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Abstract

We are interested in modeling a zero mean heteroscedastic time
series process with autoregressive error process of finite known order
p. The model can be used for testing a martingale difference sequence
hypothesis that is often adopted uncritically in financial time series
against a fairly general alternative. When the argument is determinis-
tic, we provide an innovative nonparametric estimator of the variance
function and establish its consistency and asymptotic normality. We
also propose a semiparametric estimator for the vector of autoregres-
sive error process coefficients that is

√
T consistent and asymptotically

normal for a sample size T . Explicit asymptotic variance covariance
matrix is obtained as well.

1 Introduction

In this manuscript, we consider the estimation of a time series process with
a time-dependent conditional variance function and serially dependent er-
rors. Consider the following non-parametric volatility model with serially
correlated innovations:

yt = σtvt, σt = σ(xt), (1.1)
vt = φ1vt−1 + φ2vt−2 + εt, (1.2)

for t = 2, . . . , T , where (εt)t≥2 are iid with mean 0 and variance 1. This
model can also be interpreted as belonging to the a functional autoregressive
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model (FAR) class first introduced in Chen and Tsay (1993). Indeed, the
process yt can be re-expressed as

yt = φ1σtσ
−1
t−1yt−1 + φ2σtσ

−1
t−2yt−2 + σtεt, (1.3)

with functional coefficients being φ1σtσ
−1
t−1 and φ2σtσ

−1
t−2. If the AR(2) time

series process is stationary, the variance and autocovariances of v are:

γ0 := Var(vk) =
1− φ2

(1 + φ2)((1− φ2)2 − φ2
1)
, (1.4)

γ1 := Cov(vk, vk+1) =
φ1

1− φ2
γ0, (1.5)

γj := Cov(vk, vk+j) = φ1γj−1 + φ2γj−2, for any k ∈ N. (1.6)

The functional autoregressive representation (1.3) suggests that the di-
rect attempt to estimate the conditional variance function σ2

t based on the
residuals from the regression of yt on yt−1 and yt−2 will produce an inconsis-
tent estimator due to the time-dependent nature of the coefficients of yt−1

and yt−2. This potential source of inconsistency has often been ignored in
the econometric literature (e.g. when estimating ARCH or GARCH mod-
els) due to the uncritical adoption of the assumption that errors make up
a martingale difference sequence. Note that as a by-product of our anal-
ysis, a simple parametric test of the martingale difference hypothesis, i.e.,
φ1 = 0 and φ2 = 0, can be proposed that enables the researcher to avoid
this potential pitfall. Estimation of the conditional variance structure is also
of interest in several situations. For instance, consider the modified model
(1.1):

yt = µt + σtvt,

where the conditional mean function µ is non-zero; for example, a com-
monly encountered case is the pth order autoregression µ(yt−1, . . . , yt−p) =
θ0 + θ1yt−1 + . . .+ θpyt−p with θp 6= 0 (see, e.g., Phillips and Xu (2006)). In
this situation, there is a need for robust inference concerning the coefficients
θi, i = 1, . . . , p, in the presence of the specific type of heteroscedasticity. Al-
though standard regression procedures can be made robust in this situation
by using the heteroscedasticity-consistent (HC) covariance matrix estimates
as suggested in Eicker (1963) and White (1980), there may be advantages
in considering alternative methods that take a specific covariance structure
into account. Such methods are likely to provide more efficient estimators.
Unlike Phillips and Xu (2006), we consider the conditional variance struc-
ture with serially dependent errors, which hasn’t been seriously investigated
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in the literature to the best of our knowledge. Finally, being able to estimate
the exact heteroscedasticity structure is important in econometrics in order
to design unit-root tests that are robust to violations of the homoscedasticity
assumption. The size and power properties of the standard unit-root test can
be affected significantly depending on the pattern of variance changes and
when they occur in the sample; an extensive study of possible heteroscedas-
ticity effects on unit-root can be found in Cavaliere (2004). We intend to
consider both design of robust unit-root tests and the robust inference for
autoregression coefficients in the presence of conditional variance structure
with serially dependent errors as part of the future research.

A simpler version of the model (1.1) with AR(1) innovations (i.e. φ2 = 0)
has been studied earlier in Dahl and Levine (2006). They designed a simple
and intuitively appealing procedure for estimating both Euclidean parameter
φ1 and the function σ2

t . The key building blocks of their estimation method
were the two-lag difference statistic:

ηt =
yt − yt−2√

2
. (1.7)

Such a statistic is also often called a pseudoresidual. In order to explain
in simple terms the intuition behind their method, let us assume that σ is
constant. We denote γk the autocovariance of the error process vt at lag k.
Then, note that η2

t = σ2

2

(
v2
t + v2

t−2 − 2vtvt−2

)
, and, therefore,

Eη2
t = σ2 (γ0 − γ2) = σ2, (1.8)

because, under the AR(1) specification,

γ2 = φ1γ1 =
φ2

1

1− φ2
1

.

It is now intuitive that η2
t can be used to devise a consistent estimator for

the non-constant function σ2
t as well. In the case of non-constant σt and

under a fixed design on the unit interval (xt = t/T , t = 1, . . . , T − 1), we
have

Eη2
t =

1
2
(
σ2
t γ0 + σ2

t−2γ0 − 2σtσt−2γ2

)
.

Simple heuristics suggests that the above expression can be accurately ap-
proximated by σ2

t in large samples for sufficiently large T . This, in turn,
suggests turning the original problem (1.1) into a non-parametric regression

η2
t = σ2(xt) + ε̃t,
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where ε̃t are approximately centered random errors. Dahl and Levine (2006)
used local linear estimation to estimate σ2

t , whose asymptotic properties
were also fully characterized. The parameter φ1 was estimated using a
weighted least square estimator (WLSE). More specifically, noting that (1.3)
with φ2 = 0 implies

σ−1
t yt = φ1σ

−1
t−1yt−1 + εt, t = 2, . . . , T, (1.9)

it follows that a natural estimator for φ1 is given by

φ̂1 := arg minφ1∈(0,1)

1
T

T∑
t=2

(
σ̂−1
t yt − φ1σ̂

−1
t−1yt−1

)2
=

(
1
T

T∑
t=2

σ̂−2
t−1y

2
t−1

)−1(
1
T

T∑
t=2

σ̂−1
t σ̂−1

t−1ytyt−1

)
. (1.10)

The rest of the paper is organized as follows. In Section 2, we present
our estimation approach. The consistency and central limit theorem for
estimators of autoregressive coefficients φ1 and φ2 are given in Section 3.
The analogous results for the estimator of the variance function σ(x) are
presented in Section 4. A Monte Carlo simulation study of our estimators
is given in Section 5. In Section 6, we conclude the paper with a discussion
section about extensions of our method and some interesting open problems.
The proofs of main results are given in the Appendix section.

2 Estimation method based on two-lag differences

In the previous section, we showed how to apply the two-lag difference statis-
tic (1.7) to estimate the conditional variance function in the model (1.1) in
light of (1.8). A natural question is whether there exists any other linear
statistic

ηt :=
m∑
i=0

aiyt−i, (2.1)

such that
Eη2

t ≈ σ2
t

for sufficiently large sample size T. The following result shows that this is
essentially impossible even for the simplest AR(1) case. The impossibility
for a general AR(p) model will follow from similar arguments. The proof of
the following result is deferred to the appendix section.

4



Proposition 2.1. Consider again the case where σ2
t ≡ σ2 is constant and

the error process is AR(1) (i.e., φ2 = 0). Then, if

Eη2
t = σ2,

for any φ1 ∈ (−1, 1), there exists a 0 ≤ k ≤ m− 2 such that

ak = ± 1√
2
, ak+2 = ∓ 1√

2
, ai = 0, ∀i 6= k, k + 2.

The previous result shows that the only linear statistic (2.1) with a0 6= 0
that can result in Eη2

t being independent of φ1 is the two-lag difference
statistic

ηt =
yt − yt−2√

2
.

Now we intend to show that the same statistic can be used in the case of
AR(2) process for the general model (1.1)-(1.2). The key observation is that
for a general AR(2) innovation process and for σ2

t ≡ σ, the equation (1.8)
simplifies nicely as follows:

η2
t = σ2 (γ0 − γ2) =

σ2

1 + φ2
.

Indeed, using (1.4)-(1.5),

γ2 = φ1γ1 + φ2γ0 =
(

φ2
1

1− φ2
+ φ2

)
γ0 =

φ2
1 + (1− φ2)φ2

1− φ2
γ0,

γ0 − γ2 = γ0

(
1− φ2

1 + (1− φ2)φ2

1− φ2

)
= γ0

(
(1− φ2)2 − φ2

1

1− φ2

)
=
(

1− φ2

(1 + φ2)((1− φ2)2 − φ2
1)

)(
(1− φ2)2 − φ2

1

1− φ2

)
=

1
1 + φ2

.

As before, for a general smooth enough function σ2
t and under a fixed

design on the unit interval (xt = t/T , t = 1, . . . , T −1) with T large enough,
we expect that

Eη2
t ≈

σ2
t

1 + φ2
,

and, hence, we expect to estimate correctly σ2
t up to a constant. It turns

out that this will suffice to estimate the parameters φ1 and φ2 via weighted
least squares (WLSE). Indeed, suppose for now that we know the variance
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function σ2
t and let ȳt := σ−1

t yt. In light of the relationship (1.3), it would
then be possible to estimate (φ1, φ2) by the WLSE:

(φ̄1, φ̄2) := arg minφ1,φ2

1
T

T∑
t=4

(ȳt − φ1ȳt−1 − φ2ȳt−2)2 .

Basic differentiation leads to the following system of normal equations

−
T∑
t=4

ȳtȳt−1 + φ̄1

T∑
t=4

ȳ2
t−1 + φ̄2

T∑
t=4

ȳt−1ȳt−2 = 0,

−
T∑
t=4

ȳtȳt−2 + φ̄1

T∑
t=4

ȳt−1yt−2 + φ̄2

T∑
t=4

ȳ2
t−2 = 0,

Ignoring for now the edge effects (so that
∑T

t=4 ȳtȳt−1 ≈
∑T

t=4 ȳt−1ȳt−2 and∑T
t=4 ȳ

2
t ≈

∑T
t=4 ȳ

2
t−1), we can write the above system as

Āφ̄1 + B̄φ̄2 − B̄ = 0, B̄φ̄1 + Āφ̄2 − C̄ = 0,

where

Ā :=
T∑
t=4

ȳ2
t , B̄ :=

T∑
t=4

ȳtȳt−1, C̄ :=
T∑
t=4

ȳtȳt−2.

We finally obtain

φ̄2 := (Ā2 − B̄2)−1(ĀC̄ − B̄2), φ̄1 = Ā−1B̄(1− φ̂2). (2.2)

Obviously, these estimators are not feasible since σ2
t is unknown. However,

we note that these estimators will not change if instead of σt in the definition
of ȳt we use cσt where c is an arbitrary constant that is independent of t.
This fact suggests the following algorithm:

1. Estimate the function

σ2,bias
t :=

σ2(xt)
1 + φ2

, (2.3)

by a non-parametric smoothing method (e.g. local linear regression)
applied to the two-lag difference statistics η2

t defined in (1.7). Let σ̃2
t

be the resulting estimator.
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2. Standardize the observations, ỹt := σ̃−1
t yt, and, then, estimate (φ1, φ2)

via the WLSE:

φ̂2 := (A2 −B2)−1(AC −B2), φ̂1 = A−1B(1− φ̂2). (2.4)

with

A :=
T∑
t=4

ỹ2
t , B :=

T∑
t=4

ỹtỹt−1, C :=
T∑
t=4

ỹtỹt−2.

3. Estimate σ2
t := σ2(xt) by

σ̂2
t := (1 + φ̂2)σ̃2

t . (2.5)

In the next section, we will give detailed analysis of consistency and asymp-
totic properties of the proposed estimators.

3 Asymptotics

Let us now consider the estimation problem for the heteroscedastic process
(1.1-1.2). We will use σ̃2

t to denote the inconsistent estimator of σ2
t that

is obtained applying local linear regression to the squared-pseudoresiduals
η2
t ; such an estimator is inconsistent since, e.g., in the homoscedastic model

case (i.e. σ2
t ≡ σ2), Eη2

t = σ2/(1 +φ2). However, note that it is expected to
be a consistent estimator of the quantity σ2,bias

t = σ2
t

1+φ2
, as it will be proved

in Section 4. We denote

σt = (σt, σt−1, σt−2)
′
, σ̃t = (σ̃t, σ̃t−1, σ̃t−2)

′
, σbiast = (σbiast , σbiast−1 , σ

bias
t−2 )

′
.

As it was explained before, it seems reasonable to estimate the coefficients
φ1 and φ2 using an inconsistent estimator σ̃2

t first and, then, correct it
to obtain the asymptotically consistent estimator σ̂2

t = σ̃2
t (1 + φ̂2). The

following detailed algorithm illustrates our approach to the estimation of
the model (1.1):

1. Using the functional autoregression form of the model (1.1), define the
least squares estimator φ̂ := (φ̂1, φ̂2) of φ := (φ1, φ2) and establish its
consistency.

2. Show that, under additional regularity conditions, φ̂
p→ φ as T →∞.
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3. Define an asymptotically consistent estimator σ̂2
t and establish its con-

sistency and asymptotic normality.

We recall that the functional autoregressive form of (1.1) is

σ−1
t yt = φ1σ

−1
t−1yt−1 + φ2σ

−1
t−2yt−2 + εt.

Next, for any ϑ = (ϑ0, ϑ−1, ϑ−2) and ϕ = (ϕ1, ϕ2), let

m̄k,t(ϑ;ϕ) :=
1
T

T∑
t=2

mk,t(ϑ;ϕ), (k = 1, 2), (3.1)

where

mk,t(ϑ;ϕ) := ϑ−1
−kyt−k[ϑ

−1
0 yt − ϑ−1

−1ϕ1yt−1 − ϑ−1
−2ϕ2yt−2], (3.2)

where (yt) is generated by the model (1.1) with true parameters (σt,φ).
Denote

mt(ϑ;ϕ) := (m1,t(ϑ;ϕ);m2,t(ϑ;ϕ))
′
. (3.3)

Note that

m1,t(σt;φ) = vt−1εt, and m2,t(σt;φ) = vt−2εt, (3.4)

and, therefore, neither depends on σt in that case. Then, the first order
conditions that determine the least-square estimator φ̂ of φ are given by

m̄k,t(σ̃t; φ̂) = 0, (k = 1, 2). (3.5)

Hence, the least-squares estimators φ̂ := (φ̂1, φ̂2) of φ = (φ1, φ2) are given
as in (2.4).

To establish consistency for φ̂ a few preliminary results are needed.
Throughout, we assume that the data generating process (1.1)-(1.2) sat-
isfies the following conditions:

1. εt are iid errors with mean zero and variance 1.

2. E|εt|4+γ <∞ for some small γ > 0.

3. σ2
t ∈ F := C2[0, 1].
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We denote Θ0 the set of φ such that the roots of the characteristic equation
1− φ1z − φ2z

2 = 0 are greater then 1 + δ in absolute value for some δ > 0.
This guarantees causality and stationarity of the AR(2) error process vt;
moreover, it also implies that vt can be represented as an MA(∞):

vt =
∞∑
i=0

ψiεt−i, (3.6)

where all of the coefficients

K1ρ
i ≤ |ψi| ≤ K2ρ

i (3.7)

for all i ≥ 0, some finite ρ such that 1
1+δ < ρ < 1, and positive constants K1

and K2 (see, e.g., Brockwell and Davis (1991), Chapter 3). In particular,
(3.7) implies that the series {ψi}i≥0 is absolutely converging:

∑∞
i=0 |ψi| <∞.

Remark 3.1. The coefficients {ψi}i≥0 are defined recursively as

ψ0 = 1, ψ1 − ψ0φ1 = 0, ψ2 − ψ1φ1 − ψ0φ2 = 0, . . . (3.8)

or, in a more compact form, ψj −ψj−1φ1−ψj−2φ2 = 0 if it is assumed that
ψj ≡ 0 for any j < 0. Note that this implies (by induction) that ψj is a
continuously differentiable function of φ for any j ≥ 0.

Our first task is to show the weak consistency of the least-square esti-
mator φ̂. As pointed earlier in Dahl and Levine (2006), the estimator φ̂ is
an example of a MINPIN semiparametric estimator (i.e., an estimator that
minimizes a criterion function that may depend on a Preliminary Infinite
Dimensional Nuisance Parameter estimator). MINPIN estimators have been
discussed in great generality in Andrews (1994). We first establish the fol-
lowing uniform weak law of large numbers (LLN) for mt(σt;φ) (see Andrews
(1987), Appendix B for the definition).

Lemma 3.2. Suppose that Θ ⊂ Θ0 is a compact set with non-empty interior.
Then, as T →∞,

sup
φ∈Θ

∣∣∣∣∣ 1
T

T∑
t=1

mt(σt;φ)

∣∣∣∣∣ P−→ 0.

We are ready to show our main consistency result. The proof is presented
in Appendix B.
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Theorem 3.3. Let Θ be a compact subset of Θ0 with non-empty interior.
Then, the weak consistency of the least-square autoregressive estimator of
(2.4) holds true.

Our next task is to establish asymptotic normality of φ̂. The proof of
the following result is deferred to the Appendix B.

Theorem 3.4. Let all of the assumptions of Theorem 3.3 hold and, in
addition,

1. mt(σt;φ) is twice continuously differentiable in φ for any σt ∈ F ;

2. The matrix

M ≡ lim
T→∞

1
T

T∑
t=2

E
∂mt

∂φ
(σt;φ)

exists uniformly over Θ × F and is continuous at (σbiast ,φ) with re-
spect to any pseudo-metric on Θ × F for which (σ̃t, φ̂) → (σbiast ,φ).
Furthermore, the matrix M is invertible.

Then,
√
T (φ̂− φ) d→ N(0, V ) with

V :=
(
V1 V2

V2 V1

)
:=
(

1− φ2
2 −φ1(1 + φ2)

−φ1(1 + φ2) 1− φ2
2

)
. (3.9)

4 Variance function estimation

Estimating the variance function σ2
t (x) is very similar to how it was done in

Dahl and Levine (2006). As a reminder, the first step is estimating not σ2
t

but rather

σ2,bias
t (x) =

σ2
t (x)

1 + φ2
,

by the local linear regression applied to the squared-pseudoresiduals η2
t . As

in Dahl and Levine (2006), we assume that the kernel K(u) is a two-sided
proper density second order kernel on the interval [−1, 1]; this means that

1. K(u) ≥ 0 and
∫
K(u) du = 0

2. µ1 =
∫
uK(u) du = 0 and µ2 ≡ σ2

K =
∫
u2K(u) du 6= 0.
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We also denote RK =
∫
K2(u) du. Then, the inconsistent estimator σ̃2

t (x)
of σ2

t (x) is defined as the value â solving the local least squares problem

(â, b̂) = argmina,b

T∑
t=3

(η2
t − a− b(xt − x))2Kh(xt − x)

Since σ̃2
t estimates σ2,bias

t consistently, at the next step we define a consistent
estimator of σ2

t as follows:

σ̂2
t (x) = σ̃2

t (x)(1 + φ̂2),

where φ̂ = (φ̂1, φ̂2) is the least-squares estimator defined in (2.4). We will
use Dσ2

t (x) and D2σ2
t (x) to denote the first and the second-order derivatives

of the function σ2
t (x), respectively. The following lemma can be proved by

following almost verbatim Theorem 3 of Dahl and Levine (2006) and is
omitted for brevity.

Lemma 4.1. Under assumptions (1)-(2) on the kernel and assumptions (1)-
(3) on the data generating process (1.1), σ̃2

t (x) is an consistent estimator of
σ2,bias
t (x). Moreover,

σ̃2
t (x)− σ2,bias

t (x)−B(φ, σ2
t )

V 1/2(φ, σ2
t )

d−→ N(0, 1),

where the bias B(φ, σ2
t ) and variance V (φ, σ2

t ) of σ̃2
t are such that

B(φ, σ2
t ) =

{
h2σ2

K

2
[
D2σ2

t (x)/4− γ2(Dσ2
t (x))2/σ2

t (x)
]

+ o(h2) +O(T−1)
}

V (φ, σ2
t ) = RKC(φ1, φ2)σ4(x)(Th)−1 + o(Th−1).

and the above constant C(φ1, φ2) depends only on φ1 and φ2.

Now we are ready to state the main result of this section.

Theorem 4.2. Under the same assumptions as in Lemma 4.1, σ̂2
t is an

asymptotically consistent estimator of σ2
t that is also asymptotically normal

with the bias (1 + φ2)B(φ, σ2
t ) and the variance (1 + φ2)2V (φ, σ2

t ).

Proof. By the Slutsky’s theorem, we have σ̃2
t−σ

2,bias
t −B(φ,σ2

t )√
V (φ,σ2

t )
(1 + φ̂2) d→ (1 +

φ2)ζ with ζ ∼ N(0, 1). This means that σ̂2
t is a consistent estimator of σ2

t

with the bias (1 + φ2)B(φ, σ2
t ) and the variance (1 + φ2)2V (φ, σ2

t ).
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5 Numerical results

In this part we review the finite-sample performance of the proposed esti-
mators. In order to do this, we consider three model specifications given in
Table 1. The variance function specifications are the same as those in Dahl
and Levine (2006). The specification of σ2

t in Model 1 is a leading exam-
ple in econometrics/statistics and can generate ARCH effects if xt = yt−1.
Model 2 is adapted from Fan and Yao (1998). In particular, the choice of
σ2
t is identical to the variance function in their Example 2. The variance

function in Model 3 is from Härdle and Tsybakov (1997). We take a fixed
design xt = t/T for t = 0, . . . , T and compute the WLSE estimators φ̂1 and
φ̂2 of (2.4) for the previously mentioned variance function specifications and
three different samples sizes, T = 100, T = 1000, and T = 2000. In order to
assess the performance of the estimator (2.5), we compute the MSE defined
by

MSE(σ̂) :=
1
M

M∑
i=1

1
T

T∑
t=1

(σ̂2
t,i − σ2

t )
2,

where σ̂2
t,i is the estimated variance function in the ith simulation and M is

the number of simulations. We use local linear estimators ϑ̂(xt) for estimat-
ing ϑ(xt) in the step 1 of the method outlined above.

Table 2 provides the MSE for the three specifications and sample sizes,
while Table 3 shows the sampling mean and standard errors for the es-
timators φ̂1 and φ̂2. In Table 3, Mn(Sd) stand for ”Mean and Standard
Deviation”. The true parameter values are φ1 = 0.6 and φ2 = 0.3. For
these parameter values, the asymptotic standard deviation and covariance
given in (3.9) take the values:√

V1 = 0.953, V2 = −0.780.

In particular, the above standard error should be compared with the asymp-
totic theoretical standard deviation

√
V1/T from Theorem 3.4. For the sam-

ple sizes 100, 1000, and 2000,
√
V1/T takes the values 0.0953, 0.0301, and

0.0213, which match the sampling standard deviations of Table 3. The re-
sults show clear improvement for increasing sample sizes; Models 2 and 3
seem to be a little easier to estimate than Model 1. Finally, Figure 1 shows
the sampling densities for φ̂1 and φ̂2 corresponding to each of the three
models and three sample sizes T . No severe small sample biases seem to be
present in any of the pictures.
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Figure 1: Finite-sample sampling densities in comparison with the standard
normal density under the three alternative variance function specifications
of Table 1. The number of Monte Carlo replications is 1000.
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Model Specifications
1 σ2

t = 0.5x2
t + 0.1

2 σ2
t = 0.4 exp(−2x2

t ) + 0.2
3 σ2

t = ϕ(xt + 1.2) + 1.5ϕ(xt − 1.2)

Table 1: Alternative data generating processes. ϕ(·) denotes the standard
normal probability density.

Model T=100 T=1000 T=2000
1 0.0241 0.0013 0.0007
2 0.0388 0.0020 0.0009
3 0.0626 0.0026 0.0011

Table 2: Mean Square Errors (MSE) of σ̂2(x) under alternative variance
function specifications and sample sizes with 1000 Monte Carlo replications
and 10-fold cross-validation for bandwidth selection.

6 Discussion

In this manuscript, we propose a method for estimation of the variance struc-
ture of the scaled autoregressive process’ unknown coefficients and scale vari-
ance function σ2

t . This method is being proposed to extend earlier results of
Dahl and Levine (2006), where the analogous problem for the specific case of
error autoregressive process of order 1 was solved. The direct generalization
of the method of Dahl and Levine (2006) does not seem to be possible in
the case of the autoregressive process order more then 1; thus, the method
proposed in this manuscript represents a qualitatively new procedure. For
the sake of simplicity, we only show in detail how to handle the case of
autoregressive error process of order 2; however, this method can be eas-
ily extended to the case of an arbitrary autoregressive error process AR(p)
with p > 2. Indeed, let φ1, . . . , φp be the coefficients of the above mentioned
AR(p) error process. It can be shown that the expectation of the squared
pseudoresidual of order 2, η2

t , in that case is the scaled value of σ2
t where

the scaling constant is an explicit function Ψ ≡ Ψ(φ1, . . . , φp) of φ1, . . . , φp;
since the scaling constant does not depend on the variance function, the
following procedure can be suggested:

1. Obtain the estimate of the scaled variance function

σ2,bias
t := Ψ(φ1, . . . , φp)σ2(xt),

14



Model T = 100 T = 1000 T = 2000
Mn(Sd) φ̂1 Mean(Sd) φ̂2 Mn(Sd) φ̂1 Mn(Sd) φ̂2 Mn(Sd) φ̂1 Mn(Sd) φ̂2

1 0.559(0.114) 0.298(0.110) 0.594(0.029) 0.301(0.030) 0.595(0.021) 0.301(0.021)
2 0.565(0.105) 0.296(0.098) 0.594(0.029) 0.301(0.030) 0.598(0.021) 0.299(0.021)
3 0.566(0.103) 0.294(0.099) 0.598(0.030) 0.298(0.0302) 0.597(0.022) 0.300(0.021)

Table 3: Sampling Means and Standard Deviations under alternative vari-
ance function specifications and sample sizes with 1000 Monte Carlo replica-
tions and 10-fold cross-validation for bandwidth selection. True parameters
are φ1 = 0.6 and φ2 = 0.3.

by using a non-parametric smoothing method (e.g. local linear regres-
sion) applied to η2

t . Let Θ̂2
t = Θ̂2(xt) be the resulting estimator.

2. Standardize the observations ŷt := Θ̂−1
t yt and then estimate (φ1, . . . , φp)

using the weighted least squares (WLSE):

(φ̂1, . . . , φ̂p) := arg minφ1,...,φp

1
T

T∑
t=p+2

(ŷt − φ1ŷt−1 − . . .− φpŷt−p)2 .

3. Estimate σ2
t := σ2(xt) by

σ̂2
t := Ψ(φ̂1, . . . , φ̂p)Θ̂2

t . (6.1)

Although technically more complicated, the same asymptotic results can
be obtained in the general case of p > 2 in a straightforward manner with
explicit expressions for asymptotic variances of all estimators.

There is a number of interesting issues left unanswered here that we plan
to address in the future research on this subject. Although we only examined
the model (1.1) with the conditional mean equal to zero, an important practi-
cal issue is often the unit-root testing for an autoregressive conditional mean
of order l ≥ 1 and some conditionally heteroscedastic error process. For the
conditional mean of the form yt = θ0 + θ1yt−1 + . . . + θlyt−l, Phillips and
Xu (2006) addressed that issue by conducting asymptotic analysis of least
squares estimates of the coefficients θk, k = 1, . . . , l under the assumption
of strongly mixing martingale difference error process and a non-constant
variance function. Our setting is not a special case of Phillips and Xu (2006)
since for our error process E(vt|Ft−1) 6= 0 (where Ft = σ(vs, s ≤ t) is the
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natural filtration). We believe, therefore, that the asymptotic analysis of the
least squares estimates of the coefficients θk under the same assumptions on
the error process as in (1.1) is an important topic for future research. Such
an analysis could yield several different robust estimators of the coefficients
θk as well as corresponding robust unit root tests. Another interesting topic
of future research is a possible extension of these results to the case of a
more general ARMA(p,q) error process. One of the possibilities may be us-
ing the difference-based pseudoresiduals again to construct an inconsistent
estimator of the variance function σ2

t first. Indeed, since the scaling constant
will only be dependent on the coefficients of the ARMA (p,q) error process,
the MINPIN estimators of the coefficients of the error process based on such
an inconsistent variance estimator will be unaffected. Therefore, estimation
of the coefficients of the error process will proceed in the same way as for
usual ARMA processes. The final correction of the nonparametric variance
estimator also appears to be straightforward.
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B Proofs

Proof of Proposition 2.1. It is easy to see that

η2
t = σ2

γ0

m∑
j=0

a2
j + 2

m∑
i=1

m−i∑
j=0

ajaj+iγi

 .

Recalling that for an AR(1) time series,

γ0 =
1

1− φ2
1

, and γi = φi1γ0,

it follows that 1
1− φ2

1

m∑
j=0

a2
j +

2
1− φ2

1

m∑
i=1

m−i∑
j=0

ajaj+iφ
i
1

 = 1.
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This can be written as the following polynomial of φ1:

m∑
j=0

a2
j − 1 + φ2

1(1 + 2
m−2∑
j=0

ajaj+2) + 2
m∑

i=1,i 6=2

m−i∑
j=0

ajaj+iφ
i
1 = 0.

Then, we get the following system of equations:

(i)
m∑
j=0

a2
j = 1, (ii) 1 + 2

m−2∑
j=0

ajaj+2 = 0,

(iii)
m−i∑
j=0

ajaj+i = 0, ∀i ∈ {1, 3, . . . ,m}.

Suppose that a0 6= 0. Then, equation (iii) for i = m, implies that a0am = 0
and, hence, am = 0. Equation (iii) for i = m− 1 yields a0am−1 + a1am = 0
and thus am−1 = 0. By induction, it follows that am = am−1 = · · · = a3 = 0.
Plugging in (i-iii),

a2
0 + a2

1 + a2
2 = 1, 1 + 2a0a2 = 0, a0a1 + a1a2 = 0,

which admits as unique solution

a0 = ± 1√
2
, a1 = 0, a2 = ∓ 1√

2
.

If a0 = 0, but a1 6= 0, one can similarly prove that the only solution is

a1 = ± 1√
2
, a3 = ∓ 1√

2
, ai = 0, otherwise.

The statement of the proposition can be obtained by induction in k.

Proof of Lemma 3.2. This can be done by appealing to Theorem 1 in
Andrews (1987). First, using representations (3.4)-(3.6), we define

Wt = (εt, εt−1, . . . ) ∈ RN, qt,k(Wt,φ) := εt

∞∑
i=0

ψiεt−k−i.

It remains to verify the assumptions A1-A3 of Theorem 1 in Andrews (1987).
As stated in Corollary 2 of Andrews (1987), one can check its condition A4
therein instead of condition A3 since A4 implies A3. We now state these
three conditions:
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A1. Θ is a compact set;

A2. Let B(φ0; ρ) ⊂ Θ be an open ball around φ0 of radius ρ and let

m∗k,t(σt; ρ) = sup{mk,t(σt;φ) : φ ∈ B(φ0; ρ)}, (B.1)

mk,t∗(σt; ρ) = inf{mk,t(σt;φ) : φ ∈ B(φ0; ρ)}. (B.2)

The following two statements hold:

(a) All of mk,t(σt;φ), m∗k,t(σt; ρ), and mk,t∗(σt; ρ) are random vari-
ables for any φ ∈ Θ, any t and any sufficiently small ρ;

(b) Both m∗k,t(σt; ρ) and mk,t∗(σt; ρ) satisfy pointwise weak laws of
large numbers for any sufficiently small ρ.

A4. For each φ ∈ Θ there is a constant τ > 0 such that d(φ̃,φ) ≤ τ implies

||mt(σt; φ̃)−mt(σt;φ)|| ≤ Bth(d(φ̃,φ))

where Bt is a non-negative random variable (that may depend on φ)
and limT→∞

1
T

∑T
i=1 EBt < ∞, while h : R+ → R+ is a nonrandom

function such that h(y) ↓ h(0) = 0 as y ↓ 0.

Since condition A1 above is assumed as a hypothesis, we only need to work
with conditions A2 and A4. The verification of these is done through the
following two steps:

1. Let ρ > 0 small enough such that B(φ0; ρ) ⊂ Θ. Then, recalling the
representation (3.4) and (3.6),

m1,t(φ) = εt

∞∑
i=0

ψiεt−1−i, (B.3)

for any φ ∈ B(φ0; ρ), we find that the supremum of m1,t(φ) taken
over a ball B(φ0; ρ) also exists and is a random variable. Indeed,
each of the summands in (B.3) is a continuous function of φ as we
already established earlier; the convergence in mean squared tom1,t(φ)
is uniform in φ due to (3.7) and, therefore, m1,t(φ) is continuous in φ
as well. That, in turn, implies the existence ofm∗1,t(σt; ρ); the existence
of m1,t∗(σt; ρ); is established in exactly the same way. Moreover, the
pointwise WLLNs for both supBmk,t(φ) and infBmk,t(φ) are also
clearly satisfied since Emk,t(φ; ρ) ≡ 0 for any φ ∈ B(φ; ρ) ⊂ Θ.
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2. We now show A4 form1,t(φ) (m2,t(φ) can be treated analogously). De-
note m∗1,t(φ) = εt

∑∞
i=0 ψ

∗
i εt−1−i where ψ∗i correspond to the MA(∞)

representation of the AR(2) series with the parameter vector φ∗ =
(φ∗1,φ

∗
2) ∈ Θ. For the sake of brevity we will use m∗1 for m∗1,t(φ). Let

us start by noting that

|m∗1 −m1| = |εt
∞∑
i=0

ψ∗i εt−1−i − εt
∞∑
i=0

ψiεt−1−i|

≤

√√√√ ∞∑
i=0

ψ2
i ε

2
t−1−iε

2
t

√√√√ ∞∑
i=0

(
ψ∗i − ψi
ψi

)2

.

Let us denote Bt :=
√∑∞

i=0 ψ
2
i ε

2
t−1−iε

2
t and

d(φ∗,φ) :=
∞∑
i=0

(
ψ∗i − ψi
ψi

)2

.

Then,

sup
T

1
T

T∑
t=2

EBt ≤ sup
T

1
T

T∑
t=2

√√√√E

( ∞∑
i=0

ψ2
i ε

2
t−1−iε

2
t

)
=
∞∑
i=0

ψ2
i <∞.

Now we need to treat the second multiplicative term. First, recalling
(3.8), it is easy to conclude, by induction, that the coefficients ψj
are continuously differentiable functions of φ1 and φ2 for any φ ∈
B(φ, ρ) ⊂ Θ. Therefore, using (3.7), one can easily establish that

lim
φ∗→φ

d(φ∗,φ) = 0.

Note that the quantity
∑∞

i=0

(
ψ∗i−ψi

ψi

)2
is not, properly speaking, a

metric measuring the distance between φ = (φ1, φ2) and φ∗ = (φ∗1, φ
∗
2)

since it is not symmetric with respect to its arguments and, there-
fore, the verification of Assumption A4 seems in doubt at first sight.
However (see Andrews (1992)), the fact that Assumption A4 implies
Assumption A3 does not need the argument d(φ̃,φ) of the function h
to be a proper metric; only d(φ̃,φ) ↓ 0 as φ̃→ φ is needed.
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Proof of Theorem 3.3. Our proof of consistency will rely on the Theorem
A1 of Andrews (1994) with Wt = (yt, yt−1, yt−2)′. We will simply verify that
the sufficient conditions of Theorem A1 are true. The first assumption C(a)
follows from Lemma 3.2 taking mt(σt;φ) ≡ 0. It remains to show the other
conditions therein.

The first part of Assumption C(b) of the Theorem A is immediately satisfied
because m(σt;φ) ≡ 0 for any φ and σt. Since σ̃2

t is a local linear regression
estimator, it is clear that it is twice continuously differentiable as long as
the kernel function K() is twice continuously differentiable; thus, the second
part of of the Assumption C(b) is also true. The Assumption C(c) is true
if the Euclidean norm of m(σt;φ) = limT→∞

1
T

∑T
t=2Emt(σt;φ) is finite.

In our case, since both martingale difference sequences vt−1εt and vt−2εt
have mean zero, clearly supΘ×F ||m(σt;φ)|| = 0 < ∞ and the Assumption
C(c) is satisfied. The Assumption C(d) is true because Θ is compact, the
functional

dt = m
′
t(σt;φ)mt(σt;φ)/2,

is continuous in φ and the Hessian matrix ∂2dt
∂φ2 is positive definite (can be

verified). All of the above allows us to conclude that the weak consistency
holds: φ̂

p→ φ.

Proof of Theorem 3.4. Recall that σ̃t is the inconsistent estimator of
σt that, however, estimates the quantity σbiast = σt√

1+φ2
consistently (see

Lemma 4.1 above); it is corrected to obtain σ̂t = σ̃t(1 + φ̂2). We also
recall the notation σt = (σt, σt−1, σt−2)

′
, σ̃t = (σ̃t, σ̃t−1, σ̃t−2)

′
, σbiast =

(σbiast , σbiast−1 , σ
bias
t−2 )

′
; then, for some generic argument ϑ = (ϑ0, ϑ−1, ϑ−2) and

ϕ = (ϕ1, ϕ2) we have

m̄T (ϑ;ϕ) :=
1
T

T∑
t=2

mt(ϑ;ϕ),

with mt(ϑ,ϕ) given as in (3.3). Since the vector valued function mt(ϑt;ϕ)
is twice continuously differentiable, we can use a Taylor expansion around
(σ̃t;φ):

√
Tm̄T (σ̃t; φ̂) =

√
Tm̄T (σ̃t;φ) +

∂

∂φ
m̄T (σ̃t;φ∗)

√
T (φ̂− φ),

for some φ∗ that lies on the straight line connecting φ̂ and φ. Then, due
to the first order conditions (3.5) and the existence of an invertible matrix
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M = limT→∞
1
T

∑T
t=2E

∂mt
∂φ (σt;φ), we obtain that

√
T (φ̂− φ) = −[M−1 + op(1)]

√
Tm̄T (σ̃t;φ).

In our case,

∂mt

∂φ
(σt,φ) =

(
∂m1,t

∂φ1

∂m1,t

∂φ2
∂m2,t

∂φ1

∂m2,t

∂φ2

)∣∣∣∣∣
(σt,φ)

=
(

−v2
t−1 −vt−1vt−2

−vt−1vt−2 −v2
t−2

)
,

In light of (1.4), it follows that

M = lim
T→∞

1
T

T∑
t=2

E
∂mt

∂φ
(σt;φ) = −

(
γ0 γ1

γ1 γ0

)
=: S.

Let m∗T (ϑ,ϕ) = 1
T

∑T
t=2Emt(ϑ,ϕ) and define the empirical process

νT (σt) =
√
T [m̄T (σt;φ)−m∗T (σt;φ)] (B.4)

Clearly,
√
Tm̄T (σ̃t;φ) =

√
Tm̄T (σt;φ) + νT (σ̃t)− νT (σt) +

√
Tm∗T (σ̃t;φ)

Now, using (3.4),

√
Tm̄T (σt;φ) =

1√
T

T∑
t=2

mt(σt;φ) =

(
1√
T

T∑
t=2

vt−1εt,
1√
T

T∑
t=2

vt−2εt

)
.

Hence, using the CLT for martingale difference sequences (see Billingsley
(1961)),

√
Tm̄T (σt;φ) is asymptotically normal N(0, S) with the covariance

matrix (
Ev2

t−1ε
2
t Evt−1vt−2ε

2
t

Evt−1vt−2ε
2
t Ev2

t−2ε
2
t

)
=
(
γ0 γ1

γ1 γ0

)
= −S.

If we can show that

νT (σ̃t)− νT (σt)
p→ 0 and

√
Tm∗T (σ̃t;φ)

p→ 0, (B.5)

our task is over and we can say that
√
T (φ̂− φ) ∼ N(0, P ) with

V = M−1S(M−1)
′

= S−1S(S−1)
′

= S−1 =
1

γ2
0 − γ2

1

(
γ0 −γ1

−γ1 γ0

)
.
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A simple computation using (1.4)-(1.5) leads to (3.9). We show (B.5)
through the following two steps:

(1) First, note that for any ε > 0,
√
Tm∗T (σ̃t;φ) =

√
Tm∗T (σ̃t;φ)1(ρ(σ̃t,σbiast ) > ε)

+
√
Tm∗T (σ̃t;φ)1(ρ(σ̃t,σbiast ) ≤ ε).

The first term on the right is op(1) due to consistency of σ̃t as an estimator
of σbiast ; Similarly, the second term therein is op(1) due to the fact that
Emt(σbiast ;φ) = 0 and Emt(ϑ,ϕ) is uniformly continuous in ϑ. We then
conclude that

√
Tm∗T (σ̃t;φ)

p→ 0

(2) We can show that νT (σ̃t)− νT (σt)
p→ 0 using the argument of Andrews

(1994), pp. 48-49, that requires, first, establishing stochastic equicontinuity
of νT (σt) and then deducing the required convergence in probability. To do
this, notice first that

T−1/2
T∑
t=2

v2
t−1 = Op(1), T−1/2

T∑
t=2

vt−kvt−1−k = Op(1), (B.6)

for k = 0, 1. The empirical process νT (σt) has its values in R2; examining
its first coordinate ν1

T (σt), one easily obtains ν1
T (σt) = S

′
tτ where St =

(ytyt−1, φ1y
2
t−1, φ2yt−1yt−2)

′
while τ = (σ−1

t σ−1
t−1,−σ

−2
t−1,−σ

−1
t−1σ

−1
t−2). Then,

for any η > 0, δ > 0, we have

lim
T→∞

P

(
sup

ρ(σ̃t,σbias
t )<δ

|ν1
T (σ̂t)− ν1

T (σt)| ≥ η

)

= lim
T→∞

P

(
sup

ρ(σ̃t,σbias
t )<δ

|T−1/2
T∑
t=2

(St − E St)(τ̂ − τ)| > η

)

= P

(
sup

ρ(σ̃t,σbias
t )<δ

||T−1/2
T∑
t=2

(St − E St)|| >
η

δ

)
T→∞→ 0

since T−1/2
∑T

t=2(St − E St) = Op(1) due to (B.6). Using exactly the same
argument, one easily obtains stochastic equicontinuity of the second coordi-
nate ν2

T (σt); therefore, needed convergence in probability for νT (σ̃t)−νT (σt)
follows from the convergence in both coordinates separately and the Slut-
sky’s theorem.
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