
���������	��

�����������������������������! 
"#���$�%�&

����'����(��)��&*+�	�
"#�,���-�.�������� 
*0/

13254 �7698 2;:<2 �=���>����'@? 2BA ��)
C )5��'�)��D�����FEG�	�� H�F�I/

�J�,K.L�����KM��NO
P�-Q+������RTSVUW�IU�X

Y �	QB�������$�	�Z�[���]\0�.������ H���FK, 
C )5��'�)��D�����FEG�	�� H�F�I/

^ K	����*_�	�3`�U5SVU

a



Two New Ratio-of-Uniforms Gamma Random Number Generators

Bowei Xi, Kean Ming Tan, Chuanhai Liu,

Department of Statistics,

Purdue University

Abstract: Two simple algorithms to generate gamma random numbers are proposed in this
article. Both algorithms use the ratio-of-uniforms method and are based on logarithmic
transformations of the gamma random variable. One algorithm applies to all positive shape
parameter value without limitation. It has good performance compared with other existing
algorithms for both shape parameter values greater than 1 and smaller than 1. The other
algorithm is limited to shape parameter smaller or equal to 1, but it has better performance
compared with the first algorithm in that limited shape parameter range. Furthermore, the
proposed methods will gain more efficiency if the logarithmic scale is used for the generated
Gamma random numbers.
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1 Introduction

The Gamma distribution is an important distribution. The standard gamma random numbers are used
to generate random numbers from other distributions, such as chi-square, Student-t, F, and Beta distri-
butions. A fast and simple gamma random number generator is an important component of statistical
softwares. In the past many articles proposed different algorithms to generate gamma random numbers;
see Devroye (1980) and Tanizaki (2008) for a comprehensive survey. However the algorithms proposed
in the past apply to only limited range of shape parameter values, either shape parameter greater than
1 (e.g., [2, 8]) or smaller than 1 (e.g., [1]). Ahrens and Dieter (1974) mentioned that gamma random
numbers with shape parameter greater than 1 can be generated as the sum of two independent gamma
variates: gamma(n + α,1)=gamma(n,1)+gamma(α,1), where n is an integer and α < 1. Marsaglia
and Tsang (2000a) proposed an algorithm to generate gamma variates with shape parameter greater
than 1. They suggested that gamma variates with shape parameter smaller than 1 can be generated as
gamma(α,1)=gamma(α + 1,1)×unif(0, 1)1/α. However a gamma random number generator slows down
significantly due to such additional step, because one more uniform random number needs to be generated.

Cheng and Feast (1980) used the ratio of uniforms method and a power transformation of the gamma
random variable to generate gamma random numbers with increased shape parameter range: shape
parameter greater than 1/n, where n is an integer. Cheng and Feast (1980) provided two algorithms
for n = 2 and n = 4. The ratio of uniforms method proposed by Kinderman and Monahan (1977) is
based on the following result. Let h(t) be a non-negative function with finite integral Mh. If we generate
(u, v) uniformly over region {(u, v) : 0 ≤ u ≤

√
h(v/u)}, then v/u has density h(t)/Mh. Often rejection

sampling is needed to generate (u, v) uniformly over the region. When applying the ratio of uniforms
method to generate gamma random numbers, h(t)/Mh is the density of gamma random variable to the
power of 1/n in Cheng and Feast (1980). The power transformation of gamma random variable is a
critical step. It controls the acceptance rate when sampling from the uniform region. The transformation
also allows the algorithm to be applied to increased shape parameter range [13].

In this article we propose two algorithms to generate gamma random numbers using the ratio of
uniforms method. Both algorithms are based on logarithmic transformations of gamma random variable.
One simple algorithm applies to all positive shape parameter value without any limitation. The second
algorithm is limited to shape parameter smaller or equal to 1, but it has better performance in that
range.

The remaining of the article is organized as follows. Section 2 and Section 3 presents the algorithm that
applies to all shape parameter value. Section 4 presents the algorithm that applies to shape parameter
smaller or equal to 1. We compare the proposed algorithms with the algorithms adopted by R and Matlab
and Cheng and Feast (1980) with n = 2 and n = 4. Finally, Section 5 summarizes the timing results.

2 The Algorithm for All Positive Shape Parameter

If a random variable X follows a gamma distribution with scale parameter equal to 1 and shape parameter
α, X ∼ gamma(α, 1), then βX ∼ gamma(α, β). Hence the proposed random number generators focus
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on gamma distributions with scale parameter equal to 1. Assume X ∼ gamma(α, 1) with density
f(x) = xα−1e−x/Γ(α). Then E(X) = V (X) = α. We consider the transformed random variable

T =
√

α ln(X
α ), which has density function g(t) = 1

Γ(α)α
α− 1

2 e
√

αt−αe
t√
α . Applying Taylor expansion

with respect to X
α , we have E(T ) ' 0 and V (T ) ' 1 for large α. For large α, the distribution of T is

approximately normal with mean 0 and unit variance. It will be seen that this transformation also works
well for small α. The proposed algorithm will first generate random numbers of T , and then compute
X = αe

T√
α . We note that when random numbers on the logarithmic scale is preferred, additional CPU

time can be saved by our proposed generators.
Using the ratio of uniforms method to generate random numbers of T , we simulate (U, V ) uniformly

over the region
C = {(u, v) : 0 ≤ u ≤

√
h(t),−∞ < t =

v

u
< ∞},

where h(t) = e
√

αt−αe
t√
α +α. Then T = V

U has the desired density g(t). The size of region C is

|C| = Γ(α)eα

2αα− 1
2

. (2.1)

In order to simulate (U, V ) uniformly over region C, we use the upper and lower bounds of u and v

to define a rectangular region that covers C and apply the accept-reject method. Since max
√

h(t) = 1,
the range of u can be easily defined: 0 ≤ u ≤ 1.

Note that v ≤ t
√

h(t) if t > 0 and v ≥ t
√

h(t) if t < 0. Let vmax(α) = max t>0 t
√

hα(t) and
vmin(α) = min t<0 t

√
hα(t). The properties of vmax and vmin as functions of α, or equivalently ln α

(α > 0), help us find an upper bound and a lower bound of v. These properties are summarized into the
following two theorems with their proofs given in Appendix A.

Theorem 1 (Properties of the log of vmax). Let θ = lnα and let s(θ) = maxt>0 ln(t
√

hα(t)). Then, as
a function of θ ∈ R, s(θ) is strictly increasing and concave. Furthermore,

lim
θ→−∞

s(θ)
θ

=
1
2

(2.2)

and

lim
θ→∞

s(θ) = ln

√
2
e
. (2.3)

Theorem 2 (Properties of the log of the absolute value of vmin). Let w(θ) = maxt<0 ln(|t|
√

hα(t)) and
θ = ln α. Then, as a function of θ ∈ R, w(θ) is strictly decreasing and convex. Furthermore,

lim
θ→−∞

w(θ)
θ

= −1
2

(2.4)

and

lim
θ→∞

w(θ) = ln

√
2
e
. (2.5)
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Note that
vmax(α) = es(θ) (2.6)

and
vmin(α) = (−1)× ew(θ) (2.7)

are monotone functions of θ = ln α. If we obtain upper bounds of s(θ) and w(θ), we have the upper and
lower bounds of v. Since s(θ) is strictly increasing and concave, we can use its tangent lines to construct
an upper bound. Since w(θ) is strictly decreasing and convex, we can select a set of points on the curve
w(θ) and use the intervening line segments as an upper bound. The two curves s(θ) and w(θ) are shown
in Figure 2.1.
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Figure 2.1: Left: s(θ) against θ; Right: w(θ) against θ.

3 Upper and Lower Bounds of Ratio of Uniforms Region

Let bs(θ) be an upper bound of s(θ) and bw(θ) be an upper bound of w(θ) such that s(θ) ≤ bs(θ) ≤ s(θ)+δ

and w(θ) ≤ bw(θ) ≤ w(θ) + δ, where constant δ > 0. Then −ebw(θ) is a lower bound of vmin(α) and ebs(θ)

is an upper bound of vmax(α). Both of the following rectangles cover region C:

B1 = {(u, v) : 0 ≤ u ≤ 1,−ebw(θ) ≤ v ≤ ebs(θ)}

and
B2 = {(u, v) : 0 ≤ u ≤ 1,−ew(θ) ≤ v ≤ es(θ)}.
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Define the rate r(θ) as the following:

r(θ) =
|B2|
|B1|

=
es(θ) + ew(θ)

ebs(θ) + ebw(θ)
. (3.1)

Hence the rate r(θ) ≥ es(θ)+ew(θ)

(es(θ)+ew(θ))eδ = e−δ. Given a pre-specified minimum rate R such as 0.99 or 0.90,
we let δ = − lnR to construct bs(θ) and bw(θ).

3.1 The Lower Bound

There is a simple and tight lower bound of v for small shape parameter α. Since lnx ≤ x− 1, ∀t < 0 we
have

v ≥ t
√

h(t) = te
√

α
2

t−α
2

et/
√

α+α
2 ≥ te

√
α
2

t+α
2 ≥ te

α
2

2
e
√

α|t|
.

Hence a tight lower bound for small values of shape parameter α is given by

v ≥ − 2√
α

e
α
2
−1. (3.2)

However because of the factor e
α
2
−1, this lower bound will become powerless for large α. For larger α we

switch to a lower bound based on the intervening line segments connecting the points on the curve w(θ).
Note θ = ln α. Let

k(θ) = ln (
2√
α

e
α
2
−1) = (ln 2− 1)− θ

2
+

eθ

2
. (3.3)

Meanwhile Equations (5.7) and (5.8) are used to construct bw(θ):

w(θ) =
eθ

2
+

θ

2
+ ln y − eθ

2
(y + e−y) =

1− y − e−y

y(1− e−y)
+

ln (2y)
2

− ln (1− e−y)
2

,

eθ =
2

y(1− e−y)
.

The algorithm to construct bw(θ) is the following:

Step 1. Solve k(θ)− w(θ) = δ for θ∗. This is equivalently to solve the following equation for y∗:

ln (1− e−y)− 1 +
y + e−y

y(1− e−y)
= δ.

Obtain θ∗ = θ∗(y∗) using Equation 5.8. There exists a positive integer M such that ln
√

2
e + Mδ ≤

w(θ∗) ≤ ln
√

2
e + (M + 1)δ. Let θL

M+1 = θ∗ and yL
M+1 = y∗.

Step 2. Solve these M equations for θL
k : w(θL

k ) = ln
√

2
e + kδ, k = 1, ...,M . This is equivalent to solve

the following equations for yL
k and obtain θL

k = θL
k (yL

k ) using Equation 5.8:

1− y − e−y

y(1− e−y)
+

ln (2y)
2

− ln (1− e−y)
2

= ln

√
2
e

+ kδ.

The function bw(θ) has the following structure:

5



1. ∀ θ ≥ θL
1 , bw(θ) = ln

√
2
e + δ;

2. ∀ θL
k+1 ≤ θ < θL

k (k = 1, ...,M), bw(θ) =
w(θL

k+1)−w(θL
k )

θL
k+1−θL

k

× θ +
θL
k w(θL

k+1)−θL
k+1w(θL

k )

θL
k−θL

k+1

;

3. ∀ θ < θL
M+1, bw(θ) = k(θ) = ln ( 2√

α
e

α
2
−1).

A lower bound of vmin(α) is Bmin(α) = −ebw(θ). It is straightforward to show that k(θ) − w(θ) is
strictly increasing since k′(θ)−w′(θ) > 0. Then there is a unique solution for the equation in Step 1 of the
algorithm. Because w(θ) is strictly decreasing, the equations in Step 2 have unique solutions. The distance
between bw(θ) and w(θ) is smaller or equal to w(θL

k )−w(θL
k+1) = k(θL

M+1)−w(θL
M+1) = δ, k = 1, ...,M .

bw(θ) constructed from the above algorithm has the desired property: w(θ) ≤ bw(θ) ≤ w(θ) + δ.

3.2 The Upper Bound

We use the tangent lines of s(θ) to form a piece-wise linear function bs(θ) that bounds s(θ). Using
Equations 5.1, 5.2, and 5.3, we re-write s(θ), s′(θ), and θ as functions of y:

S(y) = s(θ) =
1 + y − ey

y(ey − 1)
+

ln (2y)
2

− ln (ey − 1)
2

(3.4)

P (y) = s′(θ) =
1 + y − ey

y(ey − 1)
+

1
2

(3.5)

T (y) = θ = ln 2− ln y − ln (ey − 1) (3.6)

Note α(θ) = eθ. Let

c(θ) =
ew(θ)

es(θ) + ek(θ)
=

ew(θ)

es(θ) + 2√
α(θ)

e
α(θ)

2
−1

(3.7)

The algorithm to construct bs(θ) is the following:

Step 1. Use the constant ln
√

2
e to bound the largest θs. Solve s(θ) = ln

√
2
e − δ for θU

1 , where θU
1 is the

first change point of the piece-wise linear function bs(θ). This is equivalent to solve

S(y) = ln

√
2
e
− δ

for yU
1 and obtain θU

1 using Equation 3.6.

Step 2. Find a tangent line of s(θ) that passes through the point (θU
1 , ln

√
2
e ). Solve s′(θ)× θU

1 + s(θ)−
s′(θ)θ = s(θU

1 ) + δ for θT
1 . The tangent line at θT

1 is used to form bs(θ). This is equivalent to solve

P (y)× θU
1 + S(y)− P (y)× T (y) = ln

√
2
e

for yT
1 (yT

1 > yU
1 ) and obtain θT

1 (θT
1 < θU

1 ) using Equation 3.6. If θT
1 < θL

M+1, compute c(θT
1 ). If

c(θT
1 ) ≥ R, stop; otherwise proceed to Step 3.
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Step 3. (1) Given yT
k and θT

k , find the next change point θU
k+1 (k ≥ 1) where the distance between the

tangent line at θT
k and s(θ) reaches δ. Solve s′(θT

k ) × θ + s(θT
k ) − s′(θT

k )θT
k = s(θ) + δ for θU

k+1. This is
equivalent to solve

P (yT
k )× T (y) + S(yT

k )− P (yT
k )× T (yT

k ) = S(y) + δ

for yU
k+1 (yU

k+1 > yT
k ) and obtain θU

k+1 (θU
k+1 < θT

k ) using Equation 3.6.

(2) Given yU
k+1 and θU

k+1, find the next tangent line that passes through the point (θU
k+1, s(θ

U
k+1) + δ).

Solve s′(θ)× θU
k+1 + s(θ)− s′(θ)θ = s(θU

k+1) + δ for θT
k+1. Equivalently, we solve

P (y)× θU
k+1 + S(y)− P (y)× T (y) = S(yU

k+1) + δ

for yT
k+1 (yT

k+1 > yU
k+1) and obtain θT

k+1 (θT
k+1 < θU

k+1) using Equation 3.6. If θT
k+1 < θL

M+1, compute
c(θT

k+1). If c(θT
k+1) ≥ R, stop; otherwise let k = k + 1 and repeat Step 3.

Assume that the above algorithm produces N tangent lines to form bs(θ), each connecting with s(θ)
at θT

k (k = 1, ..., N) where θT
k+1 < θT

k . The function bs(θ) is piece-wise linear with N change points θU
k ,

k = 1, ..., N . Note that θU
k+1 < θU

k . Let θU
N+1 = −∞. Then bs(θ) has the following structure:

1. ∀ θ > θU
1 , bs(θ) = ln

√
2
e ;

2. ∀ θU
k+1 < θ ≤ θU

k (k = 1, ..., N), bs(θ) = s′(θT
k )× θ + s(θT

k )− s′(θT
k )θT

k .

An upper bound of vmax(α) is Bmax(α) = ebs(θ). Given a θ0, to compute the value of w(θ0) in c(θ0),
we use Equation 5.8 to obtain the corresponding y0 and plug both y0 and θ0 into Equation 5.7. Since
s(θ) is strictly increasing, the equation in Step 1 has a unique solution. Write the tangent line at θT as
`(θ) = s′(θT )× θ + s(θT )− s′(θT )θT . The distance between `(θ) and s(θ) is strictly increasing ∀ θ > θT

and strictly decreasing ∀ θ < θT . In addition s(θ) is strictly concave. Hence the equations in Step 2 and
Step 3 have unique solutions. For all θ ≥ θT

N , bs(θ) − s(θ) reaches the maximum value δ at the change
points θU

k . For all θ < θT
N , bs(θ)− s(θ) might be greater than δ but the rate r(θ) is still greater than R:

Since k(θ)−w(θ) is strictly increasing, it is straightforward to derive that c(θ) is strictly decreasing. Let
`N (θ) be the tangent line at θT

N . Define

c∗(θ) =
ew(θ)

e`N (θ) + 2√
α(θ)

e
α(θ)

2
−1

.

c∗(θ) is also strictly decreasing. Then ∀ θ < θT
N ,

r(θ) =
ew(θ) + es(θ)

ebs(θ) + ebw(θ)
=

ew(θ) + es(θ)

e`N (θ) + ek(θ)
≥ c∗(θ) ≥ c∗(θT

N ) = c(θT
N ) ≥ R.

3.3 Acceptance Rate

We took R = 0.9 and implemented the algorithms in Sections 3.1 and 3.2 to obtain bw(θ) and bs(θ).
The precision of the parameter values is 10−15. Note that δ = − lnR. The resultant functions bw(θ) and
bs(θ) are shown in Tables 3.1 and 3.2. These two functions have only 3 and 4 segments. We note that
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more segments are needed for larger R. For example, for R = 0.95 bw(θ) needs 7 segments and bs(θ) has
4 segments. However more segments will increase the initial parameter set-up time. Hence we use the
following functions with R = 0.9.

Range of θ bw(θ)

θ ≥ 1.764216686288215 ln
√

2
e − lnR = −0.048065894062201

0.521223243207446 ≤ θ < 1.764216686288215 −0.084763530978316× θ + 0.101475344169199

0.209314923020777 ≤ θ < 0.521223243207446 −0.135460234584798× θ + 0.127899644442896

θ < 0.209314923020777 ln 2
e −

θ
2 + eθ

2 = −0.306852819440055− θ
2 + α

2

Table 3.1: The function bw(θ) based on R = 0.9. Bmin(α) = −ebw(θ) is a lower bound of v.

Range of θ bs(θ)

θ > 1.448931546292675 ln
√

2
e = −0.153426409720027

−3.333189906461192 < θ ≤ 1.448931546292675 0.124651796958072× θ − 0.334038330634647

θ ≤ −3.333189906461192 0.306252995504409× θ + 0.271272951361260

Table 3.2: The function bs(θ) based on R = 0.9. Bmax(α) = ebs(θ) is an upper bound of v.

Both the exact (or best) acceptance rate based on the exact lower and upper bounds and the (actual)
acceptance rate based on the functions in Tables 3.1 and 3.2 are shown in Figure 3.1. The uniform region
and its cover for various αs are shown in Figure 3.2. Using the bounds bw(θ) and bs(θ) in Tables 3.1 and
3.2, Algorithm 3.1 demonstrates how to generate Gamma random numbers using the proposed approach.
When α < 0.01, the algorithm returns the generated random numbers on logarithmic scale.

4 The Algorithm for Small Shape Parameter

We consider another transformation similar to the one used in Algorithm 3.1 for α ≤ 1: T ∗ = α lnX and
X = eT ∗/α. Its density function is g∗(t) = et−et/α

/(αΓ(α)). Although the ratio of uniforms algorithm
based on T ∗ is limited to α ≤ 1, it is faster than Algorithm 3.1 for small shape parameter values. Let
h∗(t) = et−et/α

. The uniform region is

C∗ = {(u, v) : 0 ≤ u ≤
√

h∗(t),−∞ < t =
v

u
< ∞}.

The size of region C∗ is

|C∗| = Γ(α)α
2

. (4.1)

Because max
√

h∗(t) = (α
e )α/2, we have

0 ≤ u ≤
(α

e

)α/2
. (4.2)
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Figure 3.1: Algorithm 3.1: Maximum acceptance rate (solid line) and acceptance rate using the lower
and upper bounds (dashed line) specified by Tables 3.1 and 3.2.
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Figure 3.2: Region C and the upper and lower bounds for α = 0.001, 0.1, 1, and 10.

Using the inequality lnx ≤ x− 1, we have ∀t > 0

t
√

h∗(t) = te
t
2
− 1

2
et/α ≤ te

t
2
− et

2α ≤ 2α

e(e− α)
.
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Algorithm 3.1 Generate n Gamma Random Numbers
θ = ln(α) and c =

√
α

Compute bs(θ) and B.max = exp{bs(θ)}
Compute bw(θ) and B.min = −exp{bw(θ)}
k = 1
while k ≤ n do

u = Uniform(0, 1)
v = Uniform(0, 1)×(B.max−B.min)+B.min
t = v/u and t1 = et/c+θ

if 2× ln (u) ≤ α + c× t− t1 then
Deliver t1 if α ≥ 0.01; Otherwise deliver t/c + θ.
k = k + 1

end if
end while

For all t < 0, we have

t
√

h∗(t) ≥ te
t
2 ≥ − 2

e
.

Therefore we have the range for v:

−2
e
≤ v ≤ 2α

e(e− α)
. (4.3)

Equations 4.2 and 4.3 define a rectangle that covers region C∗. The uniform region C∗ and its cover
are similar to the ones shown in Figure 3.2. We have a simple algorithm (Algorithm 4.1) to generate
Gamma random numbers for α ≤ 1. Again when α < 0.01 the algorithm returns the generated random
numbers on logarithmic scale. The resulting acceptance rate is shown in Figure 4.1. Algorithm 4.1
reaches maximum acceptance rate 0.7554 when α = 0.33.

Algorithm 4.1 Generate n Gamma Random Numbers given α ≤ 1
u.max=(α/e)α/2, v.min=−2/e, v.max=2α/e/(e− α).
k = 1
while k ≤ n do

u = u.max×Uniform(0, 1)
t = (Uniform(0, 1)×(v.max−v.min)+v.min)/u

t1 = et/α

if 2× ln (u) ≤ t− t1 then
Deliver t1 if α ≥ 0.01; Otherwise deliver t/α.
k = k + 1

end if
end while
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Figure 4.1: Algorithm 4.1: Maximum acceptance rate (solid line) and acceptance rate using the lower
and upper bounds (dashed line) specified by Equations 4.2 and 4.3.

5 Summary: Timing Results

In this simulation study we generate 50 million Gamma random numbers for each of a sequence of selected
shape parameter values. We compare our algorithms with the following algorithms.

• CF80GT – Cheng and Feast (1980) with n = 2.

• CF80GBH – Cheng and Feast (1980) with n = 4.

• AD82 (α ≥ 1) – Ahrens and Dieter (1982).

• AD74 (α < 1) – Ahrens and Dieter (1974).

• MT00 – Marsaglia and Tsang (2000a). Gamma random numbers for α < 1 are generated as
gamma(α, 1)=gamma(α + 1, 1)×unif(0,1)1/α.

• ROU1 – Algorithm 3.1.

• ROU2 – Algorithm 4.1.

The algorithms proposed by Ahrens and Dieter (1982) and Ahrens and Dieter (1974) are adopted
by R, an open source statistical computing software. The algorithm proposed by Marsaglia and Tsang
(2000a) is adopted by Matlab. In our simulation study, the uniform random numbers were generated by
the Mersenne Twister algorithm, which is one of the algorithms adopted by R and Matlab. The Mersenne
Twister algorithm has a period 219937 − 1 and is a popular high quality and efficient uniform random
number generator. The algorithms proposed by Ahrens and Dieter (1982) and Marsaglia and Tsang
(2000a) require normal and exponential random numbers to achieve high acceptance rates. The Ziggurat
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algorithm, the algorithm adopted by Matlab, was used to generate normal and exponential random
numbers. We used an independent random integer to select the rectangle in the Ziggurat algorithm as
recommended by Thomas et. al. (2007). The computer used in the simulation is a 2.4 GHz Intel Core
2 Duo processor MacBook. The computer runs Mac Os/X Snow Leopard with 3MB L2 cache, 4GB
memory, and 800MHz frontside bus. All the algorithms were coded in C++. The GNU g++ compiler
was used to obtain the timing results.

α 0.01 0.25 0.5 0.8 1 1.25 3 5 10 100

CF80GT 23.94 18.80 18.05 17.56 16.66 16.46 16.34 16.24
CF80GBH 22.17 17.79 16.93 16.76 16.67 16.60 16.67 16.71 16.81
MT00 20.39 20.31 20.25 20.20 13.38 13.29 13.09 13.04 13.02 12.95
AD82 16.51 16.00 15.95 11.36 10.98 10.51
AD74 9.15 12.55 13.68 19.32 10.96
ROU1 15.44 14.86 14.48 14.07 13.71 13.31 12.90 14.28 14.31 14.42
ROU2 14.50 12.54 12.61 13.44 13.42

Table 5.1: Timing results (in seconds) with parameter set-up installed

α 0.01 0.25 0.5 0.8 1 1.25 3 5 10 100

CF80GT 28.68 22.61 18.83 21.16 20.08 19.88 19.69 19.65
CF80GBH 25.68 19.40 19.72 18.24 18.56 19.42 19.41 19.51 19.60
MT00 20.64 20.56 20.51 20.42 13.72 13.64 13.40 13.36 13.29 13.25
AD82 16.56 16.06 16.03 11.46 11.08 10.59
AD74 9.23 12.87 13.98 19.67 11.08
ROU1 22.73 23.26 22.45 21.94 21.60 20.63 20.00 20.00 18.74 18.92
ROU2 19.32 16.97 17.05 18.03 18.17

Table 5.2: Timing results (in seconds) without parameter set-up installed

Table 5.2 presents the timing results where the parameters are computed for every draw of random
number. Table 5.1 presents the timing results where the parameters are set up initially and installed
for repeated draws of random numbers. MT00, AD82, and AD74 need little extra time for the initial
parameter set-up step. ROU1 and ROU2 slow down if the parameters are computed for every draw as
shown in Table 5.2. When the parameters are installed for repeated draws, ROU1 and ROU2 have quite
good performance as shown in Table 5.1. ROU1 and ROU2 are faster than CF80GT and CF80GBH.
Both are faster than MT00 for α < 1. ROU1 has high acceptance rate for α between 1.25 and 3, and is
comparable to MT00 in that range. AD82 reaches high acceptance rate for α ≥ 4. ROU1 is faster than
AD82 for α < 4. AD74 has the lowest acceptance rate at around α = 0.8. ROU2 is faster than AD74 for
α between 0.25 and 0.8.
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Appendix A: The proofs of Theorems 1 and 2

A.1 The proof of Theorem 1

Let y = t/
√

α and write

k(y, α) = 2 ln(t
√

hα(t)) = α + lnα + 2 ln y + αy − αey (y > 0)

Then
s(θ) =

1
2

max
y>0

k(y, α)

where θ = ln α ∈ R. It follows from

∂2k(y, α)
∂y

=
2
y

+ α(1− ey) (y > 0;α > 0)

that the function s(θ) is given by

2s(θ) = eθ + θ + 2 ln y + eθ(y − ey) (θ ∈ R) (5.1)

where y is a function of θ defined implicitly by

eθ =
2

y(ey − 1)
(5.2)

a one-to-one mapping: θ 7→ y from R to {y : y > 0}.
Routine algebraic operations lead to the first-order derivative of 2s(θ) with respect to θ:

∂2s(θ)
∂θ

= 1 + eθ(1 + y − ey) +
[
2
y

+ eθ(1− ey)
]

1
∂θ
∂y

(5.2)
= 1 + eθ(1 + y − ey), (5.3)

where
∂θ

∂y
= −1

y
− ey

ey − 1
. (5.4)

To show that (5.3) is positive for all y > 0 (or all θ ∈ R), write (5.3) in terms of y based on (5.2)

1− 2
y

+
2

ey − 1
=

yey − 2ey + 2 + y

y(ey − 1)
(5.5)

The numerator of (5.5) has the first-order derivative

yey − ey + 1

which is strictly increasing in y because its first-order derivative yey is positive for all y > 0. Note that
The numerator of (5.5) tends to zero as y goes to zero. This implies that the numerator of (5.5) is positive
for all y. The denominator of (5.5) is also positive for all y > 0, due to the fact ey > 1. As a result, (5.5)
or equivalently (5.3) is positive for all y > 0. That is, 2s(θ) and, thereby, s(θ) is increasing.
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The concavity of s(θ) or 2s(θ) is to be proved by showing that its second-order derivative or the
first-order derivative of (5.3) or (5.5) with respect to θ is negative. The first-order derivative of (5.5) with
respect to θ is given by

2
[

1
y2
− ey

(ey − 1)2

]
1
∂θ
∂y

Since ∂θ
∂y < 0, the concavity result follows if the bracketed term in the above expression is positive. Note

that the bracketed term

1
y2
− ey

(ey − 1)2
=

[
1
y

+
ey/2

(ey − 1)

] [
1
y
− ey/2

(ey − 1)

]
has the same sign as the second factor

1
y
− ey/2

(ey − 1)
=

ey − 1− yey/2

y(ey − 1)
. (5.6)

The numerator of (5.6) is positive because (i) its first-order derivative,

ey/2
[
ey/2 − 1− y/2

]
,

is positive for all y > 0, and (ii) it approaches to zero as y → 0. Note again that y(ey−1), the denominator
of (5.6), is positive. Thus, the function s(θ) is strictly concave.

The identities (2.3) and (2.2) can be easily established by applying standard algebraic operations to
(5.1) and (5.2).

A.2 The proof of Theorem 2

The proof is similar to that of Theorem 1. Let y = −t/
√

α and write

k(y, α) = 2 ln(|t|
√

hα(t)) = α + lnα + 2 ln y − αy − αe−y (y > 0)

Then
w(θ) =

1
2

max
y>0

k(y, α)

where θ = ln α ∈ R. It follows from
∂k(y, α)

∂y
=

2
y
− α(1− e−y) (y > 0;α > 0)

that the function w(θ) is given by

2w(θ) = eθ + θ + 2 ln y − eθ(y + e−y) (θ ∈ R) (5.7)

where y is a function of θ defined implicitly by

eθ =
2

y(1− e−y)
(5.8)

a one-to-one mapping: θ 7→ y from R to {y : y > 0}.
The first-order derivative of 2w(θ) is negative and the second-order derivative of 2w(θ) is positive

∀y > 0. Therefore it is strictly decreasing and convex. The identities (2.5) and (2.4) can be easily
established by applying standard algebraic operations to (5.7) and (5.8).
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