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Abstract

We present a novel approach to probabilistically model high-dimensional count data in

an unsupervised way using a three-level hierarchical Bayesian model. Its application is ex-

plored in the context of next-generation sequencing data for the purpose of identifying subsets

of genes with consistent expression patterns, and that explain a large portion of variability.

Each sample is modeled as a finite mixture of Poisson random variables over an underlying

set of latent variables that are assumed to correspond to biological functions. Each biological

function is further modeled as an infinite mixture over an underlying set of biological function

probabilities. We call this model Latent Process Decomposition (LPD). It combines ideas from ma-

chine learning and resampling-based methods, and uses a computationally efficient variational

method for parameter estimation. The performance of LPD is investigated in both simulated

and real data settings to demonstrate that it is a useful modular and extensible tool for iden-

tifying interesting genes for further exploration. LPD is implemented as an R/Bioconductor

package called themes.

1 Introduction

Next-generation sequencing (next-gen) technologies have emerged as a promising approach for

exploring both cell organization and functionality, and have been used in a variety of fields, in-
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cluding genomics, transcriptomics, and epigenomics (Hayden, 2009; Metzker, 2009; Ng et al., 2009;

Roach et al., 2010). Unlike data from earlier technologies (e.g., microarrays), data from next-gen

technologies are highly replicable with little technical variation (Marioni et al., 2008), are in the

form of discrete gene counts that represent the expression of each gene in the genome, and are

similar to other high-dimensional data. Typically, there is a limited availability of samples (i.e.,

individuals) when compared to the number of predictors (i.e., genes), thus limiting the amount of

sample-specific information relative to the feature-specific information. This is also known as the

“large p small n” problem.

Research in high-dimensional genomic data gained momentum with the advent of microar-

rays. It has lead to significant advancements in the theory of multiple hypotheses testing (Efron

et al., 2001; Efron, 2004, 2007, 2008), variable selection (Ishwaran and Rao, 2003; Efron et al., 2004;

Yeung et al., 2005; Zou and Hastie, 2005; Friedman et al., 2010), and the use of false discovery

rates (FDR) for multiple testing problems (Benjamini and Hochberg, 1995; Benjamini and Yeku-

tieli, 2001; Genovese and Wasserman, 2002; Storey, 2003; Sun and Cai, 2007; Efron, 2008). In order

to model high-dimensional genomic data Efron (2010) recommends approaches including empir-

ical Bayesian methods that take advantage of information-borrowing across genes to compensate

for limited availability of samples. Bayesian approaches (Baldi and Long, 2001; Broet et al., 2002;

Ibrahim et al., 2002; Medvedovic et al., 2004; Newton et al., 2004) and penalized-likelihood based

approaches (Tibshirani et al., 2005; Ma and Huang, 2007; Ma et al., 2007; Witten et al., 2009) have

also been recommended to take advantage of information-borrowing amongst genes.

When contrasted with the issues found in microarray analysis, the issues for analyzing next-

gen data are magnified simply because of the increased complexity of the data. Beyond the one

central theme found in all differential gene expression approaches that calculate gene-wise test-

statistics, shrinks them towards a common value, and adjusts the p-values for the modified test-

statistics using FDR, next-gen data pose two main non-trivial problems. First, due to the non-

normality of the data there are no equivalents of a t-test or an F-test (Casella and Berger, 2001).

The approximate distribution of the test-statistic is determined by the asymptotic likelihood ap-

proximations, or by using exact tests (Agresti, 2002; Robinson and Smyth, 2007, 2008; Anders and

Huber, 2010; Auer and Doerge, 2011). Second, as over-dispersion, small-counts, and zero-inflation

are very common in next-gen data, the assumption of Poisson distribution on gene counts may
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not be justified (Vêncio et al., 2004; Thygesen and Zwinderman, 2006; Hardcastle and Kelly, 2010).

And, even more frustrating is the fact that approaches that are very helpful tools for exploring

structure in microarray data such as, the gene-shaving algorithm (Hastie et al., 2000), linear dis-

criminant analysis (Dudoit et al., 2002; Guo et al., 2007), and nearest shrunken centroids algorithm

(Tibshirani et al., 2003) have no equivalents for next-gen data. Pachter (2011) and Oshlack et al.

(2010) provide excellent reviews of the current statistical methods.

2 Latent Process Decomposition

We present a probabilistic model – Latent Process Decomposition (LPD) – for unsupervised mod-

eling of high-dimensional count data. Its application is explored for next-generation sequencing

(herein next-gen) data, but is generalizable to many other applications. LPD is a generative three-

level hierarchical Bayesian model that achieves a reduction of next-gen data into subsets of genes

in two stages by combining ideas from machine learning and resampling-based methods. In the

first stage, LPD adapts the Latent Dirichlet Allocation (LDA) algorithm (Blei et al., 2003) for count

data and estimates the probability of individual genes belonging to each of the pre-specified latent

classes (say K), assumed to correspond to biological functions. In the second stage, LPD adapts

the Gap algorithm (Hastie et al., 2000) to obtain K subsets of genes corresponding to each of the

functional classes (Figure 1). Although LDA has been adapted for microarray data (Rogers et al.,

2005), approaches that combine methods from machine learning and classical statistics remain

unexplored in next-gen applications. The benefit here is that LPD can be applied to count data of

any sample size and is more flexible than classical clustering models. The model can be readily

extended or embedded in models with the intent of analyzing more complex count data. Since

the exact posterior distribution of the unknown parameters in LPD is intractable, we rely on em-

pirical Bayesian methods to estimate the parameters of the model using computationally efficient

variational algorithm (Bishop, 2006, chapter 10). Furthermore, LPD is easy to parallelize making it

scalable for increasing sample size (Wang et al., 2009; Smola and Narayanamurthy, 2010). We will

use the terminology of next-gen data throughout the paper to illustrate the biological motivation

behind the model. This is especially useful when we introduce latent variables.
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Figure 1: The Latent Process Decomposition algorithm (LPD) reduces the dimensionality of high-

dimensional count data in two stages. This example illustrates four samples (S = 4) and seven

genes (G = 7). In the first stage LPD estimates the probability of individual genes belonging to

each of the apriori chosen number of subsets (three) that are assumed to correspond to biological

functions. The gene and function-specific means matrix, Λ, is estimated and contains the means of

gene counts if they belong to the respective functional classes (discussed in Section 2.2.1). The row

entries of Λ are proportional to the probability of individual genes belonging to the respective bio-

logical functions. The red cells have the largest means in the respective rows. In the second stage,

LPD uses model-based and bootstrap-based methods to extract gene-subsets from Λ that have

similar expression patterns and that explain a large amount of variability (discussed in Section

2.3).

2.1 Notation And Terminology

We assume that the total number of samples is S, and that there are G genes in each sample (Figure

1). Due to the unsupervised nature of the analysis, we ignore the treatment information associated

with the samples. The observed data are the matrix of gene counts, N. Following the widely used

convention for genomic data, we assume that the columns of N represent the samples and rows of

N correspond to the genes (Figure 1). We denote the gene counts for sth sample by Ns (i.e., the sth

column of N). The gene count for gene g in sample s is represented by ngs. We assume apriori that

there are K biological functions associated with the samples, and that the genes in each sample

belong to one of the K biological functions. The association of a gene to a biological function

can vary depending on the sample. Each sample has its own specific probability that its genes

belong to the K biological functions. The biological functions, hereon referred to as functions, are

modeled as latent variables in LPD.
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1. Choose sample-specific functional probabilities θ from Dirichlet(α); θ = (θ1, . . . , θK) and

α = (α1, . . . , αK).

For each gene, g, of the G genes:

2. Choose a biological function k ∈ {1, . . . , K} from Multinomial(θ).

3. Given k, select the Poisson distribution with gene and function-specific mean, λgk, and

generate gene count, ngs, from Poisson(λgk).

Figure 2: The first stage of the Latent Process Decomposition (LPD) algorithm is a parametric

hierarchical Bayesian model (Gelman et al., 2003) with three levels of hierarchy for generating the

gene counts.

2.2 First Stage: The Generative Model

As a modified form of LDA, the first stage of LPD assumes gene counts in each sample, s, to

be generated from an algorithm based on a parametric hierarchical Bayesian model with three

levels of hieararchy (Figure 2). The functional probabilities, θ, are specific to sample s. They are

generated from the underlying set of infinite functional probabilities of Dirichlet(α). The algorithm

assumes that we repeatedly sample functional memberships for genes in a sample, and generate

the gene counts from Poisson distribution with mean chosen from the gene and function-specific

matrix, Λ (Figure 1). The rows of Λ represent genes, the columns correspond to functions, and its

dimensions are G× K. The mean of gene g when it belongs to function k is represented by λgk, the

(g, k)th element of Λ.

The three-level hierarchical model (Figure 2) is a special case of a parametric hierarchical

Bayesian model (Gelman et al., 2003). The first level consists of the K-dimensional Dirichlet dis-

tribution for sampling functional probabilities. The second level consists of the K-dimensional

multinomial distribution that generates sample-specific functional associations of genes. The third

level generates sample gene counts from a Poisson distribution with means depending on the

genes’ functional association. Due to the Hewitt-Savage theorem (Hewitt and Savage, 1955; Al-

dous, 1985), the hierarchical structure implies that the gene counts and functions are infinitely
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exchangeable within a sample. The first stage of LPD can be illustrated by using graphical models

(Bishop, 2006, chapter 8); such representations are common in machine learning literature. The

graphical model for first stage of LPD is same as the LDA model (see Figure 1, Section 3, Blei et al.

(2003)).

We make several simplifying assumptions in the first stage of LPD. First, we assume that the

dimensionality of the Dirichlet distribution, K, is fixed and known. We propose a method for

validating K using N-fold cross-validation in Section A.5, and favor the choice of K that leads to

gene-subsets with sparse number of genes. Second, the gene and function-specific mean param-

eters, Λ, are assumed to be fixed. In Section 2.2.1, we treat Λ as random, and use a gamma prior

to shrink the parameter estimates. Finally, we assume that the total number of gene counts in a

sample (i.e., the population from which data samples are taken), or library-size, is fixed because

library-size is not associated with other data-generating parameters (θ and Λ). Certainly, we could

impose a layer of prior distributions for modeling the randomness, but we choose to ignore this

for ease of parameter estimation and to facilitate interpretation.

2.2.1 Estimation of Parameters in the First Stage

Parameter estimation in the first stage of LPD algorithm (Figure 2) is motivated from the LDA al-

gorithm (Blei et al., 2003) and the Latent Process Decomposition algorithm for microarrays (Rogers

et al., 2005). The model parameters are the gene and function-specific matrix of mean parameters,

Λ, for generating gene counts from Poisson distribution, and the K dimensional parameter α of

the Dirichlet distribution for generating sample-specific functional probabilities. From hereon we

refer Λ and α as model parameters.

We assume the model parameters α and Λ are random, and that

p(α, Λ|N) ∝ p(N|α, Λ)p(α, Λ), (1)

where p(N|α, Λ) is the likelihood of next-gen data given the model parameters α and Λ. p(Λ, α)

is the prior distribution for α and Λ. Our aim is to obtain parameter estimates, α̂ and Λ̂, that
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maximize the posterior distribution of the parameters given next-gen data, N

α̂, Λ̂ = arg max
α,Λ

p(α, Λ|N),

= arg max
α,Λ

log p(α, Λ|N), (2)

= arg max
α,Λ

[log p(N|α, Λ) + log p(α, Λ)]. (3)

In (3), log p(N|α, Λ) is found by using the fact that the first stage of LPD is a hierarchical Bayesian

model. Specifically, if gene g in sample s belongs to function k, the gene count, ngs, follows a

conditional Poisson distribution with mean λgk. Recall, gene counts are generated from a finite

Poisson mixture with function associations sampled from Multinomial(θ). Therefore, marginaliz-

ing over θ from the mixture distribution, p(θ, N|α, Λ), and taking the log gives the log-likelihood

of N given the model parameters

log p(Ns|α, Λ) = log
∫

θ

{ G

∏
g=1

K

∑
k=1

θkP(ngs|k, λgk)p(θ|α)
}

dθ, (4)

log p(N|α, Λ) =
S

∑
s=1

log p(Ns|α, Λ). (5)

In (3), log p(α, Λ) depends on the choice of priors. We impose a gamma prior on the elements of

Λ, λgk. We should impose separate priors on each column, Λk, but this leads to complicated and

intractable posterior calculations. Therefore, we impose the same gamma prior on all the elements

of matrix Λ

p(λgk) ∝ λ
η−1
gk e−βλgk for g = 1, . . . , G and k = 1, . . . , K, (6)

log p(α, Λ) ∝
G

∑
g=1

K

∑
k=1

log p(λgk). (7)

A maximum likelihood approach would impose an uniform prior on λgk in (6). The use of gamma

priors shrink the maximum likelihood estimates of λgk towards a common value, and acts as a

penalty for model complexity, prevents over-fitting, and makes the estimates robust. We impose a

uniform prior on α since this level of hierarchy is for any next-gen experiment, and these parame-

ters have little effect in the extraction of gene-subsets.

The model parameters are estimated from the observed data using a parametric empirical

Bayesian approach (Morris, 1983). Since the log-posterior in (3) cannot be represented in an ex-
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plicit form due to the coupling between the functional probabilities, θ, and gene and function-

specific means, Λ, it is impossible to find the theoretical estimates of the model parameters. In-

stead, we use approximate techniques for estimation of parameters. There are a host of approx-

imate techniques that can be used. Specifically, Laplace approximations (Tierney et al., 1989),

Markov chain Monte Carlo methods (Robert and Casella, 2004), and variational method (Bishop,

2006, chapter 10). We employ convexity-based and computationally efficient variational method

since it provides interpretable parameter updates that are similar to EM algorithm updates (Demp-

ster et al., 1977). These methods use Jensen’s inequality to obtain an adjustable lower bound for

the log-posterior and guarantee convergence to a local optimum. The variational method intro-

duces a special set of parameters – variational parameters – Φ and Γ, to decouple θ and Λ and

to obtain a tractable family of lower bounds for the log-posterior in (3). The parameter Φ is a

G× S×K array with entries, φgsk, that denote the probability that gene g in the sth sample belongs

to the kth function. The (s, k)th entry, γsk, of the S× K matrix, Γ, is proportional to the probability

of sth sample belonging to the kth functional class.

The iterative updates to the estimates of variational parameters φgsk and γsk, are (Appendix,

Section A.2.1, (37) – (41) and Section A.3.4, (49) – (54))

φgsk =
P(ngs|k, λgk) exp[Ψ(γsk)]

K

∑
k′=1

P(ngs|k
′
, λgk′ ) exp[Ψ(γsk′ )]

, (8)

γsk = αk +
G

∑
g=1

φgsk, (9)

where P(ngs|k, λgk) denotes the Poisson density with mean, λgk, evaluated at ngs, where αk is

assumed to be known, and where Ψ(z) is the digamma function (Abramowitz and Stegun, 1970).

The iterative update for model parameter λgk is obtained as (Appendix, Section A.3.2, (46) – (48))

λ̂gk =

S

∑
s=1

φgskngs + η − 1

S

∑
s=1

φgsk + β

. (10)

The parameters η and β in (10) are obtained as the maximum likelihood estimates of shape and

rate parameters of a gamma distribution from which N are sampled (Choi and Wette, 1969). Later,

we use Λ̂ to extract K gene-subsets. The iterative updates for estimating model parameters, α, are
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derived by using Newton-Raphson method (Appendix, Section A.3.3)

αnew = αold −H(αold)
−1g(αold), (11)

where H and g are the Hessian and gradient for the update. We calculate the update using oper-

ations of O(n) time complexity by taking advantage of the diagonal structure of the Hessian, and

by avoiding the inversion of H, which takes O(n3) time (Appendix, Section A.3.3). Convergence

and stability of this algorithm are discussed in Appendix, Section A.4.

A maximum-likelihood approach that uses a uniform prior on log p(α, Λ) in (3), ensures that

all the parameter updates remain the same, except for λgk (Appendix, Section A.3.1, (28) – (43))

λ̂gk =

S

∑
s=1

φgskngs

S

∑
s=1

φgsk

. (12)

2.2.2 Interpreting the First Stage of LPD Estimated Parameters

The main motivation for relying on variational method for parameter estimation (Section 2.2.1) is

that it facilitates interpretation of the parameter estimates. In the first stage of LPD, we estimate

two sets of parameters – variational parameters and model parameters. Here we describe the

interpretation of the two sets of parameters.

The probability that gene g in sample s belongs to the function k is denoted by φgsk (8). The

probabilities, {φgsk}K
k=1, are a distribution over functions for gene g in sample s. Therefore, the

sum of φgsk across all the K functions is 1, and the sum across all the genes is the expected number

of genes in sample s from function k (∑G
g=1 φgsk). The variational parameter, γsk, is proportional to

the probability that sth sample belongs to the kth function class. Using (9), γsk − αk is a measure

of the expected number of genes belonging to function k for the sth sample (same as ∑G
g=1 φgsk).

This can be used as an unsupervised way of associating samples to functions, and for checking

the convergence of iterative updates in parameter estimation (Section 2.2.1).

With respect to any next-generation sequencing experiment, the probability that a gene be-

longs to function k is proportional to αk. The parameter, λgk, is the expected value of count of gene

g when it belongs to the function k. It is the weighted average of ngs across all samples with φgsk

as weights (12). For a gene g, λgk is proportional to the probability that the gene belongs to the
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function k, hence the probability that gene g belongs to the function k is λgk

∑K
k=1 λgk

.

2.2.3 Relation With Clustering Procedures

Classical clustering models are hierarchical models with two levels of hierarchy (Blei et al., 2003).

For example, in the Dirichlet-Poisson clustering model, the weights of the mixture (or probabilities

of components) are generated only once from a Dirichlet distribution. Based on these weights

a function (latent class) is chosen that is same for all the genes in the sample. Similar to the

first stage of LPD, this function defines the gene-specific mean from which gene counts in the

sample are generated. However, this approach results in each sample being associated with only

one function, and this may be too restrictive for high-dimensional count data, including next-gen

data. Our proposed alternative allows the first stage of LPD to associate genes in a sample to

different functional associations by repeatedly sampling functions from Multinomial(θ) for each

gene in the sample (second level of hierarchy; Figure 2). It is the additional level of hierarchy in

the first stage of LPD that makes it more flexible to adapt to the high-dimensional next-gen data.

2.3 Second Stage: Extraction of Subsets

In the second stage, LPD uses the columns of Λ̂ (10) to extract K gene-subsets. The second stage

ensures that the expression patterns within each subset are consistent. Here, we describe an algo-

rithm for extracting gene-subsets based on the Gap algorithm (Hastie et al., 2000). This method is

computationally intensive, but has the advantage of being robust and independent of any restric-

tive distributional assumptions. In order to achieve this reduction, the elements of Λ̂ are divided

by their row-means, and transformed to a matrix of probabilities, P
′
(Section 2.2.2). Each element,

P
′
gk, of the matrix P

′
is further transformed to its logit, log

P
′
gk

1−P′gk
, followed by centering and scaling

of the columns by column means and standard deviation of columns, respectively, to yield P. All

our subsequent discussions are based on P
′

and P.

Gene g is selected in the subset, Sk, if P
′
gk is greater than a cutoff ck; genes satisfying this con-

dition are assumed to have similar expression patterns. The cutoffs, c = (c1, . . . , cK), are selected

based on the columns of P
′

since its entries are bounded between 0 and 1. Once the genes are

selected, their corresponding values from P are used.

Much like any analysis of variance (ANOVA), the within and between component variances
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can be partioned. Specifically,

VW =
1
K

K

∑
k=1

[
1
|Sck |

∑
g∈Sck

(Pgk − P̄.k)
2
]

, (13)

VB =
1
K

K

∑
k=1

(P̄.k − P̄..)
2, (14)

VT = VW + VB, (15)

R2 =
VB

VT
=

VB
VW

1 + VB
VW

. (16)

The measure VW (13) is equivalent to the within group variance measure in ANOVA for K fixed ef-

fects. It measures the variability of each gene in a gene-subset about the subset-average, averaged

over all the subsets. Similarly, VB (14) is equivalent to the between group variance, and VT (15) is the

total variance in ANOVA. We define R2, the fraction of variance explained by the K gene-subsets

corresponding to c (16). A high value of R2 implies that the K subsets explain a large fraction of

variability in Λ̂, with similar expression patterns within each subset. R2 uses P, rather than P
′
,

since the elements of P are closer to a normal distribution, similar to the ANOVA assumptions.

For a cutoff c, let Dc be the R2 measure for the corresponding gene-subsets. A modified form

of Gap algorithm in the Gene-Shaving algorithm (Hastie et al., 2000) estimates the difference be-

tween Dc and R2 obtained as a result of random association between the genes (rows) and func-

tional classes (columns), D̄∗c . Let P∗b be the bootstrapped P matrix obtained by sampling with

replacement from the elements of each of the K columns of P, respectively. B such matrices, in-

dexed by b = 1, . . . , B, are formed. Let D∗bc be the R2 measure for the gene-subsets obtained from

P∗b. The average of D∗bc over b is D̄∗c , and the Gap function for cutoff c is defined by

Gap(c) = Dc − D̄∗c . (17)

We obtain Gap(c) for all the cutoffs, c, in the K dimensional bounded set [0, 1]K (as 0 ≤ ck ≤ 1, k ∈

{1, . . . , K}). The optimal cutoff value, ĉ, produces the largest Gap

ĉ = arg max
c

Gap(c). (18)

This method estimates the value of ĉ that minimizes the chances of R2 for the K gene-subsets as

a consequence of random association between genes (rows) and functional classes (columns). In

general, Gap(c) is non-smooth, so instead of using numerical optimization techniques for finding
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ĉ, we take advantage of the entries of P
′
that lie in the bounded interval [0, 1]. We choose C values

of cutoffs in the interval (0, 1) for each of the K columns, and calculate CK values of Gap(c) for the

CK possible values of c. From these cutoffs, ĉ is the value that maximizes Gap(c). This is a grid

search distributed across all possible CK cutoffs in a K dimensional grid. For a large value of C,

this is a good practical approximation to (18). This also illustrates the advantage of using P
′

for

selecting cutoffs because a grid search within a bounded interval [0, 1] is more appropriate, and

faster, than a grid search in (−∞,+∞).

3 Examples of LPD

3.1 Application of LPD to Simulated Data

We rely on simulated high-dimensional count data with 4 functional classes, for 1000 genes, and

8 samples using the generative model in Figure 2. The specific parameter settings were chosen

based on the Bioconductor (Gentleman et al., 2004) package edgeR (Robinson et al., 2010, Section

12) such that the gene and function-specific mean parameters were similar for all the genes, with

the exception that the first 100 genes had means 10 times greater, across all samples, to make the

data realistic. We chose K, the total number of functions in the data, to be 4 based on the uniformity

of the size and sparsity of gene-subsets across functional classes.

The ratio,
∑S

s=1 ∑G
g=1 φgsk

∑K
k=1 ∑S

s=1 ∑G
g=1 φgsk

, estimates the expected proportion of genes that belong to the func-

tional class k (Section 2.2.2). The true proportions are found by averaging the true gene and

function-specific mean proportions across all samples. Because of the assumption of exchange-

ability of functions, the estimated functional classes (i.e., columns) of Λ̂, P, and P
′

represent a

permutation of the true functional class associations. Based on this, the true and estimated gene-

proportions in the four functional classes are ordered in Figure 3 to make the pattern clearer. The

estimated function proportions are shrunk towards a common value, but retain the pattern of the

true gene proportions across functional classes. Figure 4 illustrates the density plot of elements of

P
′
transformed to their logits (i.e., log

P
′
gk

1−P′gk
), conditioned on the functional classes (columns of P

′
),

for the true and estimated case. Although variational approximation is used for parameter esti-

mation (Λ̂), the density estimates for the columns of P
′

agree very closely with the truth, showing

that variational method is reasonably accurate despite being an approximate method. The second
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Figure 3: True and estimated proportion of genes in four functional classes. The estimated (aqua)

and true (peach) proportion of genes in the respective functional classes are represented on the y-

axis. The true functional classes are unidentifiable from the estimated functional classes, therefore

the x-axis represents the indices of the sorted true and estimated gene-proportions for the four

functional classes. This identifies the patterns for the true and estimated case. The overall pattern

for the true and estimated cases look similar, except the estimated values are shrunk towards a

common value due to the hierarchical modeling. The maximum value is shrunk the most, and

it underestimates the true functional proportion by a small quantity. The remaining estimates

slightly overestimate the true proportions.

stage of LPD uses Λ̂ to extract gene-subsets with C = 9 and B = 500 (Section 2.3). The four subsets

contain 2, 4, 3, and 31 genes, respectively. The first three subsets contain genes that belonged to

the first and second functional classes with high probability, and the fourth subset contains genes

with high probability of belonging to the second and third functional classes.

This simulation and its results also serve to illustrate the limitations of LPD. Due to the ex-

changeability assumptions of LPD (Section 2.2), it is unable to associate genes with their true

functional classes. Instead, LPD groups genes that belong to the same functional class with high

probability. In cases where genes are associated with multiple functions with similar probabilities,

LPD will not extract these genes because of similar probabilities of association to all the functional

classes.
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Density Plot of Logit of Expected Proportions of Genes
Conditioned on Four Functional Classes
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Figure 4: Density plot of the logit of elements of P
′

matrix (log
P
′
gk

1−P′gk
) for the true and estimated

case conditioned on the four functional classes. The plots are colored according to the columns

of P
′
, that are assumed to correspond to biological functions. The x-axis represents the logits of

the entries of P
′

(Section 2.3) and the y-axis represents the density estimates of the columns of P
′
,

respectively. The estimated and true cases are in the two panels, showing that the approximate

and true density estimates are very similar for the four functional classes.

3.2 Application of LPD to Yeast RNA-Sequencing Data

We apply LPD to RNA-sequencing data from Saccharomyces cerevisiae (yeast) (Nagalakshmi et al.,

2008). The experiment consists of six samples, two library protocols (treatments), dT and RH, and

three samples, respectively. Corresponding to the original analysis (labeled dT_ori and RH_ori)

in each of the two treatments, there is a technical replicate (same culture, labeled dT_tech and

RH_tech) and a biological replicate (different culture, labeled dT_bio and RH_bio). We will extract

gene-subsets using LPD and then compare our results with the results from a differential gene

expression analysis that used DESeq package (Anders and Huber, 2010). We will also compare
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our results to the results obtained from classification of samples to clusters using hierarchical

clustering of log2-transformed data.

3.2.1 Application of LPD to Extract Gene-Subsets

LPD was fit to the data based on different values of K which in turn provided gene-subsets. We

chose K based on the uniformity of the size of gene-subsets across functional classes, and rejected

values of K for which any of the two gene-subset sizes varied by a factor of 10, or the size of

any subset exceeded 1000 genes. For values of K ≤ 3, at least one of the gene-subsets included

approximately 1000 genes. For values of K ≥ 5, the majority of gene-subset sizes were of the

order of 1000. The differential between these values is related to under-parametrization and over-

parametrization of LPD when K ≤ 3 and K ≥ 5, respectively. We chose K to be 4 since it led to

gene-subsets with balanced number of genes across subsets. Interestingly, the method for vali-

dating K in Section A.5 failed to determine any unique value. Figure 5 illustrates the patterns of

expected proportion of genes in the four functional classes. Samples dT_ori, RH_ori, and RH_bio

show similar patterns across the four functional classes with the greatest proportion of genes be-

longing to functional class 3. The remaining three samples, dT_bio, dT_tech, and RH_tech, have

the largest expected proportion of genes from functional classes 1, 4, and 2, respectively. The four

subsets extracted using LPD contain 30, 14, 90, and 477 genes, respectively, out of the total 7,124

genes.

3.2.2 Comparison with DESeq Results

For comparison purposes we employed DESeq (Anders and Huber, 2010) to extract 196 differen-

tially expressed genes (FDR was controlled at 5%), and then compared the results to the gene-

subsets obtained using LPD. The number of genes, of the 196, in the four gene-subsets that are

also differentially expressed are 1, 0, 2, and 23, respectively. Since the gene-subsets extracted us-

ing LPD, and the differentially expressed genes are interesting genes for further exploration, we

recommend that the genes selected from both these analyzes are better candidates for further ex-

ploration (see Section 4.2, Supplements).
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Estimates of Proportion of Genes in Functional Classes in Samples
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Figure 5: Expected proportions of genes in the four functional classes in the yeast data (Nagalak-

shmi et al., 2008), conditioned on samples. The functional classes vary along the x-axis, the pro-

portions of genes belonging to the respective functional classes are on the y-axis denoted by a dot,

and samples vary along the panels. The dots are connected by lines for visual clarity of patterns.

The samples dT_ori, RH_ori, and RH_bio have similar patterns of expected gene proportion across

the functional classes. Other samples have their maximum expected proportion of genes in the

remaining functional classes.

3.2.3 Comparison with Hierarchical Clustering

Hierarchical clustering is a popular method of exploring the structure in genomic data, and has

been used on log2-transformed next-gen data (Severin et al., 2010) for assigning samples to clus-

ters. Although hierarchical clustering is unrelated to LPD, we used hierarchical clustering in R (R

Development Core Team, 2011) to assign samples to four clusters to make the results of hierarchi-

cal clustering and LPD comparable. Table 1 shows the assignment of samples to four clusters using

hierarchical clustering. The pattern of expected gene proportion in the four functional classes in

Figure 5 is similar to the cluster assignments in Table 1. For example, dT_ori and RH_ori have the

same profiles for expected gene proportions across functional classes in Figure 5, and are assigned
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Sample dT_bio dT_ori dT_tech RH_bio RH_ori RH_tech

Cluster 1 2 3 4 2 3

Table 1: Results of performing hierarchical clustering on log2-transformed yeast data (Nagalak-

shmi et al., 2008). Samples are assigned to four clusters. The cluster assignments of samples have

similar patterns as observed in Figure 5 using LPD. Specifically, samples dT_ori and RH_ori show

similar patterns of estimated proportion of genes across the four functional classes, and both are

assigned to cluster 2 using hierarchical clustering.

to the same cluster 2 by hierarchical clustering. In addition to the providing results similar to

hierarchical clustering, LPD also provides estimates of variational parameters that provide valu-

able insights about the data (Section 2.2.2). Specifically, given the additional information, LPD

provides more informative results compared to the hierarchical clustering of the same data.

4 Discussion

Count data have been analyzed using a variety of approaches and are often thought of as a spe-

cial case of generalized linear models (glm) (Agresti, 2002). However, applying glm to high-

dimensional count data such as next-gen data gives rise to non-trivial issues that are the result

of a small number of samples when compared to the number of predictors (that is, genes). Latent

Process Decomposition (LPD), provides a probabilistic approach for exploring the structure of

high-dimensional count data, and is well suited to address next-gen data. LPD is a three-level hi-

erarchical Bayesian model that assumes infinite exchangeability of biological functions and genes.

LPD obtains gene-subsets that explain a large portion of variability in next-gen data, with sim-

ilar expression patterns between the members of a subset. Similar ideas about finding groups of

differentially expressed gene-sets have been explored starting with gene-set enrichment analysis

(Subramanian et al., 2005), and then generalized to gene-set analysis (GSA) (Efron and Tibshirani,

2007). We plan to investigate the relationship between enriched gene-subsets obtained from GSA

and gene-subsets obtained from LPD. Furthermore, we plan to investigate the choice of K, the

total number of biological functions, which is currently assumed to be fixed and known apriori.

While we have proposed a method for validating K using N-fold cross-validation (Section A.5),
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we realize that it is better to choose K adaptively by methods used in Bayesian nonparametrics,

specifically the Chinese Restaurant Process (Aldous, 1985; Ghosh and Ramamoorthi, 2003; Hjort

et al., 2010).

The real power of LPD lies in its extensibility, flexibility, and modularity. LPD can be easily

embedded in a hierarchy as a basic structure to produce complicated models for count data and

next-gen data, in particular. This is particularly valuable when LPD-specific assumptions, like

exchangeability of functions and genes, are not justified. For example, LPD can be embedded

in appropriate hierarchical models to account for any biological annotation of the data such as

treatment information or dependence between the functional classes, that was ignored in this

work. As a further extension, time-course experiments can be easily modeled using multiple

LPDs, with each LPD modeling next-gen data at a particular instant of time during the course of

the experiment. This naturally captures the exchangeability of functions and genes at a particular

time-point, but not across multiple time-points.

5 Conclusion

We have presented the Latent Process Decomposition (LPD) algorithm for the purpose of com-

bining ideas from machine learning (Latent Dirichlet Allocation) and classical statistics (Gap algo-

rithm) to explore the latent structure in high-dimensional count data, specifically next-generation

sequencing data. LPD achieves a balance between theoretical and computational ideas. Due to

the biological motivation behind the model LPD is able to provide interpretable model and vari-

ational parameters that other clustering algorithms cannot, and is able to extract subsets of genes

that explain a large portion of variability, with similar expression patterns among the members of

a subset. We anticipate that the advantage of the reduction in data dimensionality will only im-

prove as the sample size increases with decreasing sequencing cost, and as projects such as, 1000

Genomes Project (Stein, 2010) take hold.

We have implemented the LPD algorithm in the form of C++ optimized R/Bioconductor pack-

age called themes, that can be used in modeling next-generation sequencing data and extending

the LPD model for other complex biological data.
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A Appendix

We provide the derivation for the variational inference algorithm that estimates the variational

and model parameters in the first stage of Latent Process Decomposition (LPD) algorithm using

iterative updates. The derivation adapts the Appendix of Blei et al. (2003) and Rogers et al. (2005)

for Poisson (count) data.

A.1 Log-likelihood

The exchangeability of samples implies that the likelihood and log-likelihood for next-gen data

are

p(N|α, Λ) =
S

∏
s=1

p(Ns|α, Λ), (19)

log p(N|α, Λ) =
S

∑
s=1

log p(Ns|α, Λ). (20)

For sample s, the likelihood marginalizes over the latent parameters, θ, makes LPD more flexible,

and characterizes latent structure in the data.

p(Ns|α, Λ) =
∫

θ
p(Ns|θ, Λ)p(θ|α)dθ. (21)

Expanding p(Ns|θ, Λ)

p(Ns|θ, Λ) =
G

∏
g=1

p(ngs|θ, Λ), (22)

p(Ns|θ, Λ) =
G

∏
g=1

K

∑
k=1

θkP(ngs|k, λgk), (23)

log p(Ns|θ, Λ) =
G

∑
g=1

log
K

∑
k=1

θkP(ngs|k, λgk). (24)
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Under the assumption that gene g in sample s belongs to the function k, we denote the Poisson

density with mean λgk evaluated at ngs asP(ngs|k, λgk). Substituting (21) in (20), the log-likelihood

of next-gen data reduces to

log p(N|α, Λ) =
S

∑
s=1

log
∫

θ
p(Ns|θ, Λ)p(θ|α)dθ, (25)

=
S

∑
s=1

log
∫

θ

(
p(Ns|θ, Λ)p(θ|α)

p(θ|Γs)

)
p(θ|Γs)dθ, (26)

≥
S

∑
s=1

Eθ|Γs

[
log
(

p(Ns|θ, Λ)p(θ|α)
p(θ|Γs)

)]
, (27)

=
S

∑
s=1

Eθ|Γs [log p(Ns|θ, Λ)] +
S

∑
s=1

Eθ|Γs [log p(θ|α)]−
S

∑
s=1

Eθ|Γs [log p(θ|Γs)]. (28)

We introduce the first set of variational parameters Γ to relate the sample and function levels. All

the variational approximations are based on the fundamental concept of Jensen’s Inequality which

states that for a concave function f (x), f (Ez[z]) ≥ Ez[ f (z)], where Ez[z] =
∫

zp(z)dx or ∑ zp(z),

for continuous and discrete z, respectively. We know that log is a concave function which enables

(28), where the expectation is taken conditional on the variational parameter Γ. We make another

use of Jensen’s Inequality in the first term of (28) and introduce variational parameters Φ, a G× S×

K array with the (g, s, k)th entry, φgsk, denoting p(k|g, s).

Eθ|Γs [log p(Ns|θ, Λ)] =
G

∑
g=1

Eθ|Γs [log
K

∑
k=1

θkP(ngs|k, λgk)], (29)

=
G

∑
g=1

Eθ|Γs

[
log

K

∑
k=1

(
θkP(ngs|k, λgk)

p(k|g, s)

)
p(k|g, s)

]
, (30)

=
G

∑
g=1

Eθ|Γs

[
log Ep(k|g,s)

[
θkP(ngs|k, λgk)

p(k|g, s)

]]
, (31)

=
G

∑
g=1

Eθ|Γs

[
log Eφgsk

[
θkP(ngs|k, λgk)

φgsk

]]
, (32)

≥
G

∑
g=1

Eθ|Γs

[
Eφgsk

[
log
(

θkP(ngs|k, λgk)

φgsk

)]]
, (33)

=
G

∑
g=1

Eθ|Γs

[ K

∑
k=1

[
log
(

θkP(ngs|k, λgk)

φgsk

)]
φgsk

]
, (34)

=
G

∑
g=1

K

∑
k=1

(
φgskEθ|Γs [log θk] + φgsk logP(ngs|k, λgk)− φgsk log φgsk

)
. (35)

Substituting (35) in (28) yields (36), which is the likelihood of the observed data given the varia-

tional and model parameters; this equation is used throughout the remainder of this section. The
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optimal parameter estimates are found by optimizing

log p(N|α, Λ) ≥
G

∑
g=1

S

∑
s=1

K

∑
k=1

φgsk logP(ngs|k, λgk) +
G

∑
g=1

S

∑
s=1

K

∑
k=1

φgskEθ|Γs [log θk]

−
G

∑
g=1

S

∑
s=1

K

∑
k=1

φgsk log φgsk +
S

∑
s=1

Eθ|Γs [log p(θ|α)]−
S

∑
s=1

Eθ|Γs [log p(θ|Γs)]. (36)

A.2 Variational Parameters

A.2.1 Estimation of Φ

The first three terms of (36) contain Φ, therefore the optimal value of φgsk makes the derivative

of (36) zero, under the constraint that ∑k φgsk = 0. Lagrange multipliers, (µ), are used to find the

estimate φ̂gsk

φgsk logP(ngs|k, λgk) + φgskEθ|Γs [log θk]− φgsk log φgsk − µ

(
K

∑
k=1

φgsk − 1

)
. (37)

Taking the partial derivatives with respect to φgsk and µ, and after setting them to zero and rear-

ranging gives

logP(ngs|k, λgk)− (log φgsk + 1) + Eθ|Γs [log θk]− µ = 0, (38)

implying

φ̂gsk =
P(ngs|k, λgk) exp[Eθ|Γs [Ψ(γsk)]]

∑K
k′=1 P(ngs|k′ , λgk′ ) exp[Eθ|Γs [Ψ(γsk′)]]

, (39)

where, using the results of Appendix A.1 of Blei et al. (2003)

Eθ|Γs [log p(θ|Γs)] = Ψ(γsk)−Ψ

(
K

∑
k=1

γsk

)
. (40)

Therefore, the final formula for estimating φgsk is

φ̂gsk =
P(ngs|k, λgk) exp[Ψ(γsk)]

K

∑
k′=1

P(ngs|k
′
, λgk′ ) exp[Ψ(γsk′ )]

. (41)

A.3 Model Parameters

A.3.1 Estimation of Λ

The first term of (36) contains Λ, therefore differentiating this term with respect to λgk
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S

∑
s=1

φgsk
∂

∂λgk
logP(ngs|k, λgk) = 0, (42)

S

∑
s=1

φgsk
∂

∂λgk
[−λgk + ngs log λgk − log nga!] = 0, (43)

S

∑
s=1

φgsk

[
− 1 +

ngs

λ̂gk

]
= 0, (44)

and rearranging gives

λ̂gk =

S

∑
s=1

φgskngs

S

∑
s=1

φgsk

. (45)

A.3.2 Shrinkage of Λ

We impose the following prior on all the elements of Λ

λgk ∼ Gamma(η, β) g = 1, . . . , G and k = 1, . . . , K. (46)

Using (3), in addition to differentiating the first term of (36) (Section A.3.1), we also differentiate

the gamma prior to obtain the optimal estimates

S

∑
s=1

[
φgsk

[
− 1 +

ngs

λ̂gk

]]
+

η − 1
λgk

− β = 0, (47)

λ̂gk =

S

∑
s=1

φgskngs + η − 1

S

∑
s=1

φgsk + β

. (48)

A.3.3 Estimation of α

The updates for α are the same as in the of Appendix, Section A.2 of Blei et al. (2003) and Appendix,

Section A.1 of Rogers et al. (2005).
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A.3.4 Estimation of Γ

There are three terms in (36) associated with Γ, one of them is

Eθ|Γs [log p(θ|Γs)] =
∫

θ
log
[

Γ(∑k γsk)

∏k Γ(γsk)
+

K

∑
k=1

(γsk − 1) log θk

]
p(θ|Γs)dθ, (49)

= log
[

Γ(∑k γsk)

∏k Γ(γsk)

]
+ ∑

k
(γak − 1)Eθ|Γs [log θk], (50)

= log
[

Γ(∑k γsk)

∏k Γ(γsk)

]
+ ∑

k
(γak − 1)[Ψ(γsk)−Ψ(∑

k
γsk)]. (51)

Taking partial derivatives with respect γak and setting those to zero leaves(
αk − γsk + ∑

g
φgsk

)[
Ψ
′
(γsk)−Ψ

′
(∑

k
γsk)

]
− log

[
Γ(∑k γsk)

∏k Γ(γsk)

]
= 0, (52)(

αk − γsk + ∑
g

φgsk

)[
Ψ
′
(γsk)−Ψ

′
(∑

k
γsk)

]
= 0. (53)

gives the following update for γak

γsk = αk +
G

∑
g=1

φgsk. (54)

A.4 Convergence Issues

See Appendix A.3, Rogers et al. (2005).

A.5 Validation of K

Before describing this procedure, we describe a method for estimating the log-likelihood in the

first stage of LPD given the model parameters; this will be used in the validation of K. Assuming

that the model parameters are known, the log-likelihood for next-gen data is calculated using (5).

However, the integral over θ does not have a standard form. Therefore, it is approximated by its

Monte Carlo integral

S

∑
s=1

log p(Ns|α, Λ) ≈
S

∑
s=1

log
B

∑
b=1

{ G

∏
g=1

K

∑
k=1

θkbP(ngs|k, λgk)

}
− S log B. (55)

This (55) that averages across B samples of functional probabilities, {θb}B
b=1, drawn from the esti-

mated distribution of function probabilities, Dirichlet(α̂). The value of K is validated by randomly

partitioning the next-gen data into N subsets of samples, removing one of the partitions, and es-

timating the model and variational parameters, α, Λ, Γ, Φ using the first stage of LPD on the
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remaining N − 1 subsets. The log-likelihood for the excluded part is calculated using (55). This

is repeated for each of the N partitions, and the value of K that maximizes the average of the log-

likelihood across N partitions is chosen. This process is repeated many times and the value of K

chosen maximum number of times is the validated value.
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