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Abstract: Let {Zt}:»0 be a Lévy process with Lévy measure v and let
7(t) = f;r(u)du where {r(t)};>¢ is a positive ergodic diffusion indepen-
dent from Z. Based upon discrete cbservations of the time-changed Lévy
process X; = Z, during a time interval [0,7), we study the asymp-
totic properties of some estimators of the parameters 8(;p) 1= f plz)v{de),
which in turn are well-known to be the building blocks of several nonpara-
metric methods such as sieve-based estimation and kernel estimation. Un-
der uniformly boundedness of the second momenrits of r and conditions on ¢
necessary for the standard short-term ergodic property lims—,o0 Ew(Zy)/t =
B() to hald, consistency and asymptotic normality of the proposed esti-
mators are ensured when the time horizon T increases in such as way that
the sampling frequency is high enough relative to T
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1. Introduction

Historically, Brownian motion has been the madel of choice to deseribe the eva-
lution of a random measurement which value is the result of a large-number
of smali shots occurring through time with high-frequency. This is indeed the
situation with stock prices which value is the result of a high number of agents
posting bid and ask prices almost at all times. However, processes exhibiting
infinitely many jumps in any finite time horizon [0, 7] are arguably better ap-
proximations to such high-activity stochastic processes. A Lévy process is a
natural extension of Brownian motion which preserves the tractable statistical
properties of its increments, while relaxes the continuity of paths. The previous
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considerations motivated an explosion of financial-price models driven by Lévy
processes with infinite jump activity. The simplest of these models postulates
that the price of a commodity (say a stock) at time ¢ is determined by

St = Sgext, (11)

where X := {X;}+>0 is a Lévy process. Even this simple extension of the classical
Black-Scholes model, in which X is simply a Brownian motion with drift, is able
to accommodate several features commonly observed in the returns of financial
assets such as heavy tails, high-kurtosis, and asymmetry. Among the better
known models are the variance Gamma model of [65], the CGMY model of [4],
and the generalized hyperbolic motion of [1, 14] (see also [2, 8]).

Even though the geometric Lévy paradigm (1.1) incorporates several desir-
able stylized features, the model has several shortcomings, especially to account
for the so-called wolatility clustering and leverage phenomena exhibited by real
financial data. Roughly speaking the former effect refers to the fact that there
are periods of high variability in the market, followed by periods of low vari-
ability. People usually say that “high-volatility” events tend to cluster in time.
Leverage refers to the ernpirical observation that returns seem to be negatively
carrelated with volatility. These two effects cannot be captured by the model
(1.1). To explain why this is the case and motivate the use of random clocks,
let us study the realized varietion up to time ¢ of the log returns in the periods

[tﬂa tl]: s [tnfh t'n.]:

V"T(t) = Z 10g2 (Sti/Sii—l) s (12)

ity <t

wherem 1ty =0 <t; < - <ty =T < co. When the mesh 7 := max; {t;—¢;..1}
of the partition is small, we can think of the increment V. {¢) -V, (s) as a measure
of the volatility of the stock during the period [s,t]. Under the model (3.1},

Valt) = D (X — Xeil)

i<t

which is well-know to converge, in probability, to the quadratic variation of the
process,
Xl =%+ ) AX,,
a<t

as ¥ — 0. In that case, the realized variations in consecutive time periods of
equal time length A, say V.(A), Vi (2A) — V2 (A), ete., will look like white noise
(i.e. independent identically distributed random variables) and will not exhibit
the volatility clustering phenomenon,

In recent years subordinated Lévy processes have been proposed to incorpo-
rate the intermittency and leverage phenomena (c.f. [, 7]). Concretely, these
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models postulate that the asset price at time ¢ is given by (1.1) with
X, = Zye, (1.3)

where Z is a Lévy process and {7(t)};>0 stands for a nondecreasing abso-
hitely continuous process. This approach leads to a geometric time-changed Lévy
model:

S = SQGZTU),

where the process 7 plays the role of a “business” clock which may reflect non-
synchronous trading effects or a “cumulative measure of economic activity”. To
incorporate volatility clustering, random clocks {7(t)}¢>0 of the form

7(t) :=/(; r(u)du, {1.4)

with {r{¢)}:>0 being a positive mean-revering process, are plausible choices.
This crucial observation was first noticed by Carr et.al. [3], who specialized
further their model to consider particular parametric models for Z (such as
normal inverse GGaussian or variance gamina processes) and explicit positive
ergodic diffusions for r such as the Cox-Ingersoll-Ross {CIR) process. Roughly
speaking, the rate process r controls the volatility of the process; for instance,'
in time periods where r is high, the “business time” + runs faster resulting in
more frequent jump times. More formally, under the model (3.1) with X as in
{1.3) and assuming for that 7 is independent of the Lévy process Z, the realized
variation (1.2} of the log returns converges to

ar(t) + Z AZ,
s<7(t)

where o is the variance of the Brownian component of Z. The observable volatil-
ity during a time period [¢,u] will be given by

Hrw -+ > AZ,. (1.5)

T(t)<s<r(u)

Thus, under (1.4) with a mean-reverting process {r(t)};>0, there will be periods
[t,u] of high volatility (which correspond to periods where the process r takes
on a high level) and periods [¢, u] of low volatility (which corresponds to periods
where r takes on a low level).

Time-changed Lévy processes are one step further in the trend of increasingly
complex models that are aimed at incorporating the so-called stylized features
of asset prices. Considerably less effort has been devoted to analyze the poten-
tial departures from the presumed model. One recent approach to deal with the
later issue is the adoption of general nonparametric models for the functional
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parameters of the underlying process, hence reducing the estimation bias result-
ing from assuming an inadequate parametric model. In the case of a Lévy model
Z, this parameter could be the so-called Lévy density s(-), which dictates the
jump dynamics of the process and is the main object of interest in the present
paper. The value of s at a point xp determines how frequent jumps of size close
to g are to occur per unit time. Concretely, the function s is such that

1
LS(IE}C&': gE ZXA (AZ,) |,

5<t

for any Borel set A and t > 0. Here, AZ; = Z;, — Z,_ denotes the magnitude of
the jump of Z at time ¢, and x,(z} = 1 if z € A4, and 0 otherwise. Thus,

v(A) :=Ls(m)d:ﬂ,

called the Lévy measure of the process, is the average number of jurnps (per unit
time) whose magnitudes fall in the set 4. For instance, if #((0,00)) = 0, then Z
will exhibit only jumps of negative size. In the context of financial applications,
an empirical assessment of the possible sudden price shifts of the underlying
assets is critical as these shifts play a key role in developing appropriate risk-
management and investment strategies.

The challenge of devising nonparametric methods for the Lévy density s of
Z lies in the fact that the jumps are latent (unobservable) variables since in
practice only discrete observations of the process are available. It is natural
to devise statistical methodologies based on high-frequency observations since
this type of data will contain more relevant information about the jumps of
the process and hence, about the Lévy density s. Such a high-frequency based
statistical approach has played a central role in the recent literature on nonpara-
metric estimation for Lévy processes (see e.g. Figueroa-Lépez [11, 1], Woerner
{24, 25], and Mancint [20, 21]). For instance, under discrete observations of a
pure Lévy process X at times 7: 0=ty < --- < &, = T, Woerner [24], and also
independently Figueroa-Lépez [11], propose the estimators

1

B (o) =D o (X = Xuly) (16)
™ k=1

as consistent estimators for the integral parameter

ﬁ@%=f¢@b@ﬁ% (17)

where ¢ is a given “test function”. We can think of the statistic {1.6) as the
realized -variation of the process X per unit time based on the sampling ob-
servations X, ,...,X;,. In [11], the proposed estimators were used to devise
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nonparametric estimators § for s via Grenander’s method of sieves. The prob-
lem of model selection was analyzed further in [i4, 17], where it was proved that
sieve estimators 5. can match the rate of convergence of the minimax risk of
estimators §. Concretely, it turns out that

Elfs—35.|°
moup Bl =&l
Tooo Nfgsup,cqg Ells — §|

< oo,

where [0,77] is the time horizon over which we observe the process X, @ is
certain class of smooth functions, and the infimum in the denominator is over
all estimators & which are based on whole trajectory {X;}¢<7. The optimal rate
of the estimator 5. is attained by appropriately choosing the dimension of the
sieve and the sampling frequency in function of 7" and the smoothness of the
class of functions ©. In [12], the sieve estimators of [14] were also used to built
confidence intervals (CI) and confidence bands for the Lévy density s.

In this paper, we consider the problem of drawing statistical inferences for
the model {1.3) when we have at hand high-frequency sampling observations of
X. A recent treatment of the problem of predicting (estimating) the business
clock process 7(t) := f; r{u)du is given in Woerner [25]. We concentrate here
in estimating the Lévy density s of the Lévy process Z. A natural question is
the following: how does the random time 7 affect the statistical properties of
the estimator {1.6)? We prove that when the rate process r in (1.4) is a positive
ergodic diffusion independent of the Lévy process Z, (1.6) is still a consistent
estimator for {1.7) up to a constant, provided that the time horizon T and
sampling frequency converge to infinite at suitable rates. Roughly speaking,
suppose that the following conditions hold true:

(1) @ is a continuous, locally bounded function such that
1
sup ~ E J(28)] < o0, (L8)
01

and p(z) — 0 as 2z — 0 at an “appropriate rate” (see Condition 2.1 below);
(i) {r{t)}e>0 is an ergodic positive solution of the SDE:

dr{t) = b(r{t))dt + a(r(t)) dW, (1.9)
such that » is independent of Z and also

sup E r(t) < oo; (1.10)
20
(iii) The time horizon 7 and the sampling times =, are such that T — oo

2 T— £ . . .
and T - 62 "5 0, where ¢, is the largest time span between consecutive
observation.
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Then, it follows that
oA P . 5 =
Jim 5 () = ¢ Bp), Jim B (e} = (- Blp), (1.11)

where { = ((r) is the expectation of the invariant distribution of 7. Furthermore
under the stronger assumption that

b

sup E |r(#)27¢ < oo, (1.12)
£20

for some e > 0, the condition 7' §2 "=3° 0 is not needed for (1.11).

By an ergodic diffusion, we mean a strong continuous Markov process {r(t)};>0
that takes values on an interval I := (g, ) € R and that is regular and recurrent
(see e.g. [18]). Such a process admits a unique invariant probability measure ¢,
which in turn satisfies the ergodic property:

+ .

lim L g(r{u))du = /g(m)((d&c), a.s. (1.13)
t=e by 1

for any g € L*(¢) (c.f. 18, Theorem 20.14]). A model that meets the condition

(ii) above and that is a typical choice in applications (cf. [3]) is the Cox-Ingersoll-

Ross (CIR) process

dr(t) = a(m — r(8))dt + v+/7(t) dW,,

with positive o, v and m such that am/v? > 1/2. It will turn out that the
consistency (1.11}) is a consequence of the ergodic property (1.13) and the con-
sistency of the estimator (1.6} when the underlying process X is a pure Lévy
process.

Let us remark that the independence assumption between Z and r is a draw-
back from a financial point of view. One could think of ad hoe treatments to
incorporate certain degree of dependence such as common driving factors for r
and Z, but we won't explore this direction in this work. Note also that without
loss of generality we can assume that {{r) := 1 since for an arbitrary Lévy pro-
cess Z and a diffusion r, we can write the time-changed Lévy process (1.3-1.4)
as follows

Zetty = Ly
with Z, == Zegryes Tt} = f(ffﬁ(u)du, and #(t) == r(t}/{(r). The process Z is
again a Lévy process satisfying (1.8) with Lévy density {(v)s. Similarly, # is a
positive ergodic solution of the SDE;

df(t) = B(R(£))dt + 6(F(1)) AW,

with b(z) := {(r)16(C(r)z) and &(z) := &(r)~'o(l(r)z). Clearly, # satisfies
(1.10) and {(f) = 1.
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In the last part of the paper, we obtain a central limit thecrem for the esti-
mators 8™ () in (1.6) with scaling constant 72 and centering constants

Bre) = = D [ (X - Xu) | B,
™ k=1

where FX = o{X, : u < t). Concretely, using central limit theorems for mar-
tingale differences (see e.g. [3]), we show that

TV (B0 () - B () D oV (0, 1),

as T — oo and §r — 0, with o2 (¢) = ¢A(?). Under certain conditions, the
statistics f7r (@) satisfy themselves the CLT:

TV {8 () = C- Bl@) 2 BT - N(0,1),

whenever Tér "3 0, for certain positive constant I depending on the process
7. Such a result suggests a CLT of the form

T1/2 (,émf (@)= C- ,G(tp)) 2 (02(¢) + F(p)[) /2 N0, 1);

however, the later limit is still under investigation and we expect to address this
issue in a future work.

The paper is structured as follows. In Section 2, we show the consistency lor
time-changed Lévy models with a general random clock 7. We propose the limit

. 1
e {r(tn)

for arbitrary o > 0 and where ART := 7(1) — 7(¢7_,), as a key assumption
on the random clock 7 for consistency to hold. As an application, the case of
a pure Lévy model is considered, extending a former result by Woerner [24] to
non-regular sampling schemes and simpler functions . In Section 3, we proceed
to investigate conditions under which {1.14) holds when 7 is driven by & positive
ergodic diffusion {r(t)}:>o via (1.4). The case of general sampling schemes is
discussed in Section 4. In particular, it is proved that under (1.12), the rate con-
dition 762 — 0 is not needed for consistency. Finally, the asymptotic normality
of the estimators is addressed in Section 5.

> (AR 1{A;rgtu}} =0, (1.14)
1

k=

2. Estimation of integrals of the Lévy measure

We consider a time-changed Lévy model of the form (1.3), where {Z; }150 is a
Lévy process with generating triplet (b, 0%, v), and {r{t)}¢>0 is as in (1.4) for
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a general non-negative process r that is independent of Z. Suppose we sample
the process X over a finite time horizon [0, Ty,] at discrete times 0=t < -+« <
t = T,,. In this part we provide conditions for the convergence in probability
of the realized -variations

- 1 —

Bulp) =23 0 (X — Xy, ). (2.1)

T k=1
as the time-horizon T, tends to infinity and the largest time span between
observations, 8" := max,{t.; — L}, tends to 0. In the case of a pure Lévy
process (namely, 7(t) = t and X = Z) and equally-spaced time-points, Woerner
[24] (see Theorems 4.2 and 5.1) considers this problem under some additional
regularity conditions that can be greatly simplified as it will be shown here (see
Theorem 2.5 below).
In order to study the behavior of (2.1), we first survey the asymptotics of the

following statistics

- 1 =
Brlyp) = ) ;90 (Z»r(f;;) - Z'r(t:_l)) ; (2.2)

when the time horizon T, = {» — co and 8" — 0. Through this part, we
shall write 77 = T(t}). Note that, due to the independence of Z and 7, the
convergence in probability of 5, () will follow from the pure Lévy case (Z = X)
if 77 "= 0o a.s., and

max (i —miey) =30, a.s. (2.3)

However, the condition (2.3) is rather unsatisfactory as it translates into asking
that almost all paths ¢ -» 7(¢) are uniformly continuous in all Ry since the time
horizon &7 is increasing.

‘We first review a crucial preliminary result. It is well-known that

lim > E(X,) = [ plajv(da), (2.4)

for any bounded r—continuous function ¢ vanishing in a neighborheod of the ori-
gin {cf. Sato [22, Corollary 8.9]). Consider the foliowing class of locally bounded
(but potentially unbounded) functions:

S@)={g:R—Ry: f g(@)u(dz) < o0, glz) =p(z)alz),  (25)

lz|>1
where p is subadditive, and k is submultiplicative}.

Building on results in [24] and [17], [13] proves that the limit

Be) = m T Eo(X,) (26)

exists provided that the following conditions hold:
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Conditions 2.1.

1. @ is v-continuous and locally bounded,
2. There exists a function g in S(v) such that

l:ilil—srl:f % < 00, (2.7)

3. p(z) = 0 as  — 0 under any of the following conditions:
(a) o(z) = oljzl);

(b} p(z) = O([z|"), for some v € (1,2) such that | (|zI" A1) w(dz) < oo,
and o =0;

(c) o) =ofjz|), [ (|z] A1) r{dz} < oo, and o = 0;

(d) ¢(z) = O(|z"), for some 7 € (0,1) such that f (Jx[” A1) w(dw) < oo,
c=0, andb:=b— fifﬂlél zv(dr) = 0;

(e) p(z) ~ 2%

(1) ¢(2) ~ lsl, and o =0,

Moreover, (2.6} is given as follows depending on which condition in 3 is
satisfied:
8(w) if any (a}-(d) is true

Blp) =4 9>+ B(v) if (e) is true (2.8)
bl + B(p) if (f) is true,

where as before B(¢) = [@(z}v(z). Note that conditions 2.1 implies that

Bllel) < ee.
We are ready to study the asymptotic behavior of (2.2). The following result
gives conditions for asymptotic unbiasedness.

Proposition 2.1. Assume the following:

(i) ¢ is a continuous function satisfying Condifions 2.1 and also
1
My i=sup - E |o(Z;)| < oo; 2.9)
t>0 b

(i) {r(¥)}s>0 is a non-decreasing cidlag process, independent of Z, such that
7(t) > 0 a.s. for any t >0, and

1 T
Jm & {W > (&g 1{A;:fzto}} =0, (2.10)
" =1

for any to > 0, where A7 == v(7) — 7(tF_;).
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Then, the statistics Fn(i0) in (2.2) are asymptotically unbiased estimators for
the parameter B(p) in (2.8} as n — oo.

Proof. Conditioning on {7} k<r and using the the independence between 7 and
X (see Appendix C for more details), we get

1 ™
E Bu(p)=E— > H, (A (2.11)
T fe==]

where H,(t) :== Ep(Z;). Then,

A—,’;‘-r—— - ﬁ(ﬂo)l T

under the convention that /0 = 0. For £ > 0, let #o = to(g) > 0 such that if
t < tg, then |H,(£)/f — 5(¢)] < &. Then, breaking up the summation above into
the &’s such that AZT < g and its complement and using that >, Afr = 777,
we obtain

-~ o o l o N—00
E () — Ae)| S e+ (My+ 1)) E— Y AlrLiagrsng e,
n k=1

This proves the result since € is arbitrary. O

We proceed to show that the conditions above are also sufficient for the
consistency of the estimator (2.2). We need first to introduce a truneated version
of (2.2) via the following Lemma.

Lemma 2.2. Let

Biip) = Zsﬂ ( rp = Zrp 1) Vie(Z,p~2,p _ g (2.12)

g k=1
and assume that (i)-(1i) of Proposition 2.1 holds as well as
(@) T — o0, a.s.
Then,
Jim E {B(0) — Bule) } = 0. (2.13)

Proof. For a given Ty > 0, let tg 1= £o(Tp) be such that if 0 < ¢ < &y, then

E {le(Ze)|11{1p(za>Toy } < 28 (f (@)L |y pmroy v (d} V To_l) - (214)

Such a to > 0 exists since [p(-)|1{jp()>} satisfies the conditions 2.1 with the
behavior 3(a) and thus,

1
lim 7 Bl (20 gotzo5ma} = [ @) Lgptorsmy(da).
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Note that

E|5.(#) = Bule)| < —,,,le(zf;;—zf,?_l)|1{|¢<z,:_z,:_])|>f,¢} (2.15)

ﬂkw

1 n
E— > lo(Zep = Zep Mlirnay)

ﬂ. k=1
1 T
E Z (Zrp = Zrp N{le(zep -2, )i>Ta}

'ﬂ.

Conditioning on {7 }x<n in the last two expectations and using the stationary
increments of Z, it is evident that E |8 ()} — 8.(¢)| can be bounded by

—n Z |tp|(AkT 1{Tn<T0} + E_ZHhPil{iwag}(AkT) (2.16)
Tn k== n k=1

where as before Hy,(t} == E@(Z,;). Using that M, = sup,., 1 E|e{Z;)| < =
and that > p_, 77" = 7%, the first term in (2.16) is bounded by M,P{r* < Tq).
Similarly, using the same identities and {2.14), the second term can be bounded
as follows

Z Hiof101 510y (BET) {1{A"r<to} + 1{A“T>t0}}

™ k=1
I <, .0
) > (ATT) Liapezts)
LESa "oy |

< 2(f e (@)L (o)) v(de) V T5 1) + M, E {T
Putting the previous estimates together and using (2.10) and (iii),

hmsup‘E {ﬁt () — ﬁn(ga) < 2 (f ko (2) [ L1y |>moy v (de) v Ty )

TL=——r 30
which can be made arbitrarily small taking Tp large enough. O

Theorem 2.3. Under the conditions of Proposition 2.1 and (i) in Lemma 2.2,
the statistics Bn () in (2.2) are consistent estimators for B(ip) in (2.8).

Proof. We apply arguments similar to the weak law of large numbers for row-
wise independent arrays as described in e.g. [3, Theorem 5.2.3]!. Let € > 0. We
first note that in light of Lemma 2.2 and Proposition 2.1, there exists ng > 0
such that

E () — Ble)| < /2, (2.17)

1The results in Chung are proved for i.i.d. random variables, but they can be readily
extended for row-wise independent arrays
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for any n > np. Next, assuming (2.17) and noticing that G,(p) = B () on the
event E = {|p(Zrp — Zop )| < 77, for all K},

B8 () = B)| > £) < PUBn() ~ B(0)] > &, B%) + P(Bi ) — ()| > &, E)
< P(B) + BB} (0) -~ Ble)] > o)
< P(E%) +P(fi(p) - EBL(0) > 5)

Using Chebyshev, we obtain that for n > nyg,

P{|Ba(e) - Bp)| > €} < Bu+ 50n, (2.18)

where

n

B,:=S"P ﬂp(zfr —Ze )| > T;;] , O, :=Var (ﬁ;(p)) .

k=1

We show that B, and C,, vanish. First, using Markov inequality, under the
convention that 0/0 =0,

By < E { Z|<P| rp = Lap_ l)l{lsol(ZT:—Z,:_le{‘}} =

"kl

which is the expression in the right-hand side of (2.15) and hence, it can be
proved to converge to 0 along the same lines as in the proof of Lemma 2.2.
Next, using the law of total variance, conditioning on 7» = (7J, ..., 1%),

Var (,@;(go ) Var ( {ﬂn "}) + E {Var (ﬁfl{cp)| 'r.")} . (2.19)

Let us denote D, and E, the two terms on the right-hand side of (2.19). Con-
ditioning on 77, the terms in {2.12) are independent, and we can write:

1 n
D, =Var ('r_” E IE Zt)1{|¢(zt)[<s}] |t_An1_ S_Tn) {2.20)
n o1 S T
1 k)
2
En< B ((72)2 ;:1: E [¢*(Z)1{jp(z)1<2)] LAET;_T:) (221)

Clearly,

1 T
Dy < 2Var (“;;Z o)z |, _n) (2:22)
Th Py =ALT,s=T]

+ 2Var (i
T o

> Hy };‘T)wé(w)), (2.23)
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where as before H,,(t) .= E {p(Z:)}. Using the inequality Var(X) < EX?, the
estimate (2.9), and that 72 = >~¢_, 77, the term on the right-hand side of (2.22)
can be bounded by

M, E ( ZE [lel(Zelgpza>a] |, n)
et TERTE

which again converges to 0 by the same arguments as the reasoning following
{2.15) in Lemma 2.2. Using again Var(X) < EX?, (2.9), and 7% = 57, 72,
the term in line {2.23) can be bounded as follows for any fixed £ > 0:

(M, +13(0)) —1;,;2
ﬂ‘k

- ﬁ(w)‘
< (M, + |B(p))? —n Z ARTL(arrt} + (M + [B(0)])e,
o 4=

where fg = to(c) is chosen such that {H,(2)/t — B{y)| < €. In view of (2.10)
and since & > 0 is arbitrary, we conclude that term (2.23) converges to 0 and so
does D,,.

We now prove that the term on the right-hand side of (2.21) converges to 0.
We shall use the inequality

E |Z|21{IZ|SS} S 23‘[(0 5 E {|Z41{|Z[>us}} du, (224)

which can be easily deduced as follows:

E|Z[PLy 70 = zf WPl < |Z] < sldv < 2/ WP[|Z] > v]dv
0 a

1 1
< 252f ulP[|Z| > us]du < 28/ E {lZ{lﬂzpus}} du.
0 0

Applying (2.24) to each term in (2.21), B, can be bounded by

1
Z|1 <
(,rn Z/ E [lo(Z) 1 ez 5us)] L:A:T!s_ﬂdU) = 2/0 s (w)du,

L
(2.23)
where we defined
1 "
= ]E — E E Z 1 ug *
Sn{u) (7_1,;1 e ‘(ID i I {I‘P(Zf)|> }] t=A:’T,S=T::)

Note that s, (u) < M, for all w € [0,1]. Fix ug € (0,1) and 0 < Ty < co. There
exists g := to(ug, Tp) such that

0= E [|o(Z0)] 11p(z)i>ueToy] < 20 f (@) L{jp(z)>uoToy¥(dz),  (2.26)
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for all 0 < ¢ < {5. Using that

Yipzeisus) = Lsgmo) + Hlp(z)>u0Ta}s

for any w > up, We can have:

2 &
sn(u} < 2M, IED(T < T(] "l" E (;Z E ‘(,0 Z; 1{|P(Zt)|>u0T0}} |t—A" ) ,
=AflT

L S |

for u > wup. Next, by breaking up the summation above into those k& for which
AT > tp and those for which A} < % and using that E [je(Z)|] € Myt and
(2.26), for any ug <u <1,

sa(u) < 2M,P(r™ < Tp) +2M, IE—ZAkT1{AnT>tO}+4f|¢|1{“,,)%%}@.
Tn k=1

Breaking the integral in (2.25),

E, < 2uoM, +2M, E— Z ART(anrt)
Ta k=1

+2MR(T <)+ 4 [ Ip(@)| L ptpisuom (o)
In view of conditions (ii) and (iil} of Proposition 2.1 and Lemma 2.2,

lim sup £, < 2upM, + 4/ le(@)] Lijp(a) >uoTo ¥{d2),

n—00

which can be made arbitrarily small taking ug small enough and T; large enough.
This proves that the second term on the right-hand side of (2.19), and thereof
(2.18), vanishes as n — co. O

Remark 2.4.

1. Clearly, (2.9) will be satisfied if the Conditions 2.1 are true and ¢ is
bounded. Moreover, (2.9) holds as well, if ¢ has linear growth, Conditions
2.1 are sotisfied, and Z has finite first moment. Indeed, in light of (2.6),
there exists tp > 0 such that supgoc, Elp(Z:)|/t < oo. Suppose that
lp(x)! < clz|, whenever |z| > zy for some zq > 0. Then,

1
sup ¢ ]E|‘P(Zt)E<CSUP E|Zt|+_ sup |o(z)].
to |z|<z0

Hence, it remains to show that the first term on the right-hand side of the
above inegquality is bounded. This follows from the inequality:

E|Z{ < [t|E|Z|+ EZ7,




J.E. Figueroa-Ldpez/Nonparametric estimation of time-changed Lévy models 15

where Z} = supyc [Z;|. EZT < oo in light of Theorem 25.18 in [23],
which i3 actually “stated for submultiplicative moment functions g, but
which can be readily modified to cover subadditive g as well.

2. Suppose now that © has guadratic growth, Conditions 2.1 are satisfied, and
Z has finite second moment. In that case, there erist constants ¢j, ¢y > 0
such that

E|p(Z)| < ert + eat?,

for ollt > 0. Proposition 2.1 and Lemmae 2.2 hold true if one impose (1ii)
of Lemma 2.2 and the following condition instead of (£.10):

. 1 - n_\2% _
Jim B {:r(_tf) ; {AgT) 1{A372t0}} =0,

for oll iy > 0. For Theorem 2.3 to hold true, it suffices (i) and thet, for
any tg > 0,

Jlim E {T @ ;(Akf I{A}:T>to}} = 0. (2.27)

More precisely, when trying to show that the different terms of (2.18)
vanish, the following limit naturelly appears:

2
,}Lnéo]E{ (tn)Z(AkT) l{A"">t°}} d

which can be linked to (£.27) in view of the Jensen’s inequality:

2
1 . n 1 - 2 A0
(1-_;: kZlekAk) S T—ankL\k, a.8.

‘We finish this part with a closer look into the pure Lévy model where 7(¥) = ¢
and X = Z. In that case, 3.(ip) = Bn{) and the condition (ii) of Proposition
2.1 is satisfied whenever 8™ := maxx{t},, — 7} — 0. Thus,

lim Ba(e) = Blp), (2.28)

provided that T;, - 0o, 6™ — 0, and ¢ satisfies condition (i) in Proposition 2.1.
It turns out that (2.9) is not needed. The following result generalizes Theorem
5.1 in Woerner [24] for non-regular sampling schemes and simpler functions ¢.
For the sake of readability and to continue presenting the main subject of the
paper, we postpone the proof of the below result to the Appendix A. The proof
we presented shows the explicit connection between £ > 0 and the thresholds
time horizon T' and mesh 4.
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Theorem 2.5. Suppose X is o Lévy process with Lévy triplet (b, 0%, v) and let
¢ be a function satisfying conditions 2.1. Then, the estimator 3" (@) of (1.6) is
such thot for any O < e < 1, there exist T < oo and § > 0 for which

2

whenever £, > T and mfx(tk —tp_1) < 4.

F (@) - Blo)| > e} <, (2.29)

3. Random clocks driven by ergodic diffusions

In this part we consider random clocks {7(t)}:>0 of the form (1.4) with »(¢) .=
g(7(t)), where g is non-negative function and {#}4>0 is an ergodic diffusion
process; that is, {F{f)}s»>0 is & regular recurrent strong Markov process with
continuous paths taking values on an interval I = (a,b) C R (see e.g. [13]). As
it was explained in the introduction, mean-reverting processes 7 and monotone
continuous functions g are especially attractive since in that case the resulting
time-changed Lévy process X(t) := Z;(; will exhibit the volatility clustering
effect.

Proposition 3.1. Assume the model (1.3)-(1.4) under the following setting:

(A) Z is o Lévy process with Lévy triplet {a?,b,v);

(B) The instantoneous rate process r is independent of Z and is given by
r(t) = g(F{t)) for a measurable non-negative function g and an ergodic
diffusion {7 }e>o with

ma(g) == sup E g°(7(t)) < co, (3.1)

and invariant measure ¢ satisfying that {(g) = [ g(z) {(dx} € (0, 00).
Then, the statistics
o 1 <&
Bule) ==Y v (X — Xz ). (3.2)
7 k=1
are consistent and asymptotically unbiased estimators for ¢ (g)é(tp) when T, —
oo and 8" 1= m}gx( w —tr_q) - 0, provided that

(i} @ 48 a eontinuous function satisfying Conditions 2.1 and (2.9);
(it} (2.10) holds true;
Proof. Note that

Tn r(u) dedu
Ba(i0) = Bnlo) M}-))—d-

T,
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By the ergodic theorem (1.13) the last factor converges a.s. to ((g) and hence,
(iit) of Lemma 2.2 is satisfied. Consistency is now clear in light of Theorem
2.3. For unbiasedness, first note that 7(¢) .= fo w)du/% is uniformly integrable
since

1/t 2 t
sup E (—f r(u)du) < sup lf E ¢*(r(u))du < my(g) < oo
>0 t Jo >0 ¢t Jo
Also, by the ergodic theorem (1.13), im;_,o, 7(£) = {(g) a.s., and thus,
hm E |’r(t) ¢(g) | (3.3)

Next, we write

E Bule) = C(9)EBuly) + E

(2 -¢0) £ 3-m,0m)]

n k=1

The first term on the right hand side converges to £(g) 3(2), while the absolute
value of the second term is bounded by

M,E | =

= - gla)| = M Jr(e) - <o)] =

O

In the case that g is bounded, the conditions (3.1), (2.10), and {(g) < oo hold
automatically, and thus, the following two limits are true:

lim Bu(e) =C-Bly),  lim Efa(e) =< Bly), (34)

Given that r(t) = g(7) plays the role of volatility, one could argue that there is no
reason to assume that the volatility will take arbitrarily large values, and thus,
the boundedness assumption for g is not completely implausible. Nevertheless,
since an upper bound for g cannot be determined in principle, it is natural to
consider the case g{z) = zl.»0. Note that in this case, for (3.1} to hold, it
suffices that

mg = sup E7(t) < oo. (3.5)

>0
The following lemma gives & useful sufficient condition for (2.10) to hold.

Lemma 3.2, Under the setting (A)-(B) of Proposition 3.1 with g(z) := 21550,
condition (2.10) is satisfied if

lim limsuplP |3k s.z. sup |,,,. (z_l)lzé(fﬂ_m)] =10,

M= o tefp 51:

for any to,m > 0, where I}y = [t}_,, 1]} and 6} =t} | — 1%,
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Proof. Fixm > 0. Forn > 1, let B := {k € {1,...,n} : supeir
m}. Clearly,

m () <

k—17k

limsup E —r_ Z (AR Lanrg) < hmsup ]E — Z (AR} Lign sy /my = 0,
e ™ keBp % keDa

where the last limit follows from the fact that 8™ — 0. Next, let O™ := {k €
{1,...,n} :infycpyn i} 7(t) > m}. Then,

k=1""k

1 u)l du
limsup E — Z (ART) 1{arr>t} < limsup E fo U)oz my )
™ kT2
n—ee " peom n—oo fo 7{u) 15 >0du
_ 2 ¢t
fom z ((dx)’
by the dominated convergence theorem and the ergodic theorem (1.13). Next,
let Dt = {k € {1,...,n} : 3 u,v € [tf_,,t7] with #{u) < m < #(v)}. Now,
if k e D7 is such that ART > fo, then sup,cyn  4mi 7(t} 2 3% and thus, the
following inequalities must be true: f

- rim I/t
sup |r(t} — r(tk_1)| > 3 (g - m) .

tE[t}':_l ,t‘,’c‘]

If &7 denotes the event that there exists a & satisfying the above inequality,
then

limsup B — Z (ART) Yazrrstey < limsup PO,

n—oo n keDm n—oo

Putting together the previous estimates, for each m > 0,

limsup B — Z(Akv- iaprot) < fm mg‘( ?) +]1msup]P[Qm]
n—eo n ) f(]
We finally make m — oo. 0

The most well-known examples of diffusions are solutions to Stochastic Dif-
ferential Equations (SDE) of the form

A7 (t) = b{F(L))dt + o (7(2)) dW,. (3.6)

Two important instances of mean-reverting diffusions of this kind are the Ornstein-
Uhlenbeck process and Cox-Ingersoll-Ross processes (see Examples 3.4 and 3.5
below). Conditions for the solution of (3.6) to be ergodic can be found in e.g.
Van Zanten [26]. We will make use of moment estimates for {3.6) in order to con-
clude the sufficient conditions of Lemmas 3.2. Under a linear growth condition
of the form

b(@)| + |o(@)] < K (1 + lal), (3.7)
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for all z and certain constant K < co, it turns out that

E | sup |[7(sq+s) —F(50)"™| < kmh™ (1 + E |7 (s0)*™) e*m", (3.8)
0<s<h
for any sp > 0, 0 < h <1, and m > 1, where k,, is a constant depending only
on m and K. We present the proof of the above estimate in the Appendix B for
the sake of completeness. We are now ready to establish the consistency of the
estimators (3.2).

Proposition 3.3. Under the setting (A)-(B) of Proposition 3.1 with g(z) :=
zlz>0, suppose also that

(B’) 7 satisfies the equation (3.6) with the linear growth condition (3.7).

Then, the statistics ,én((p) in (8.2) are both consistent and asymptotically unbi-
ased estimators for the parameter (—,Bu(tp) with ¢ = fo" z¢(dx), provided that (i)
in Proposition 3.1 holds and also that T,, — oo and Ty, (87)2 =5 0.

Proof. From Propositions 3.1 and Lemma 3.2, it suffices to prove that for all
tg,m > 0,

1/ t _
nILII;OZP [sup |7(t) — 7t )| = 3 (A_ﬁ' ﬁm)] =

telr

Let n large enough that 6™ < to/{2m) and write ¢f = (to—md})/2 and s = 4/t2.
Using the bound in (3.8), one can find a constant K such that

> P [sup |[7(8) = 7(tE_,) } < 52(5“)2 [;s;g |7(t) - 7( 2_1)|2}

E=1 |*€IX

< (W) (k2) D_(60)° (L + E P(R_y)) &%
k=1

™
Z S < K(™2T, =50 0.

o
Example 3.4. For positive o, v and m, consider the mean-reverting Coz-
Ingersoll-Ross (CIR) process

dr(t) = e — r(1))dt + v/7(t) dW;, (3.9)

where {W;}izo is ¢ standard Brownian motion independent of the Lévy process
X and am/v? > 1/2. The equation above has o weak non-negative solution with
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Zmo w

unique positive stationary distribution I'(=32, 20[) Also, the conditional mean
and variance given r(0} are determined by

E [r@®)|r(0)] = r(0)e™* +m (1 - e_“t) ,
Var (r(£)|r(0)) = T’{O)% (tf""E - e_2°‘t) + m;—a (1~ e"“t) .

Clearly, this equation salisfies the linear growth condition (3.7) and all the con-
ditions of Proposition 3.8. Then, fn(y) is asymptotically unbiased estimator of
B(y) and Ba(y) in (3.2) are asymptotically consistent and unbiased estimators
of mé .

Example 3.5. Consider the mean-reverting Ornstein- Uhlenbeck process deter-
mined by the Stochastic Differential Equation (SDE)

di(t) = afm — 7(t))dt + vv2a dW;, (3.10)

where {Wi}li>0 s o standard Brownian motion independent of the Léuvy process
X. The solution to (5.10) is

¢
7(t) = m+ (F(0) ~ m)e ™ 4 v\/ﬁ/ e~ g,
o

and thus, given 7(0), 7(t) — F(Me™* ~ A (m (1 — &%}, 2% (1 — e72%}) . Note
that limy .o E 72(t) = v2 +m?, and the invariant distribution of ¥ is N'(m,v?).
Let b(z) := a{m—1} be the drift and o := vv/2a the diffusion of (2.10). Clearly,
this equation satisfies the linear growth condition {3.7) and all the conditions
of Pmposztzon 3.5, Then, ﬁn(tp) is asymptotically unbiased estimator of ,6( )
and Bn () in (3.2) are asymptotically consistent and unbiased estimators of w3,
where p = B (0Z +m),.

4. Consistency of the estimators for general sampling schemes

A rather relevant question is whether the condition 7,,(6")2 "=5° 0 of Propo-

sition 3.3 is actually necessary. This condition came from the path of proof we
chose in working with the modified estimator {2.2). It is of interest to know
whether or not one could directly apply the same reasonings to (3.2). We will
discuss this point here. In short, we find that the following condition plays a
similar role to (2.10) ir this direction of proof:

2
lim ]E{ Z(Akr 1{An.,>tn}} = 0. (4.1)

‘We will show that under the condition

maie(g) :=sup E|g(F())[**¢ < oo, (4.2)
t>0
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for some € > 0, the rate T;,(8")2 "=5° 0 is not needed.

Theorem 4.1. Consider the model (1.3)-(1.4) assuming the setting (A)-(B) of
Proposition 3.1 and also assuming (4.2} for some ¢ > 0. Then, the estimators
(5.2) are consistent and asymplotically unbiased for ((g)3(w) when Ty — oo
and 6™ — 0, provided that (i) in Proposition 3.1 is satisfied.

Proof. Let us assume for now that (4.1} is true. We shall see at the end of the
proof that (4.2) implies (4.1) whenever T, — oo and 6™ — 0. The proof is quite
similar to that of Theorem 2.3 working with 3, instead of 8,(y) and with

L
BLp) = E‘ Z‘P ( = Zrtp_ ) 1{'w{che;;—Zf(zg_l))‘Sfﬂ} (4.3)

n
" k=1

instead of ,@Tﬂ I will outline the general steps. First, we check that ,@'n(t,a) is
asymptotically unbiased. This will follow because, conditioning on {72 }x<n,

[EBn(i) ~ CBle)| < FnE ZA

K HoAAE) - 80)|

+Hg)| = E / "g(f(u))duﬁ ().

The second term on the rhs vanishes as n — co because of the ergodicity of 7
and (3.1), similar to the verification of (3.3). The first term on the rhs can be
bounded by

t

1 no c i n
e—E Q(T(u))d“'f‘t—n]E Z(AkT) Liapr>t}s
k=1

7
2 o n

for any & > 0 and some £y = fo(c) such that |H,(t)/t — B(y)| < & for any
0 <t < 2g. The limit of the second term above converges to 0 in light of (4.1),
while the first term converges to EC_ (¢), which is arbitrarily small. The second
step is to show that E {5,{w)—A% ()} = 0, which can be done almost identically
to the proof of (2.13). The next step will be to bound iP{ Bnlep) — C,B( )| }
as in (2.18) with 77 and G, replaced by t* and B.(¢), respectively, in the
definition of B, and C,. The limit of B, can be treated as before. For C,,
we use a decomposition similar to (2.19) with D, and B, being defined and
bounded as in (2.20-2.21) with 77 replaced by 7. The convergence of I, to 0
can be proved in a similar manner to the proof of Theorem 2.3. The term

Dy = Var( Z E [o(Ze)1pezcin] L:&:,,) ’

“kl

-
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requires some care. As before,

o 2
D, <2E (E];_l Z E [i‘PE(Zt)l{lcp(Zt)btg}] |zw.f_\."1-) (4.4)
nop—1 =B
+ 2War (%Zfﬂa( B - E(g)é(m), (45)
L =S|

Fix Ty > 0 and let 5 > 0 (depending on Tp) such that

E {el(Z)1fjpz)>10}] St (2/|go|1|¢!2T0duVT0‘l) ,

for any 0 <t < tp. Then, when ¢ > Ty, the term in (4.4) can be bounded by

1 [t _ I &
CE{t_ﬂ/O "'{”)du}z{]|§0|1|v,ai2TodVVTD 1}2+C’M‘PE{FZAZT1{A§TZM}}2:
"

™ k=1

for some constants ¢, ¢’ > 0. The above hound converges to

2
() { / |w|1mznduv%-l} ,

in view of (4.1), the ergodicity of 7, and (4.2). Making Ty -~ o0, we conclude
that the term in (4.4) vanishes. The term in {4.5), that we denote F,,, can be
bounded in the following manner:

n 2
Fo <28 { = > Atr (z o (a2 - ﬁ(@))}
N 1 )
+20(p)°E {rn / r(u)du—c(g)}
n V0

The second term on the right-hand side above converges to 0 because of the
ergodicity of # and (4.2). For a fixed &, the first term can be decomposed into
two sums, when ART < #y and when ALT > tg, where g = fo{(2) is such that
|H,(t) /t — B(¢)| < € whenever 0 < ¢ < fo. We then take the limits when n — oo
and use that € > 0 is arbitrary.

It only remains to check that (4.2) implies (4.1) whenever §* — 0. Indeed,
by Jensen’s inequality,

2 2
1 o= in 1 1~ 0
E {t_nZAle{A}:TZW}} < FE {E ;(Akr)l+e‘/2} (4.6)

" =1

1 n n 5 t: 2+e
=) [ () Ped
" k=1 ti1

1A
oec';m] =

=
——

1A
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which converges to 0. O

5. Central limit theorems

In this part we investigate conditions for the asymptotic normality of the esti-
mators (1.6). In the case of a true Lévy process, Figueroa-Lépez [14] proves this
result assuming that ¢ is bounded, i-continuous, and such that () = of|z|)
as # — 0. The random clock case is more challenging as in this case ,@n is
not the sum of independent random variables. We use the central limit theo-
rems for martingale differences (see e.g. Billingsley [3, Theorem 18.1]). Specif-
ically, given a filtration {F7}x>o for each n > 0, if &, is Fl-measurable and
E[ 7P ] =0, then

Sa= &km = oN(0,1), (5.1}

k=1

for a constant ¢ > O provided that the two conditions below are satisfied as
n — o0, for any € > O:

o0 O
g
YEELFRl =0t Y Bl 2] = 0. (5:2)
k=1 k=1
In this part, we take

Fr=c(Xy ugthvVol(r{u):u<ty), (5.3)

for given sampling points 0 = tf < --- < t = T,,. We consider the following
martingale difference sequence:

L =Ty /2 (‘P(Xt;: - Xip_ ) = Elp(Xep — Xep )|-7:;?—1]) ) (5.4)

k—1

for 1 < k < n, and &, = 0, otherwise. Define FZ = ¢(Z, : u < t), and
FI i=o(ry s u < t). Note that if ¢ satisfies the condition (i) of Proposition 3.1
and Er(t) < oo, for all ¢ > 0, then E|H,(A%Z7)| < co and

Elo(Xep — Xop_ )NFi] = E[HAFTIF L (5.5)

where we recall that ART = 7{(i}) — 7(t}_;) and H(t) == Ew(Z;) (see the end
of Appendix C for more details on (5.5)). We can then write (5.4) as

€ =T 12 (W(Xt;; - Xgp )~ ]E[HHO(AZTNF:;_J) : (5.6)

Also, we have that

Snim 3 b = T2 (Buli) - i)

k=1
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where
N 1 <& "
Pule) = 7 > E[H (AR)FL ]
7 g=1

Our first task is to find conditions for
Jim Bu) = (9)Blp)- (5.7)

Lemma 5.1. Consider the model (1.3)-{1.4) assuming the setting (A)-(B) and
condition (i) of Proposition 3.1. Also, assume that g is Lipschitz on R satisfying
(4.2) for some ¢ > 0, and that 7 satisfies (3.5) and condition (B} in Proposition
3.3. Then, (5.7) holds whenever T, 7 oo and 6™ — 0

Proof. Since Ef,(p) = EBa{g), it follows that lim,_. EB,() = {(g)8(0)
in light of Theorem 4.1. Hence, it suffices to show that

nli—{l;o Var (Ba{p)) = 0. (5.8)

For a given £ > 0, let £y := ip{e) be such that |H,(2)/t — ,5((,0)\ < g, whenever
0 <t < tg. Next, decomposing H,{A%r) as follows

1 y . 5
(Agf Ho(a3r) - 'B(‘P)) % (Lagres + Laprsio ) + B(P)ART,
with the convention that 0/0 = 0, and using (2.9), it follows that

Var (8a()) < 46% E (62 1) + 4(M,, + |B(0)|) E (02 ) + 45 (0)* Var (pn,1),
(5.9)

where

1 - n 1 & n T
pap= ) BIARTIFL L papi= 7 ) E[AR 1 aprony 177, )
k T o=

™ k=1 1

First, we note that {4.2) implies (3.1), and by Jensen’s inequality,

1 o ™
Epni <7D Er*(u)du < ma(g)-
Tn k=1Ytk-1
Let I = [tf_,,t}] and 8 == — 2, . Following a procedure similar to (4.6),
we can obtain that

t—a tk _
Prz < 2D (F)FE [ /t |g(F(u)) P+ du
i e

—1

fg;c—].] 4
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Then, using (4.2), Ep2 , < 5°(6™)*ma+e(g) — 0. Let us analyze the last term
n (5.9). First,

Var (pn.1) < 2Var (pn,l - TiﬂT(Tﬂ)) 4+ 2Var (; (T )) (5.10)

Using Jensen’s inequality and the fact that
2
E(EF@IF, |- @) <E (@) —rw)’,

the first term on the right-hand side of (5.10) can be bounded as follows:

1 o % .
T_ng./tg_lE(T(tk_l)—Tu du<1—125kEusgI.; |r {u} — 7t} _ l)l ,

where K is the Lipschitz constant of g. This converges to 0 in light of (3.8) and
(3.5). The second term in the right hand side of (5.10) converges to 0 since

Var (Tinf(:rn)) <E ("TIZ fo W — g‘(g))2 nose )

The above limit is & consequence of the ergodic theorem (1.13) and the fact that
(! fDT ™ r(u)du)? is uniformly integrable, which in turn is guaranteed by {(4.2).
We finally conclude that

limsup Var (5 (¢)) < dma(g)e?

n—oo

and since £ is arbitrary, (5.8} follows. O

Proposition 5.2. Suppose that the conditions of Lemma 5.1 hold true and also
that ©° satisfies Conditions 2.1 and (2.9). Then, when T, /" co and §™ — 0,

T2 (Bul) = Bule)) S (N (0,1), (5.11)

with a2 () = E(Q‘).é(‘ﬁz)

Proof. We need to check that (5.2) holds for {5.3) and (5.6). First,

(
o= B I = ) - 7 3 ([ )

n

In light of Lemma 5.1, 8,(¢?%) 2, a*{ip). The second term on the right-hand
side, that we denote A,,, converges in probability to 0 since

P20 < B Y (B [Hypnim ]}
n k=1
 MEmae) 1 ¢

i tn_tn_ 2“:‘;30'
c Tn. k:I( k k 1)




J.E. Figueroa-Ldpez/Nonparametric estimation of time-changed Lévy models 26

Now consider

1 ¢ 2
Bn = T_n kz—l E {(P (th B th_l)l“'{’(xtk“thm1)|ZT,1.j2€/2}} ’
Fix a To > 0 and let o > 0 be such that |Hgey . (8] < 268(¢*1 121, ), for
all 0 < < tg. Then, conditioning on {r7}7_,, for n large enough,

Ba < 26(6*piam,) Z]EAQH o Z {8571 apesin }

which limsup is bounded by 28(w 21E<9I>To) since (1/T,) 3 he; EART < m1/2
and (4.2) implies (4.1) (see the last part in the proof of Theorem 4.1}, which in
turn implies that the second term on the right-hand side above vanishes. Since
Tp can be made arbitrarily large, limsup,,_, . B, = 0. Next, conditioning on

Fi-

1 & .
Cai=7- > E {‘P (Ko = X e apnizr 1[>Té’2s/2}}
=1 !
1 T
S M‘PQT_H Z ]E {IE[A tk 1] {lE[A“T' tk 1]|>M;1T;/2€/2}} 1

k=1

< MMy 3/ZZIE{IE AR\ }

which can be shown to converges to 0 as D, below converges to 0. Using Jensen’s
inequality,

1 = My & n ' g
=7 Y E{EHOIIF_ P < T -6 [ B
" k=1 T =1 k-1

which clearly converges to 0 in light of (4.2). Thus, we obtain the second limit
in (5.2) because

(e o)
> E[EE n1ig, nize] < 2Bp +2C, + Dy
k=0

In light of the Central Limit Theorem for martigale differences stated at the
beginning of this section, we obtain (5.11). O

We proceed to show a central limit theorem for 8, () of the form

Ty (Balp) - ¢ (g)ﬁ(w)) 3, f(g)T2(g)N (0, 1), (5.12)
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for certain positive constant I'(g}. This result suggests a CLT of the form

Y2 (Bale) - C@B(2)) 5 (0%(0) + Ble)PT () 2N 0, 1), (5.13)

However, we haven’t been able to obtain such a result and we expect to ad-
dress this issue in a future work. We shall make an assumption on the rate of
convergence in (2.6).

Conditions 5.1. There exists a tg > 0 such that

L B, - 5(90)‘ < ko, (5.14)

for any 0 < { < tg and for a constant ko independent of t.

Remark 5.3. Condition 5.1 turns oul to hold for a wide class of functions
such as the following:

1. ¢ is supported on an interval [c,d] C R\{0}, where ¢ is continuous with
continuous derivative {c.f. [12]).

2. € C? vanishes in a neighborhood of the origin, and for each i = 0,1,2,
)| is bounded by an element g; in the class S(v) of (2.5) (c.f. fi3]).

3. @ is bounded, v-continuous, satisfying eny of the condilions (a)-{f} in
Conditions 2.1. This result can be shown using a second order polynomial
ezpansion for smooth functions and mollifiers techniques similar to the
ezpansions obtained in [16].

Proposition 5.4. Suppose that Condition 5.1 above holds as well as the con-
ditions of Proposition 5.2 with T8 "= 0. Then, (5.12) holds true.

Proof. We recall that under the stated conditions, the diffusion {#(¢)}:»q obeys
the central limit theorem

Vi(3 [ serau- [aaxa) 2xoren 619

for a certain constant I'(g) > 0 (see [23] for an explicit formula for I'(g) and
references therein for a proof}. Also,

- —_ o -4 Tn e
132 (Bale) - L)) =ﬁ(tp)Tn“”2/0 (9(7(w) = C(9)) du + Rn,

where

Ro= 1S B [ (-, (00 - B0) ) A

k=1

}7} (5.16)

k

T,

< R n 1
+ Ble)Ta? {EEE [Amm_l] - T_nfo r(u)du}. (5.17)

1
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Thus, to show {5.12) it suffices that R, converge to 0 in probability. Denote
Ap the first term on the right-hand side of (5.16). Note that without loss of
generality, one can assume that (5.14) holds for all ¢ > 0. Then,

ko —1/2 - n.\2
zel<€ —
P14 2 ¢ < 271 5 B ()

k=1

- 3 g k -
= méQT';l/z > — 1 )E f“ r2(u)du < m_z(g,)ﬂﬂﬂl%n‘
k=1

tkAl

which converges to 0. For (5.17), we proceed as before when proving that the
first term on the right-hand side of (5.10) converges to 0. Indeed, denoting B,
the left-hand side on the left-hand side of (5.17) and using Markov’s inequality,
Lipschitz condition of g, (3.5), and (3.8), we obtain that

1 i n 2 K Tr, —00
P(|B.l 2z g] < = ;rik E f:;p; [r(u) —r(t}:_l}! < EQ—anS = 0.

This concludes the proof. [
Note that Tpr/2 (f?n (¢) — ¢ (g)ﬁ(tp}) can be decomposed as follows:

n - o T _
/* (ﬁﬂ(so) = ﬁn{so}) + 8T, fo (9(7F(w)) —C(g)) du+ Rn,  (5.18)

where I, is defined as in (5.16). In the proof of Proposition 5.4, it was shown
that R, converges to 0 in probability, while each of the first two terms converge
t0 a normal distribution in light of (5.11) and (5.15). To conclude (5.13), it will
suffice that the first two terms converge jointly in distribution, an issue that we
are actively pursuing as of this writing.

Appendix A: The pure Lévy case

In this part we present the proof of Theorem 2.5. Even though the proof below
can be simplified, we choose this line of reasoning to show in an explicit manner
how the constants I" and ¢ depend on & > 0. For instance, in the case that ¢ is
bounded, one can deduce that T grows of the order of £~* when £ — 0, while §
will have to be chosen such that {a)-(c) below are satisfied.

Proof. 'Through this part, ¢, denotes an even continuous function such that
1fjz>20) <, (z) < 1(jei>h}- Let h be large enough that ([ le(®)|e, (z)v(dz) v
h™1) < £%/2%, and let 0 < up < 1 be small enough that ug (ﬁ(lw[) Y 1) < g3/28.
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Take T' large enough that ugT" > supjy<op [¢(z)]. Choose 6 > 0 such that for
all 0 <t < 4,

@ &l (050) <2t [ ot @puian) vi),
(8) E lo(Xol < 2t (Bl v 1), (o)

B - E(W)‘ </t

The existence of such a 4§ is guaranteed because (2.6} holds for ¢ and also for
|| e, and |p|. Suppose that m : 0 = 5 < -+ < {, is any sequence such that
t, > T and mgx(tk —tg—1) < 8. We apply similar arguments as in the proof of

Theorem 2.3. Let 8 = £, — -1 and A™ = Z:=1 E [@(Xﬁk)l{lfp(xak)[ﬁtn}] .
As in (2.18), it can be prove that if

- bl <2 (A1)
then A
P{|87(0) - Blo)| > e} < B" + S0, (A2)
where

n

- . 1
BT = 3 Plle(Xa)l > ), C"i= 2 Y B [lo(Xa ) Ltpxsyisen) | -
k=1 ™ k=1

Due to the way h, T, and § were chosen, it follows that
E [le(Xs) | Lptxa et ] < E lo(Xa) e, (X5,)]

<25 [ let@le,@utaz) va~t)

which is smaller than 6,e?/2% < &,e/4, and thus, using Markov’s inequality,

-
BT < t—Z E [|<P(X«sk)| 1{Erp(Xsk)|>tn}] <e/d. (A.3)

k=1

Next, applying (2.24),

1 2 2
EE [E‘P(Xék” 1{I<P(Xa,‘)1$tn}] < a/((n) E [I‘P(Xdk)f1{|¢(x6k)|>utn}] du,

and thus, C™ < 2 f(n 1y Sn{)du, where

1 n
sn(u) = — Z E |59(X6k)11{|‘1°(x6k)|>ufn} .
[ =
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By (b) above, s,(u) < 2(,5’(|gp|) vV 1), for any u € (0,1). Furthermore, s, (u) <
e3/2%, if u € (ug, 1), in light of the following bounds:

E [I‘P(Xak)ll{lzp(xak}butn}] <E [l‘lp(Xﬁk)ll{ho(Xsk)])uotn}]
3

£
< E lp(X)le, (X)) < 20 [ lp(e)le, (0)v(de) < b

Combining the two bounds for s,

o 1 . &3 &3
c™ < zf sn(u)du+2/ sn(u)du < 4u0(,8(|go!) v 1) +o<Z
0 o 2¢ 7 8
Using the previous inequality and (A.3), we conclude that (A.2) is bounded by
e. It only remains to prove (A.1). Using the second inequality in {A.3),
b 1 n
il > Ep(Xs)

T =1

1 n
< . Z E [|W(X6k)|1{1w(xak)|>*“}] <e/4,

By (c) above, |51; k=t Eo(Xs,) - /5’(99)’ < /4, implying that |%— - ﬁ(so)l <
/2.

Appendix B: A moment estimate for diffusions
In this part we prove the moment estimate (3.8) for the solution 7 of the SDE
(3.6) under the linear growth condition (3.7). The ideas are classical (see e.g.
the solution to Problem 5.3.15 in [14]). Below, k,, stands for a generic constant
depending on m. First, note that

Zm}

g0+
/ b(F (u))du
By Jensen’s inequality and (3.7), | st°+5 b(7(u))du|*™ can be bounded as follows:

2m

fso+s I

50

{7(s0 + 8} ~ F(s0)|*™ < ki { +

0]

so-+3 sp+s
=t [ ) P < s [ e au

S0 S0

< (st sl [ ) — o))

50

Let 73 :=inf{s > 0 : |F(s + so)| > k}. By Davis-Burkhélder-Gundy inequality,

so+hATE m
f o2 (F(u))du

S0

2

S0+3
/ c(F (W) AW < kB

S0

E sup

s<hATE

sot+hATL
< kph™ 1 E [ o2 (7 (1)) du.

&o
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As with b(-), we have the following bound for any s > 0,

fso+s a*™ (7 (u))du < ke (s + 5|7 (sq) |2 + /’Sg-!-s () — #(s0) "™ du) _

S0 40

Then, using that 0 < A < 1 (and hence, A2™ < B™),

/s + B(F(u))du

/ " e,

f0

2m

E sup [f(so+s)—7(s0)®™ <kn.E sup

s<hATE s<RATY

2m

+krE sup
s<hAT,

< h™ + k™ E [7(s0)[2™

I
+ k™1 f E sup |#(so+ s) — 7(s0)[*™ du.
Q

SLUATY

Denoting yx(h) := K sup,cpar, [F(50+3) —7(s0)|*™, we obtained the inequality

h
Ye(h) < kmh™ (1 + E|7(s0)[*™) + kmfo i (u)du.

Finally, by Gronwall inequality (see [19]), va(R) < kmh™ (1 + E|F(s0)[?™) ebF=h.
Inequality (3.8) will follow from making k& — oo,

Appendix C: Conditional expectation given the random clock

In several occasions, we use conditional expectations of the time-changed Lévy
model X; := Z,;) given the random clock 7 and /or past evolution of X. In this
part we intend to formalize this procedure under the assumption that Z and 7
are independent,.

(1) Let 0 < tp < -+ <ty < 0o and let 7 := 7{ty). For given 0 < 5 < - <
sp < 00, we first show that the distribution of Z,, — Z,,..., Z,, — &, _, given
To = 80y.-.,Tn = 8y, is the same as that of Z,, — Z,,,..., 2, — Z Let

Sn—1-

T
Myg, s (ug, - -y ug) = E J] eFon=Fu),
k=1

let A€ al(m,..., ), and let £m(t) = Z’;‘:l %1[;;_1’%)&) + M1 [m,c0) (t). First,
by the right-contunuity of Z and dominated convergence theorem,

Tt

"
B H eiuk(Z.,k —Zyk_l)XA = lim E H Eiuk(an(rk)_znm”k_l))XA'

-0

k=1 k=1
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Using the independence of Z and 7, the expectation after the limit in the pre-
vious equation can be expressed as follows:

Z E ]:[ eiuk(Z%—Z;ﬁ;‘;J H 1[%’%)(1":)){‘4
k k=0

1ZjoL- - LjnSm? =1

n
= Z M%ﬂ’m’_-mm(ul,...,un)]EHl[i%,%)('i‘k)x,q
Jo L Lin k=0

= B Mg, (ro},.cortm(rn) (B1s - - - Un }XA-

Using dominated convergence and right-continuity of Z, the last expression con-
verges to EM, - {(u1,...,un)xa4, a5 m — oco. Thus, we proved that

IE (H eiuk(z'rk _ZTk_l)XA) = E (MT(),...,Tn (ul) R ] 'U'n)XA) 1

k=1
and hence,
n
g (L, —Zy
E H e'““c( k kVI) Toy++ 1T =MTO|“'1TI’I-(u1,-..,un)I
k=1

One could similarly show that the distribution of Z;, - Z,,, ..., Z;, —Zr, _, given

F7 = o{r(t) : t = 0) is the same distribution as that of Z;, — Z;,,..., Zs, —
Z

sney L S0 =To,..., 80 = Th.

2} As a consequence of the pravious result, if g : R” — R, is such that
p +

Eg(Zr, — Zrg, s 25y — Zr ) < 00, (C1)

then
]Eg(ZT1 - ZT(]? ] ZTn - ZTnAl) = ]EG(Tﬂv e ,’Tn), (02)
where G(sg,...,sn) = Eg(Z;,—Z,,, ..., Zs,—Zs,_, ). Furthermore, if g : R* —
R, is continuous and there exists an M < oo such that G(sg,...,s.) < M

whenever 0 < sp < --- < s,, then (C.1) holds and hence, (C.2) holds too.
Indeed, by Fatou’s lemma,

]Eg(Z‘Tl - Z?‘m e Z‘rﬂ - Z‘rn_l)
S lgll}élof ]EQ(ZHm(n) - Zﬁ.m(ru)a ceay Zﬁ-m(Tn} - Z.*:m(-rnﬁl))
< liminf EG{km(70), - - -, fim (7)) < M.

The above reasoning was used for instance to show (2.11) since, under the
assumption (2.9), G(so,...,5.) = (1/sn) 31y Hg((sk — s6-1) < M,
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(3) Let us show the identity (5.5). Let @, : R — Ry, k = 1,...,n, be
continuous bounded functions and let 0 =ty < ) < - <, <t < u < co.
Again, we write 7, = 7(tx). Then, conditioning on F7,

E[0(Zr(wy = Zrw) [] o1 Zr)ibi(m)] = B [Ho(r(w) = r@)mim, ..., )],
k=1

(C.3)
where Hy(t) := E@(Z;), and m{s1, ..., sn) = E [[1e; %(Zs, )95 (sk). Since
m(Tyy...,7) = E [H(pk(zﬁ)«pk(fk)

k=1

|
the right-hand side in (C.3} can be written as follows:

E [E [Hop{r(u) — 7N 1] ] %(Zm)wk(rk)] .

k=1

Since Fy7 < F¥ v F7, we conclude that

E [p(Xo — XIFE v F]] = E[Hp(r(u) - ()| F{ 1.
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