2 is illustrated by an application of π̂CD0 and

F̃DRλ in Section 5. Define

π̂0 (λ, ς) = max

[
0,min

{
1, π̂St0 (λ)− ς

(1− λ)m

}]
and

F̃DR
ς

λ (t) = min

[
1,

π̂0 (λ, ς) t

m−1 {R (t) ∨ 1}

]
,

where ς ∈
[
0, (1− λ)mπ̂St0 (λ)

]
is deterministic and depends only on the p-

values and λ. We call F̃DR
ς

λ a “Storey-type FDR estimator”. Using the same
arguments in the proof of Theorem 2, we can show

Theorem 3. tα

(
F̃DR

ς

λ

)
is a stopping time for G. Further,

F̃DR
ς

λ

{
tα

(
F̃DR

ς

λ

)}
= α

whenever π̂0 (λ, ς) > α and R (t) > 0.

The proof of Theorem 3 is omitted. Theorem 3 implies, regardless of whether
the p-values are independent or continuous, that the stopping time property of
the thresholds of Storey-type FDR estimators is generic, and that the FDR
estimator reaches the prespecified FDR level at its threshold whenever the esti-
mated proportion of true nulls is larger than this FDR level and there is at least
one rejection. It provides the first formal and most general support for the use
of the stopping time property of the thresholds of a certain family of adaptive
FDR estimators.

4.2. Large sample properties of F̃DRλ
Even though Theorem 3 reveals that F̃DR

ς

λ reaches the prespecified FDR level

at its threshold, it does not tell whether F̃DR
ς

λ conservatively estimates the
FDR of a one-step MTP whose rejection threshold is this threshold. Surpris-

ingly, under appropriate conditions, a much stronger property of F̃DR
ς

λ can be

obtained. We illustrate this using F̃DRλ and assume that

A1) m−10 V (t) and m−11 S (t) converge almost surely to càdlàg functions G0 (t)
and G1 (t) such that 0 < G0 (t) ≤ t for all t ∈ (0, 1] and limm→∞m0/m =
π0,∞ ∈ (0, 1) exists.
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When Gi (·), i = 0, 1 in A1) are continuous, Storey et al. (2004) proved that

F̂DRλ is asymptotically conservative, even simultaneously:
limm→∞ inft≥δ

{
F̂DRλ (t)− FDR (t)

}
≥ 0,

limm→∞ inft≥δ

{
F̂DRλ (t)− V (t)

R (t) ∨ 1

}
≥ 0.

(7)

We show that these properties are endowed to F̃DRλ. Noticing that (7) hinges
on the total conservativeness of π̂St0 (λ) and that π̂St0 (λ) ≥ π0,∞, P -a.s. auto-
matically once A1) holds, we assume

A2) limm→∞ π̂CD0 (λ, ε) ≥ π0,∞, P -a.s..

Thus we have

Theorem 4. Suppose A1) and A2) hold. Then for each δ ∈ (0, 1],

lim inf
m→∞

inf
1≥t≥δ

{
F̃DRλ (t)− V (t)

R (t) ∨ 1

}
≥ 0 (8)

and
lim inf
m→∞

inf
1≥t≥δ

{
F̃DRλ (t)− FDR (t)

}
≥ 0 (9)

hold P -a.s..

Theorem 4 ensures the simultaneous conservativeness of F̃DRλ when m is
sufficiently large. On the other hand, we have

F̃DRλ (t)− F̂DRλ (t) =
δ (λ, ε) t

m−1 {R (t) ∨ 1}
≤ 0 (10)

and sup1≥t≥0
δ (λ, ε) t

m−1 {R (t) ∨ 1}
≥ δ (λ, ε). Hence, F̃DRλ may fail to conser-

vatively estimate the FDR of a one-step MTP. However, since (10) implies

tα

(
F̃DRλ

)
≥ tα

(
F̂DRλ

)
, it follows that, at the same FDR level, a one-step

MTP using the threshold of F̃DRλ is usually more powerful than one that uses

the threshold of F̂DRλ.
When more asymptotic uniformity of the p-value distributions is available,

such as

A3) limm→∞m−1
∑m
i=1 εi = ε̄ and limm→∞m−11

∑
i∈I1 F

∗
i (λ) = h1 (λ),
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then with A1), we have

lim
m→∞

m−1
m∑
i=1

εi {λ− F ∗i (λ)} = h∗ (λ) ,

where h∗ (λ) = tε̄−π0,∞G0 (λ)−π1,∞h1 (λ) and π1,∞ = 1−π0,∞. Further, the

limit of F̃DRλ (t) as m→∞ is

F̃DR
∞
λ (t) =

[{1−G0 (λ)}π0,∞ + {1−G1 (λ)}π1,∞] t− h∗ (λ) t

(1− λ) {π0G0 (t) + π1G1 (t)}
.

We show that a one-step MTP using tα

(
F̃DRλ

)
as the rejection threshold

maintains FDR control at level α asymptotically.

Theorem 5. Suppose A1) to A3) hold. If F̃DR
∞
λ (t) < α for some t ∈

[0, 1], then

lim sup
m→∞

FDR
{
tα

(
F̃DRλ

)}
≤ α.

We remark that the conclusions in Theorem 4 and Theorem 5 hold for
Storey-type FDR estimators with π̂CD0 replaced by any totally conservative esti-
mator π̂0 of π0 when the involved proportions and empirical processes converge

appropriately. When π̂CD0 is not conservative or totally conservative, F̃DRλ
may not conservatively estimate the FDR of an MTP. Fortunately, we can

quantify the possible downward bias of F̃DRλ. Set Tn+1 = Tn. For δ ∈ (0, 1],
define

L∞inf = lim inf
m→∞

min
1≤j≤n+1

{
p(j)

m−1Tj
: p(j) ≥ δ

}
,

and

Cδ,λ (t) = lim inf
m→∞

inf
1≥t≥δ

{
F̂DRλ (t)− FDR (t)

}
.

Theorem 6. Suppose A1) and A3) hold. Then for any δ ∈ (0, 1],

Cδ,λ (t)− h∗ (λ)

1− λ
≤ lim
m→∞

inf
1≥t≥δ

{
F̃DRλ (t)− FDR (t)

}
≤ Cδ,λ (t)− h∗ (λ)L∞inf

1− λ

with probability 1.

With some algebra, the proof of Theorem 6 follows from Lemma 1, (9) and
(10), and is thus omitted.
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5. Simulation studies for and application of π̂CD0

Now we will show the superior performance of π̂CD0 via simulation studies.
Since π̂CD0 reduces to π̂St0 for continuous p-values whose null distribution is
U (0, 1) and the performance of π̂St0 has been well documented, we compare
the competing estimators of π0 based on discrete, two-sided p-values induced
by FETs and ENTs. We do not assess π̂CD0 for dependent discrete p-values,
since the deterministic term δ (λ, ε) as the difference between π̂St0 and π̂CD0 and
the extensive study of π̂St0 under dependence (Storey et al., 2004; Blanchard
and Roquain, 2009) have already characterized the performance of π̂CD0 in this
situation. Finally, even though we have justified the simultaneous asymptotic

conservativeness of F̃DRλ, we do not study F̃DRλ using dependent discrete
p-values due to the possible, practical violation of assumptions on asymptotic
convergence of heterogeneous, discrete p-value distributions.

The simulation and estimation of the proportion of true nulls are set up as
follows:

(a) Select an m ∈ N. Pick π0, π1s, π1l ∈ {0, 0.1, 0.2, ..., 0.9, 1} compatibly,
which gives the triples πa = (π0, π1s, π1l) with a = 1, ..., 111. Set m0 =
[mπ0], m1 = m−m0, m1s = [m1π1s], m1l = m1 −m1s; m1s1 = [0.5m1s],
m1s2 = m1s −m1s1 , m1l1 = [0.5m1l], m1l2 = m1l −m1l1 , where [x] is the
integer part of x ≥ 0.

(b) Let H1s1 = U (0.8, 0.98), H1s2 = U (1.02, 1.2), H1l1 = U (0.05, 0.5) and
H1l2 = U (2, 20). Generate ρ = (ρ1, ..., ρm) with subvectors in order
as ρm0

, ρm1s1
, ρm1s2

, ρm1l1
, ρm1l2

. Specifically, ρm0
is m0 ones; ρm1sk

contains m1sk realizations from H1sk , and ρm1lk
are m1lk realizations from

H1lk for k = 1, 2. The purpose of ρm1sk
, k = 1, 2 is to induce small effect

signals.
(c) Define θi1. Set θi2 = h (θi1, ρi) for some measurable function h : Θ1×R→

Θ2, where Θg, g = 1, 2 are non-empty subsets of Rd for some d ∈ N. Pick
non-empty Ψg ⊆ Re, g = 1, 2 for some e ∈ N. Generate nig ∈ Ψg from
distribution Gig and ξig from parametric distribution Fig (θig|nig).

(d) With ξig, g = 1, 2, conduct the FET or ENT to test either

Hi0 : θi2 = θi1 versus Hi1 : θi2 6= θi1

or
Hi0 : θi2 = θ0 versus Hi1 : θi2 6= θ0

for a given θ0 ∈ Θ1. Estimate π0 = # {1 ≤ i ≤ m : θi2 = θi1} /m or π0 =
# {1 ≤ i ≤ m : θi2 = θ0} /m based on the two sided p-values of these m
tests.
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(e) For each πa, compute π̂St0 (0.5), π̂CD0 (0.5), π̃PC0 and π̂PC0 .
(f) For each πa, repeat Steps (b) to (e) 1000 times to obtain the sample mean

Ê (·) and sample standard deviation Ŝ (·) of each estimator π̂0.

The simulations have three unique features that are more challenging to all
competing estimators. First, we create different configurations of π0 and π1s, π1l
corresponding to the proportions of true nulls, small effect signals and large
effect signals. This will examine the power of the test represented by its p-value
and how small effect signals affect the π̂0’s. Second, when πa remains fixed, for
each run ρm1sk

and ρm1lk
are re-generated from H1sk and H1lk for k = 1, 2,

respectively. These small perturbations to the alternative hypotheses will check
the robustness of the tests and estimators. Third, in the simulations we do not
verify condition (4), meaning that (4) is either satisfied or not. However, the
results from our simulation studies will show that π̂CD0 (0.5) is robust, stable,
and is the least conservatively biased for relatively large π0 and wide range of
values of m.

5.1. Estimation of π0 from two-sided p-values of FETs
FET has been widely used to compare two independent binomial populations
and test independence between quantities from various discrete distributions in
2-by-2 tables. The test statistic of an FET follows the Fisher’s non-central
hypergeometric (FNH) distribution. Suppose three marginal quantities are
observed and stored in an ordered triple N∗ = (N1, N2,M1), then with the
non-centrality parameter θ ∈ (0,∞), an FNH distribution, FNH (θ,N∗), has
density

fθ (x;N∗) =

(
N1

x

)(
N2

M1 − x

)
θx
/ L∗∑

u=L

(
N1

u

)(
N2

M1 − u

)
θu (11)

for L ≤ x ≤ L∗, where L = max (0,M1 −N2) and L∗ = min (N1,M1). Follow-
ing Agresti (2002), given N∗ the two-sided p-value of an FET for an observation
X = x0 is defined as

pθ,N∗ (x0) =

∫
{L≤y≤L∗:fθ(y;N∗)≤fθ(x0;N∗)}

dFθ (y;N∗) ,

where Fθ (·;N∗) is the c.d.f. induced by fθ (·;N∗).
Simulation I: Set m = 10, 000 and generate nig from a Poisson distribution

with mean µg, where µ1 = 20 and µ2 = 30. Set θi1 = 0.5 for 1 ≤ i ≤ m

and θi2 = (ρi + 1)
−1

. Generate ξig from Fig (θig|nig) = BIN (θig, nig), where



Generalized Estimators 15

Table 1. Partial digital gene expression data for gene i.
For j = 1, 2, ni,j is the discrete measurement for gene i
under Treatment j, respectively, and ni = ni1 + ni2. For
j = 1, 2, n(−i),j is the total of the discrete measurements
for all other genes under Treatment j, respectively, and
n(−i) = n(−i),1 + n(−i),2. For j = 1, 2, m∗j is the total of
the discrete measurements for all genes under Treatment
j, respectively, and m∗ = m∗1 +m∗2.

Treatment1 Treatment2 Total

Gene i ni1 ni2 ni
All other genes n(−i),1 n(−i),2 n(−i)

Total m∗1 m∗2 m∗

BIN
(
p∗, Ñ

)
denotes a binomial distribution with success probability p∗ in Ñ

independent trials.
Simulation II: Extract counts for m = 10, 000 genes from an NGS RNA-

Seq data set for American ash trees under two treatments, for gene i form a
2-by-2 table as illustrated in Table 1 and extract ñig =

(
ni, n(−i),m

∗
1

)
∈ N3.

Set θi1 = 1 for all i but θi2 = ρiθi1. Let Fig (θig|ñig) = FNH (θig, ñig) and
generate ξig from FNH (θig, ñig). For each i test

Hi0 : θi2 = 1 versus Hi1 : θi2 6= 1

via the FET, where Hi0 means that the treatments do not have any effect on
gene i.

5.2. Estimation of π0 from two-sides p-values of ENTs
The ENT has been widely used in analysis of NGS count data that are modeled
by negative binomial (NB) distributions. Di et al. (2011) proposed to use an
over-parameterized version of the NB distribution (called “NBP distribution”)
to model the non-constant dispersion of such counts. Let NBP (µ, φ, β) denote
an NBP distribution with mean µ and dispersions (φ, β). The probability mass
function for Y ∼ NBP (µ, φ, β) is

f (Y = y; (µ, φ, β)) =
Γ (γ + y)

Γ (γ) Γ (1 + y)
(1− p)γ py

where p = µ/ (µ+ γ) and γ = φ−1µ2−β for y = 0, 1, ....
Simulation III: Set l = 1, 294, 326 as the active library size, apply the R

package NBPSeq to the RNA-Seq count data for Arabidopsis thaliana provided
by Di et al. (2011), and extract m = 6, 000 estimated frequencies p̃i1, i =
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1, ..., 6, 000 for genes in the first observational unit whose estimated means are
not zero. Set p̃i2 = ρip̃i1 and µgi = lp̃ig but γig = φ−1µ2−β

1i with β = 1.5.

Define θ̃ig =
µgi

µgi + γgi
and θig = (µig, γig). Set Fig (θig) = NBP (µig, γig) and

generate counts ξig from Fig (θig), where the alternative parametrization for an
NBP distribution has been used. The ENT is then conducted to test

Hi0 : θi1 = θi2 versus Hi1 : θi1 6= θi2,

where Hi0 means that gene i is not differentially expressed. For two realizations
ξil = xil, l = 1, 2 the two-sided p-value of this test is defined as

pi =

∑
{c,d:c+d=xi1+xi2,f1,2(c,d)≤f1,2(xi1,xi2)} f1,2 (c, d)∑

{c,d:c+d=xi1+xi2} f1,2 (c, d)
,

where f1,2 (·, ·) is the joint probability mass function of (ξi1, ξi2).

5.3. Summary from simulation studies
Due to the practical range of π0 in various studies, we report in Table 2
the performances of the competing estimators of π0 for π0 = 0.9 with π1s ∈
{0, 0.1, ..., 0.9, 1} and for π0 = 1. Note that π̂St0 (0.5), π̃PC0 are excluded since
they are both 1 for all runs (which means Ŝ

(
π̂St0 (0.5)

)
= Ŝ

(
π̃PC0

)
= 0) for

these π0, π1s and for all underlying distributions used in our simulations to
generate the discrete counts. The same is true for π̂PC0 when the underlying
distribution is NBP. From Table 2, it is clear that π̂CD0 (0.5) is stable and the
least conservative among all competing estimators for the reported values of π0,
π1s except (π0, π1s) = (0.9, 0) and π1 = 1.

Our additional (but unreported) simulation studies together with those pro-
vided in Table 2 reveal the following:

(a) Overall π̂CD0 (0.5) outperforms its competitors in terms of stability and
accuracy, across almost all configurations πa, a = 1, ..., 111. When π0 is
small, it outperforms its competitors by a larger margin but can underes-
timate π0.

(b) For π0 fixed, all estimators become more conservative as π1s increases.
When π1s dominates π0, all estimators tend to estimate π1s and are very
inaccurate. As π0 gets closer to 1, all competing estimators perform better.

(c) Empirically π̂CD0 (0.5) gives the least conservative estimate of π0 roughly
for π0 ∈ [0.75, 1) even when there are small effect signals. π̂CD0 (λ, ε) is
slightly less stable than π̂PC0 in terms of sample standard deviations.



Generalized Estimators 17

Table 2. Partial results from all simulations
Distribution π0 π1s Ê(π̂CD0 ) Ê(π̂PC0 ) Ŝ(π̂CD0 ) Ŝ(π̂PC0 )

0.9 0 0.8977 0.9215 0.0091 0.0051
BIN 0.9 0.1 0.9086 0.9296 0.0094 0.0052

0.9 0.2 0.9185 0.9374 0.0092 0.0052
0.9 0.3 0.9290 0.9455 0.0094 0.0054
0.9 0.4 0.9395 0.9533 0.0092 0.0052
0.9 0.5 0.9497 0.9612 0.0094 0.0052
0.9 0.6 0.9602 0.9692 0.0095 0.0053
0.9 0.7 0.9704 0.9770 0.0094 0.0053
0.9 0.8 0.9807 0.9849 0.0097 0.0055
0.9 0.9 0.9901 0.9928 0.0083 0.0049
0.9 1 0.9971 0.9984 0.0047 0.0026
1 0 0.9978 0.9988 0.0041 0.0023

0.9 0 0.9076 0.9251 0.0091 0.0051
FNH 0.9 0.1 0.9160 0.9311 0.0094 0.0052

0.9 0.2 0.9238 0.9368 0.0094 0.0052
0.9 0.3 0.9323 0.9432 0.0092 0.0050
0.9 0.4 0.9406 0.9495 0.0095 0.0053
0.9 0.5 0.9490 0.9560 0.0097 0.0054
0.9 0.6 0.9586 0.9654 0.0097 0.0053
0.9 0.7 0.9684 0.9746 0.0096 0.0054
0.9 0.8 0.9771 0.9821 0.0100 0.0055
0.9 0.9 0.9861 0.9893 0.0091 0.0052
0.9 1 0.9930 0.9955 0.0071 0.0042
1 0 0.9960 0.9979 0.0057 0.0031

0.9 0 0.9487 1 0.0115 0
NBP 0.9 0.1 0.9544 1 0.0118 0

0.9 0.2 0.9588 1 0.0116 0
0.9 0.3 0.9638 1 0.0112 0
0.9 0.4 0.9692 1 0.0120 0
0.9 0.5 0.9734 1 0.0117 0
0.9 0.6 0.9790 1 0.0113 0
0.9 0.7 0.9839 1 0.0106 0
0.9 0.8 0.9884 1 0.0099 0
0.9 0.9 0.9919 1 0.0084 0
0.9 1 0.9947 1 0.0072 0
1 0 0.9952 1 0.0069 0
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Table 3. Results from application of the generalized estimators to Ara-
bidopsis thaliana data. CD means using π̂CD0 (λ, ε) and F̃DRλ. St
means using π̂St0 (λ) = π̂CD0 (λ, 0) and F̂DRλ. BH is the BH proc-
dure, and adaBH the adaptive BH procedure for which α is replaced
by α′ = α/π̂CD0 (0.5, 0.9). t̂ is the threshold of the procedure, and
FDR†

(
t̂
)

the FDR procedure evaluated at t̂
Method (λ, ε) π̂0 t̂ FDR†

(
t̂
)

R(t̂)

CD (.5,.9) 0.958801 0.00093514 0.049999348 433
St (.5,0) 1 0.00089042 0.05 430

BH NA 1 0.00089042 ≤0.05 430
adaBH NA 0.958801 0.00093516 ≤0.05 433

These suggest practical preference to our estimator of π0 when discrete p-
values are induced by FETs and ENTs for three types of underlying distribu-
tions: binomial, FNH and NBP.

5.4. Application to Arabidopsis thaliana data
Di et al. (2011) fit the Arabidopsis thaliana data with the NBP model, estimate
the parameters (µ, φ, β), conduct for each gene an ENT, and report 430 differ-
entially expressed genes by applying the BH procedure to the 26, 222 two-sided
p-values of these tests at FDR level α = 0.05. We carefully looked into their
source codes and found out that 2, 076 of the p-values they obtained are Not
a Number (NaN) because the corresponding sizes are estimated as zero. We
filtered these NaN p-values, conducted BH procedure at the same FDR level on
the rest, and confirmed their finding.

To apply the generalized estimators with FDR level α = 0.05, we use the
NBPSeq package (Di et al., 2011) to obtain the pseudo-counts, pseudo library
size, and the estimated probabilities and sizes. We then select genes (a total
of 24, 146) with positive sizes and relevant quantities, conduct for each gene
the ENT, and compute the two-sided p-value of each ENT. Our findings are
summarized in Table 3.

Three more genes are found to be differentially expressed using F̃DRλ with

π̂CD0 (0.5, 0.9). The threshold t0.05

(
F̃DRλ

)
= 0.0093514 is slightly greater

than those of F̂DRλ and the BH procedure, leading to more rejections; it is
practically the same as that of the adaptive BH procedure since this procedure

uses π̂CD0 . That F̃DRλ

(
t0.05

(
F̃DRλ

))
= 0.0499999348 is the consequence

of the step size used in numeric search and it does not affect the validity of

Theorem 2. This confirms the improvement π̂CD0 and F̃DRλ result in.
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6. Discussion

We have proposed generalized estimators of proportion of true nulls and of
the FDR of one-step MTPs. The new estimators outperform existing ones for
discrete p-values whose null distributions dominate the uniform and reduce to
Storey’s estimators for continuous p-values. We have provided the first formal
and most general justification of the stopping time property of the threshold of
Storey-type FDR estimators for p-values not necessarily continuous or indepen-
dent, and establised the asymptotic conservativeness of the generalized FDR
estimator. Our strategy to adjust estimators of π0 can be easily adapted to
other types of discrete p-values.

However, we see that the two-sided p-values of the FET and ENT are not
derived from the corresponding uniformly most powerful tests. This warns
us the possible loss in power when decisions are based on such p-values, the
decreased accuracy when estimating π0 using these p-values, and advocates
to estimate π0 from the test statistics directly. Unfortunately, the non-location
shiftness of the density functions of the involved test statistics and heterogeneity
of discrete p-value distributions disable adaptation of methods such as those in
Jin (2008) and Meinshausen and Rice (2006).

Even though Table 2 seems to show the poor performance of π̂CD0 merely in
terms of its upward bias, improvements on π̂CD0 are possible when λ is adaptively
chosen from the data instead of always being 0.5. We leave the investigation
of adaptive choice of λ, ε to future research but point out that techniques
in Liang and Nettleton (2012) are not applicable to heterogenous null p-value
distributions. In Table 3, we only have 3 more discoveries by incorporating
π̂CD0 (0.5, 0.9). The reason for such a minor improvement is as follows. In
addition to using more conservative tuning parameters and the possibility that
π0 is itself very close to 1, potential improvements from π̂CD0 are counterbalanced
by the enlarged supports of null discrete p-value distributions because most of
the counts in the data are not so small. The advantage of π̂CD0 will be well
manifested when the discrete data are of small magnitudes and π0 is not very
close to 1.

Driven by the accumulation of massive discrete data together with accom-
panying statistical tests to be conducted, the need for better estimators of the
proportion of true nulls and of the FDR of an MTP for this type of data is urgent.
We hope that this paper could further caution the usage of methods beyond its
justified scope of application, and we expect that the methods presented will
justify their utility in multiple testing with discrete data and stimulate more
research efforts in this area.
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A. Proofs

A.1. Proof of Lemma 1
Clearly

R (t) =

 0 if 0 ≤ t < p(1),
Tj if p(j) ≤ t < p(j+1), j = 1, .., n− 1,
m if p(n) ≤ t ≤ p(n+1),

and (6) holds. Obviously the points of discontinuities of L (·) are the original
distinct p-values. This justifies the first part of the assertion.

Now we show that L (·) can only have downward jumps at points of discon-
tinuity. Define

ϕ (t, η) =
t+ η

R (t+ η)
− t

R (t)
=
ηR (t) + t {R (t)−R (t+ η)}

R (t+ η)R (t)
.

From the fact
R
(
p(j)
)
−R

(
p(j)−

)
= nj > 0

but R
(
p(j)+

)
− R

(
p(j)
)

= 0 for each 1 ≤ j ≤ n, it follows that ϕ
(
p(j), 0+

)
=

limη↓0 ϕ (t, η) = 0 but

ϕ
(
p(j), 0−

)
= lim

η↑0
ϕ
(
p(j), η

)
=

p(j)nj

R
(
p(j)
) {
R
(
p(j)
)
− nj

} > 0.

Thus L
(
p(j)−

)
− L

(
p(j)
)

= ϕ
(
p(j), 0−

)
> 0 and the proof is completed.

A.2. Proof of Theorem 2
Define

X
(m)
t (ω) =

(
1{p1≤t} (ω) , ..., 1{pm≤t} (ω)

)
, ω ∈ Ω.

Then Ft = σ
(
X

(m)
s (ω) , 1 ≥ s ≥ t

)
, t ∈ [0, 1] and {Ft : 0 ≤ t ≤ 1} is a decreas-

ing sequence of sub-sigma-algebras of A. Write F̃DRλ (t) = F̃DRλ (t, ω) and
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tα

(
F̃DRλ

)
= t̃α. When t̃α = 1 or 0 corresponding to α = 1 or α = 0, it is

automatically a stopping time. So we only consider α ∈ (0, 1) and 0 < t̃α < 1.
By definition, {

ω ∈ Ω : t̃α ≤ s
}

=
⋂

{t:s<t≤1}

At = Ãs,

where At =
{
ω ∈ Ω : F̃DRλ (t, ω) > α

}
, 1 ≥ t > s. We need to show Ãs ∈

Fs∧λ.
Since either Fs∧λ = Fs ⊇ Fλ when s ≤ λ or Fs∧λ = Fλ ⊇ Fs when

s ≥ λ, the stopping time property holds once we prove Ãs ∈ Fs. With the
decomposition

At =
⋃

r∈Q
(At,r ∩Br)

and
Ãs =

⋂
{t:s<t≤1}

⋃
r∈Q

(At,r ∩Br) =
⋃
r∈Q

⋂
{t:s<t≤1}

(At,r ∩Br) ,

whereAt,r =

{
ω ∈ Ω :

t

m−1 {R (t) ∨ 1}
≥ r
}

andBr =

{
ω ∈ Ω :

α

π̂CD0 (λ, ε)
< r

}
,

it suffices to show ⋂
{t:s<t≤1}

(At,r ∩Br) =
⋂

{t:s<t≤1}

At,r ∩Br ∈ Fs,

or equivalently

A∗s,r =
⋂

{t:s<t≤1}

At,r ∈ Fs,

since Br ∈ Fλ holds already.
Define Ii = [p(i), p(i+1)), i = 1, ..., n − 1. We will add I0 = [p(0), p(1))

and In = [p(n), p(n+1)] when p(n) < 1. When p(n) = 1, we take In−1 to be[
p(n−1), p(n)

]
. Obviously there must be a unique j∗ with 0 ≤ j∗ ≤ n such that

s ∈ Ij∗ . Given R (1) = m and π̂CD0 (λ, ε) ∈ [0, 1], the properties of L (·) in
Lemma 1 imply

A∗s,r = As,r
⋂(⋂n+1

j=j∗+1
Ap(j),r

)
.

Consequently A∗s,r ∈ Fs and Ãs ∈ Fs, which validates the first part of the
assertion.

To show F̃DRλ
(
t̃α
)

= α, it suffices to consider the case α > 0. Since α < 1

and R (t) > 0 by assumption, we can write F̃DRλ (t) as

F̃DRλ (t) =
π̂CD0 (λ, ε)

ρ∗m (t)
,
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where F̂m (t) = m−1
∑m
i=1 1{pi≤t} for t ∈ [0, 1] and

ρ∗m (t) = t−1
{
F̂m (t)− F̂m (0)

}
.

Therefore

t̃α = sup
{
t ∈ [0, 1] : ρ∗m (t) ≥ α−1π̂CD0 (λ, ε)

}
,

i.e., t̃α is the last time the “slope” ρ∗m (t) is no less than α−1π̂CD0 (λ, ε).
Obviously, ρ∗m

(
t̃α
)
≥ α and there must be a unique 0 ≤ j′ ≤ n such that

t̃α ∈ Ij′ . Since π̂CD0 (λ, ε) > α, t̃α < 1 holds. Thus there must be some d′ > 0
such that I∗ = [t̃α, t̃α+d′) ⊆ Ij′ . Noting that ρ∗m (t) = m−1L−1 (t) is continuous
and decreasing on Ij′ , we see that if ρ∗m

(
t̃α
)
> α, then we can choose t̂α ∈ I∗

such that t̂α > t̃α and ρ∗m
(
t̂α
)
> α. This contradicts the definition of t̃α.

Hence ρ∗m
(
t̃α
)

= α must hold, and this is equivalent to F̃DRλ
(
t̃α
)

= α, which
completes the proof.

A.3. Proof of Theorem 4
Define Kα =

{
t ∈ [0, 1] : F̃DRλ (t) < 1

}
and Kα,δ = Kα∩[δ, 1]. Let FDP (t) =

V (t)

R (t) ∨ 1
. We verify the claims for t ∈ Kα,δ since they automatically hold when

the supremum is taken over t ∈ [0, 1] \Kα. By the Glivenko-Cantelli theorem,

lim
m→∞

sup
0≤t≤1

∣∣m−1V (t)− π0,∞G0 (t)
∣∣ = 0 (12)

and

lim
m→∞

sup
0≤t≤1

∣∣m−1 {R (t) ∨ 1} − {π0,∞G0 (t) + π1,∞G1 (t)}
∣∣ = 0 (13)

hold P -a.s.. Since π0,∞G0 (δ) + π1,∞G1 (δ) > 0 and these are both non-
decreasing functions, using (13) it can be easily shown that

lim
m∞

sup
1≥t≥δ

∣∣∣∣ m

R (t) ∨ 1
− 1

π0,∞G0 (t) + π1,∞G1 (t)

∣∣∣∣ = 0, P -a.s.. (14)

Observing

F̃DRλ (t)− FDP (t) =
π̂CD0 (λ, ε) t− π0,∞G0 (t)

{R (t) ∨ 1} /m
− m−1V (t)− π0,∞G0 (t)

{R (t) ∨ 1} /m
= I1 (t)− I2 (t) ,
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we see, from (12), (13) and properties of Gi (·), i = 0, 1, that

lim
m→∞

sup
t∈Kα,δ

|I2 (t)| ≤ lim
m→∞

sup
t∈Kα,δ

m

R (t) ∨ 1
lim
m→∞

sup
t∈Kα,δ

∣∣∣∣V (t)

m
− π0,∞G0 (t)

∣∣∣∣ = 0.

Since limm→∞ π̂CD0 (λ, ε) ≥ π0, P -a.s. and G0 (t) ≤ t for all t ∈ (0, 1], then

lim inf
m→∞

inf
1≥t≥δ

{
π̂CD0 (λ, ε) t− π0G0 (t)

}
≥ 0

and lim infm→∞ inft∈Kα,δ I1 (t) ≥ 0. This justifies (8).

To show (9), in view of (8) and

F̃DRλ (t)− FDR (t) =
{
F̃DRλ (t)− FDP (t)

}
+ {FDP (t)− FDR (t)} ,

it suffices to show

lim
m→∞

sup
1≥t≥δ

|FDP (t)− FDR (t)| = 0, P -a.s.. (15)

With (14), we have, P -a.s.,

lim
m→∞

sup
1≥t≥δ

∣∣∣∣FDP (t)− π0,∞G0 (t)

π0,∞G0 (t) + π1,∞G1 (t)

∣∣∣∣ (16)

≤ lim
m→∞

sup
1≥t≥δ

∣∣∣∣V (t) /m− π0,∞G0 (t)

{R (t) ∨ 1} /m

∣∣∣∣
+ lim
m→∞

sup
1≥t≥δ

∣∣∣∣[ 1

{R (t) ∨ 1} /m
− 1

π0,∞G0 (t) + π1,∞G1 (t)

]
π0,∞G0 (t)

∣∣∣∣
= 0.

By (16), the dominated convergence theorem and Fatou’s lemma, it follows that

0 = lim
m→∞

sup
1≥t≥δ

E

[∣∣∣∣FDP (t)− π0,∞G0 (t)

π0,∞G0 (t) + π1,∞G1 (t)

∣∣∣∣]
= E

[
lim
m→∞

sup
1≥t≥δ

∣∣∣∣FDP (t)− π0,∞G0 (t)

π0,∞G0 (t) + π1,∞G1 (t)

∣∣∣∣]
≥ lim

m→∞
sup

1≥t≥δ

∣∣∣∣FDR (t)− π0,∞G0 (t)

π0,∞G0 (t) + π1,∞G1 (t)

∣∣∣∣ .
Thus (15) holds and so does (9), which completes the proof.
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A.4. Proof of Theorem 5
Let t′ > 0 be such that α − F̃DR

∞
λ (t′) = ε′ for some ε′ > 0. We can take

m sufficiently large such that
∣∣∣F̃DR∞λ (t′)− F̃DRλ (t′)

∣∣∣ < ε′/2, which implies

F̃DRλ (t′) < α and tα

(
F̃DRλ

)
≥ t′. Therefore lim infm→∞ tα

(
F̃DRλ

)
≥ t′,

P -a.s.. By (8), it follows that, P -a.s.,

lim inf
m→∞

[
F̃DRλ

{
tα

(
F̃DRλ

)}
− FDP

{
tα

(
F̃DRλ

)}]
≥ lim inf

m→∞
inf

1≥t≥t′/2

{
F̃DRλ (t)− FDP (t)

}
≥ 0.

Since F̃DRλ

{
tα

(
F̃DRλ

)}
≤ α, we have lim supm→∞ FDP

{
tα

(
F̃DRλ

)}
≤

α, P -a.s.. By Fatou’s lemma,

lim sup
m→∞

E
[
FDP

{
tα

(
F̃DRλ

)}]
≤ E

[
lim sup
m→∞

FDP
{
tα

(
F̃DRλ

)}]
≤ α.

This completes the proof.
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