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Abstract

We investigate the asymptotic optimality of the multiple testing rules, using the framework
of the Bayesian decision theory. We concentrate on the multiple testing within the normal scale
mixture model proposed in [31] and consider the asymptotic scheme under which the proportion
of the alternative hypothesis P converges to zero. We characterize the set of the fixed threshold
multiple testing rules which are asymptotically optimal and prove the asymptotic optimality of the
rules, which control the Bayesian False Discovery Rate. We also provide the conditions under which
the popular Benjamini and Hochberg and Bonferroni procedures are asymptotically optimal. Qur
results show that the optimal BFDR level should depend on the expected signal magnitude and
the ratio of losses for type I and type II errors. Specifically, under our asymptotic scheme, the rule
controlling BFDR at a fixed level (X can be optimal only if the relative loss for missing the true

signals increases when P — 0.

1. Introduction

Multiple testing is a very important problem in statistical inference because of its ap-
plicability in understanding large data sets involving many parameters. A prominent
area of application of multiple testing is in the context of microarray data analysis,
where one wants to simultaneously test expression levels of thousands of genes (e.g.
see [12], [11], [38], [17], [23], [30], [31] or [37]). Various ways of performing multiple
tests have been proposed in the literature over the years, typically differing in the
target they want to achieve. Among the most popular multiple testing procedures
one could mention the Bonferroni correction, aimed at controlling the Family Wise
Error Rate, or the Benjamini and Hochberg procedure (BH, [3]), which controls the
- false discovery rate (FDR).

In recent years a substantial effort has been made to understand the properties
of multiple testing procedures under sparsity, i.e. in the case when the proportion
p of “true” alternatives among all tests is very small. A mile step in this direction
was taken in [1], where the properties of FDR controlling procedures are analyzed
from the point of view of the estimation of the sparse vector of means. Specifically,
in [1] it is shown that BH adapts very well to the unknown sparsity parameter p




and is asymptotically minimax over a wide range of sparse parameter spaces and
loss functions.

In the present paper we focus on the analysis of the properties of the multiple
testing rules from the Bayes Decision Theoretic perspective, assuming fixed losses:
dp and &4 for each of type I and type II errors, respectively. We believe that such an
approach is natural in the context of testing, where the main goal is detecting the
significant signals, rather than estimating their magnitude. In a specific example
when dp = 64 = 1, the total loss is equal to the number of misclassified hypothesis.
Very good properties of BH with respect to the misclassification rate under sparsity

were signalized in [16] and illustrated by extensive simulation studies in [7] and
~ [8]. [8] also contains some remarks on the relationship between the control of the
Bayesian FDR (BFDR), defined in [11], and the control of the Bayes risk. Moreover,
the results reported in [7] and [8] illustrate that for very small values of p the
Bonferroni correction has very good properties with respect to the misclassification
error.

In the present paper we support these experimental findings with the formal
results on the asymptotic optimality of the multiple testing rules. We consider the
multiple testing within the normal scale mixture model proposed in [31], [7] and [8].
The model differs from the model used by [1] in imposing a prior distribution on
the unknown vector of means. As discussed in Section 2, this model can be used
for testing the point hypothesis about the unknown means as well as for identifying
large means embedded in the multitude of very small signals. We consider the
asymptotic scheme when p goes to zero and the signals magnitude increases at such
a rate that the asymptotic power of the optimal Bayes classifier is larger than zero.
Our results confirm asymptotic optimality properties of BFDR controlling rules and
the BH procedure but they are qualitatively different from the results reported in
[1]. Specifically, we show that the rules controlling BFDR at a fixed level o can
be asymptotically optimal only if the ratio of losses % converges to zero. However,
this restrictive assumption does not undermine good properties of rules controlling
BFDR at a fixed level. It is quite natural to impose a large loss function for missed
signals in case when p is very small or the signal magnitude is large. We also show
that the optimal level of « strongly depends on the expected signal magnitude: in
case when expected signals are large one should use relatively small a.

The paper contains the results on the asymptotic optimality of BH obtained
under the assumption that the number of tests m — oo and p — 0 in such a rate
that p > l_ongil, for some constant v > 1. For the case when pm — s € (0,00) we
have proved the optimality of the Bonferroni correction. In Section 7 we present
some arguments and illustrative theoretical results suggesting that BH procedure is
optimal within an entire range of p — 0, such that mp — s € (0, co]. However, this
conjecture still remains to be formally validated.

The outline of the paper is as follows. In Section 2 we define and discuss our
model. In Section 3 we compute the type I and type II errors of the Bayes classifier
and formulate the conditions under which the asymptotic power of this classifier
is larger than 0. In Section 4 we give the definition of the asymptotic optimality
and characterize fixed thresholds multiple testing rules, which are asymptotically




optimal. In Section 5 we give the conditions under which a fixed threshold BFDR
controlling is asymptotically optimal. In Section 6 we formulate similar conditions
for the Bonferroni correction. Section 7 contains the results on the asymptotic opti-
mality of the BH procedure, while Section 8 contains the discussion and directions
for further research.

2. Statistical model

Suppose one has observations X;, ¢ = 1,2,...,m, where the X;’s are independent
for each 4 having distribution N(u;, 02). We assume further that for i = 1,...,m,
pi’s are iid from a mixture distribution (1 —p)dyey +pN (0, 72), where 72 is constant.
Our goal is to discover those 4’s for which y; # 0, i.e for every i € {1,...,m} we
test the null hypothesis Hy; : p; = 0 vs the alternative Hy; : y; # 0. In the next two
paragraphs, we say a few words about the choice of the model, its motivation and
relevance.

This kind of model is a popular one and is usually referred to as the two-groups
model, since the marginal distribution of the X;’s are given by X; ~ (1—p)N(0, 0%)+
pN(0,0% + 7). The models of this kind have been used in, e.g., Scott and Berger
(2006). People have employed this model to make inferences using parametric and
nonparametric Empirical Bayes methods for estimating the hyperparameters from
the data (see, e.g., Bogdan et al.(2007a, 2007b). In some cases, as in Efron (2008),

one uses X; ~ (1—p)N(0,1)+pF where F is any arbitrary distribution and nonpara-
metric Empirical Bayes methods are used more directly in the analysis. A model like
the last one is appropriate when, for example, one is testing against a nonparametric

alternative.

The data of the kind we consider in this paper are often generated from DNA
microarray experiments, where the gene expression levels (over or underexpression)
of thousands of genes (m) are collected for a small or moderate number (n) of indi-
viduals and the X,’s correspond to the expression level for the i-th gene. In such a
situation, the question of interest is which genes are “differentially expressed” i.e for
which 4’s, yu; # 0. A common phenomenon in such experiments is that the fraction
of non-zero p;’s is relatively small, thus giving rise to high-dimensional data with
“sparse” signals (see also in this context, say, Donoho and Jin (2004)). In this paper
one of our main interest is the situation when the X;’s are generated by such sparse
signals and the goal is to discover the signals. To reflect sparsity in the choice of the
prior for the p;’s, one takes p to be small. For p small, this model says that most
(precisely 100(1 — p)%) of the p’s are actually zero and the non-zero u’s have some
similarity. The assumption of similarity of the non-zero y;’s is also common in the
context of microarray experiments (as remarked, for example, in Scott and Berger
(2006)). To separate the signals from the noise, we take 72 to be relatively large,
see e.g., Assumption (A) and Remark 2.1.




In this problem, we consider a decision theoretic formulation with additive losses,
which goes back to Lehamann (1958) and seems to be implicit in most (but not all,
e.g Scott and Berger (2008)) current formulations. Within this general framework
we introduce a (Bayesian) Oracle that minimizes the expected loss when o2, p and
72 are known. The Oracle rejects Hy; if

o2

X? T2 72
Reject Hy; if }—;— > (14 ﬁ) (log(— +1) + 210g(f5)> , (2.1)

where f = l;;e andéz%}.

3. Bayes oracle and asymptotic optimality

2
Let us introduce the following notation: u = (Z) and v = u(fd)®. Below we
consider asymptotic behavior of the Bayes rule and some other multiple testing
procedures under the assumption

(A): u — 00, v — 00, 8% — C, where 0 < C < c0.

Comment. Observe that the variable v is a natural scale for strength of the signal
in terms of the variance of X under the null, and f measures sparsity while v is
natural reparametrization to simplify the threshold in (2.1). The significance of the
relationship between u and v prescribed in assumption (A) is explained in detail in
Remark 1. The reason for excluding the case C = oo in (A) is also given in remark
1 below and amounts to exclude the “nondetectable” signals.

We use the generic notation o,, for a function of u and v which converges to
zero under the assumption (A).

Theorem 1 Under the assumption (A) the risk obtained by the Bayes oracle (2.1)

takes the form
21
R = mpd 44 Ogv(l—i—ou,,,) , (3.2)
U

when C =0
or

R =mpis(20(VC) = 1)(1+0y,) , (3.3)

when 0 < C < oo. Here ®(-) denotes the cumulative distribution function of the
standard normal distribution.

Proof.
Let us denote by c2 ;; the threshold of the Bayes oracle (2.1), i.e. let
u+1
Cats = - log <(U + 1)f252)




Note that )
uf5 <1+1) 1+log(l-i-;)
logv logv

Since lim,_,q lig%j'—x) =1 it follows that

1
Cz,f,a = logv (1 + a) (1 + (1+ Ou,u)> = logv(l + 2y0) , (3.4)

where 1imy, 0, y—00 Zuu = 1. Note that ¢2 ;5 — co under condition (A).
Now, let us denote by ¢; the probability of the type I error and by t, the proba-
bility of the type II error. Note that the risk of the Bayes oracle

R = E(L) = m((1 - p)t1do + ptada) . (3.5)

ulogv

At the first step we will approximate the probability of the type I error. Note
that
tiv=P(Z]| > cuys) » (3.6)

where Z is the standard normal variable.
Let us observe that for any positive ¢

2¢(c
P21 > o) = 21—z (37)
where ¢(-) is the density of the standard normal distribution and z;(c) is a positive
function such that z;(c)c® = O(1) as ¢ — oo. This follows easily from w 11 known
tail estimates of standard normal distribution.
Moreover by (3.4) it holds that
AU l
@(Cy,1,5)V2mv = exp (—z——éﬂ>
This, together with assumption (A) yields
¢ [ 1
QZS(Cu’f,g) =e —-——(1 -+ Ou,v) . (38)

2mv
By (3.6), (3.7) and (3.8) we obtain

on |2
t1=¢€ c/2 W(l-}-Ou,v) . (39)

Consider now the probability of the type II error. Note that

1
2 2
tz =P <Z < "+ 1Cu,f,5) . (310)

Observe also that for any positive ¢

P(|Z] < ¢) = \/gc(l — %) , (3.11)




where 2z3(c) = O(c?)( as ¢ — 0) is a strictly positive quantity.
Using (3.10) and (3.4), a simple algebra shows that for the case 0 < C' < oo

ty = (20(VC) — 1)(1 4 0y). (3.12)

In the case where C = 0, (3.11) yields more specifically,

2logv
to = 1+ 044) . 1
2= | Tt (1 + ) (313)

Now (3.2) and (3.3) follow by combining (3.5), (3.9) and (3.13) or (3.12).

O

Definition. We call the multiple testing rule asymptotically optimal if under the
condition (A) its risk V = R(1 + o,,), where R is the risk of the Bayes oracle.

Remark 1. When C = 0 both type I and type II error of the Bayes oracle converge
to zero. When C > 0 type I error converges to 0 but type II error converges to a
constant. From (3.10) and (3.4) it follows that when u — oo and v — oo in such a
way that l‘—’%’—’ — 00, the power of the Bayes oracle converges to zero. We exclude
this range of “nondetectable” signals from our consideration. Now note that 1"%
converges to a limit if and only if &ffé converges to the same limit. This obser-
vation seems to give us a bit more insight on this condition. Let us first try to
understand the case when 4 is a constant. Note that u and log f (or equivalently
log (1/p)) are the basic parameters in this case when we interpret what the limit
means. The condition suggests that the magnitude of the signal and the amount
of sparsity should be suitably related for non trivial inference to be possible. In
particular, if the signals in the sparse sequence are significantly large (i.e C < 00),
they will be detected with high probability, i.e there should be some kind of parity
between the amount of sparsity and the magnitudes of signals. When 4§ is not a con-
stant, then the relationship between the sparsity of signals detectable by the Bayes
Oracle and their magnitude depends on the relative costs of both types of errors.

Verge of detectability - least favorable balls in Abramovich et al.

Remark 2. The asymptotic form (under assumption (A)) of the risk of the Bayes
oracle is determined by t;. In particular, it is easy to see that the same asymptotic
form of the type 2 error (as in (3.12) or'(3.13)) is achieved by any multiple testing
rule with the threshold value of the form ¢® = logv(1 + 0y,). Probability of type
I error is somewhat more sensitive to the change in critical value. If the o,, term
is always positive then the type I error converges to zero not slower than for the
optimal rule and the total risk is still determined by type II component. However,
if the o,, term can take negative values, the rate of convergence of type I error to
zero may be substantially slower than the rate of convergence of type II component
of the risk and the rule may not longer be optimal. These observations are formally
summarized in the following Theorem.




Theorem 2 Assume condition (A) holds. A multiple testing rule with the threshold
value ¢® = logv + 2, is asymptotically optimal if and only if

Zyn = 0(logv) (3.14)

and
2y + 2loglogv — oo. (3.15)

Proof.
Let us first prove sufficiency of (3.14) and (3.15) for optimality of the multiple
testing rule. The condition 2,, = o(logv) implies that t, = A\/l"—i—”(l + 04,) and

the constant A is equal to \/—% or &{%}_—1 according as C is zero or strictly positive.

Note that (3.7) and the fact that z,, = o(logv) together imply that type I error is
given by
2 exp(—2zup / 2)
1 v)-
™ +/vlogv /ooy Lt o)
Now assume that the constant C specified in assumption (A) is equal to 0. Now
excluding the multiplier m, the type I error component of the risk (see (3.5)) is equal
to Ry = (1 — p)t10o while that for type II error is Ry = ptad4. The ratio of R, and

t, = P(|Z] > ¢) = (3.16)

R, becomes
_‘Fﬁ — 5f\/anp(_—zu,v/2) (1 1o )
R, Vvlogw e
By the definition of v this is equal to
& = exp(—2uw/2 — loglogv)(1 + 0y,) (3.17)

Ry
and it converges to zero if z,, + 2loglogv — co. This shows that the overall risk is
given by R =mRy(1 + oy,), which in turn, equals the expressions in (3.2).

For the case when C > 0, exactly similar steps will give the required result, the
only difference being that the ratlo will be a different multiple of the expression
in (3.17). This completes the proof of the sufficiency part.

We will now prove the necessity of both the conditions (3.14) and (3.15) for op-
timality to hold. At first we prove the necessity of condition (3.14)

Assume that (3.14) does not hold. Noting that z,, > —logv, clearly this can
happen if either (i) £ z’“’ > converges to a point in [—1, 00] — {0} or (ii) li“gj] does not
converge anywhere under assumption (A).

At first we consider the case :

. %“gﬂ — —1 and there exist a constant C;, 0 < C; < 00, and a subsequence of
critical values Cyp such that ¢,, — C;. Observe that in this situation type I
error

t1 = P(‘Z| > Cu,'u) — 2(1 — @(Cl)) = Cg >0




and the type II error

Cu,'u ) 2 Cl (1 +0u’v) ‘

ta=Pl||Z| < == | =1/——F~
2 <'| Vu+1 T/t

Thus the total risk

2C
Rt = m (50(1 _p)CQ + 5Ap\/\/—7.?ﬁ1) (1 + Ou,v)

mép \ﬁ _ Comdapy/v
N (vVvCy + WCI) = ”—*\/—ﬁ (1+0u0) -

In the result, in case when C = 0, the ratio of the total risk to the optimal
risk provided in (3.2)

Rt v
=% o] 1 .
Ropi C 2logv( T 0u) = 00

and the corresponding rule is clearly not optimal.
Similarly, for C € (0, 00),

Rt N 02 Cv (1 o ) oo
Ropt B 2@(\/5) -1 log'U e ’

Now, consider the case: z,, = klogv(l 4 o4,), k € [-1,0), and Cypy — O0.
Observe that in this situation z,, + 2loglogv — —oo and the calculations
leading to (3.17) easily show that

Ry Ry

2
Ropt Ropt

— 0 .

Next, we consider the case when k£ € (0,00]. Then there exists a constant
€ > 0 such that for sufficiently large v, cﬁ)v > logv(1l + €). Thus the type II

error
c logv(l + ¢
tz:P('Z'W@ﬁ—I)ZP('ZK ‘%)

In the result

2logv(l +¢)
™

ty > (14+o04,) when C=0

or
ty > (20(/C(1+€) —1)(1+o0y,) when C>0 .

'This implies that in both cases the asymptotic ratio of Ry to Ry is larger
than 1 and the rule with the threshold ¢, is not optimal.




o Finally, we consider (ii). In this situation there will be at least two distinct
points in [—1, 00} (and hence at least one point different from zero) to each of

! '
which some subsequence pair (E’%, éz;) converges. By the previous argument,

at least along one such pair optimal risk properties will not hold and hence
also not for the whole sequence.

"To conclude the proof observe that the necessity of condition (3.15) easily follows
from the necessity of condition (3.14) and the calculations in the proof of sufficiency.
O

Corollary 1 The mBIC type threshold

2
nT
ChBIo = 10%“52— —2logp+d ,

where d € R, is asymptotically optimal when p — 0, log(d) = o(logv) and
log(d) — loglogv — —oo. (In particular § may be constant).

Corollary 2 If Z = const, § = const and pm — s, where 0 < s < oo, then the
standard version of mBIC, proposed in Bogdan et al. (2004),

2 prc = logn 4+ 2logm +d

18 asymptotically optimal.

4. Controlling Bayesian False Discovery Rate

Bayesian False Discovery Rate, BFDR, is defined as

(1 — p)t;

BFDR = P(Hy; is true|Hy; was rejected) = (1 —plti+p(l—t)
_ 1 — U2

(4.18)

Let us define ¢, , 5 = ud®logwv.

Lemma 1 Assume that the Assumption (A) holds. Ifty,s — oo then BFDR of the
Bayes oracle is of the form
e C/2 2

BFDRpo = T

(14 o0uw) , (4.19)

where D = 2(1 — ®(+/C)).

If typs — C%, where 0 < C; < oo then

1
1+ \/geC/QDC&

BFDRBO = (]. -+ Ou,v) (420)
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Proof.
1

1 1=ty
1472

where f = 1—;2. The thesis of the lemma follows by observing that (3.9) yields

2
ty=e % ———— . 4.22
f 1 e Wu5210g0(1+0u,v) ( )

1—ty=2(1-®(WC))+0uy - (4.23)
0

BFDRpo = (4.21)

and (3.12) results in

Remark 4. We have shown that for § = const BFDR of the Bayes oracle
converges to zero at the rate 1/4/ulogwv. Specifically, in case when p — 0 and
u = —clogp (i.e. we are at the verge of detectability) BFDR of the Bayes oracle
converges to zero at the rate (— logp)~!. Note, also that the Bayes oracle has a fixed
limiting BFDR if the ratio of losses converges to 0 in such a rate that §?ulogv — Ci,
where C; < oo. This condition requires that the relative loss for type II increases
slightly quicker than u = 4/nZ (i.e. missed signals should be penalized more when we
expect that they are relatively large). For the signals of the magnitude u = —clogp
this condition requires that ¢ is of the of rate (— log p) ™. Note that in this situation
signals of the form u = —clogp are also at the verge of detectability.

Now, consider the rule controlling BFDR at the level o, ,. A threshold value for
this rule ¢% can be obtained by solving the equation

(1-p)(1 — ®(cs))

- =y - (4.24)
(1—p)(1—®(ca) +p (1 - @ (5%5))
Theorem 3 Assume (A) holds. Moreover, assume that au,, — oy < 1,
log (=L
Lw—>oo and ——-—M—)C'0<OO . (4.25)
Oy p U

Then the threshold value of the rule controlling BFDR at the level oy, , is given
by the equation

¢ = 2log <af ) — log <2 log (af >> + Ci + oy (4.26)

where C; = In (2(17:%0)2) and D = 2(1 — ®&(1/2Cy)) is the asymptotic power. The
corresponding type I error is of the form
D ayy

t1 = MT(I + 09) .
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Proof.
Equation (4.24) is equivalent to
- q)(ccB) - 10‘“’” . (4.27)
1-0(s2y)  Fl—au)
Now, observe that (4.25) and (4.27) can both hold only if
lim sup \/% <00 . (4.28)
Indeed, assume that cg = z,4v/u + 1, where
limsup 2z, = 00 . (4.29)

The tail approximation (3.7) yields that
1-®(cp) _ exp(—2;,u/2)

= (1+04y) -
1-® (J_u%) Vu+1
This together with (4.27) yield
2log f=ouy)
P — (VU+1au,v) + Ou,'u ,

U,V u

and (4.29) contradicts(4.25).
Now, consider a subsequence of cg such that \/—Z% — (3 < oo and the corre-

sponding asymptotic power D; = 2(1 — ®(C3)) > 0. In this case (4.27) reduces
to

Dlauv(l + O'u,'v)
1-9 = ’ ’
8) = =371 —am)
Now (4.26) follows by using the tail approximation (3.7)to the left-hand side and
some simple algebra. ]

Comparing the asymptotic threshold of the BFDR controlling rule specified in
(4.26) to the threshold of the asymptotically optimal rule provided in Theorem 2 we
may expect that the BFDR controlling rule is asymptotically optimal if o = ﬁ
The consecutive Lemma 2 states how close these two quantities need to be for the

BFDR rule to be asymptotically optimal.

Lemma 2 Under Assumptions of Theorem 8 BFDR controlling rule at the level
Oy 15 asymptotically optimal if and only if

log(fo~/u)
222 VL = 145y, 4.30
Tog (/) ’ (4:50)
where
Syw — 0 (4.31)
and

284 lOg(f/a’u,v) — log log(f/au,v) - =00 . (4.32)
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Proof. The threshold of BFDR controlling rule provided in (4.26) can be written
as

¢ = logv — log(ué®a® log(f/a)) + C + 0y -

Thus, from Theorem 2 we obtain that the rule is asymptotically optimal if and
only if

log(ud®a?log(f/a)) = o(log v) (4.33)
e $alog(f /o)
ud’a?log(f/a
gy~ 0 (4.34)
Note that

log(ud®a?log(f/a)) = logv — 2log(f/a) + loglog(f/a) .

Thus the condition (4.33) is fulfilled if and only if
2l0g(f/a) _ 2log (/o)
logv 2log(fé+/u)

i.e. if and only if the condition (5.42) holds.
Now, observe that the condition (4.34) is equivalent to the condition

vlog(f/a)
(f/@)?(log v)?

Moreover, using notation from (5.41) we have that

logv = 2(1 + sy, log(f/c)

-1

—0 . (4.35)

and
v = (ffa) o)

Thus, assuming that s,, — 0, (4.35) is equivalent to

(/s

——0

log(f/c)

which is fulfilled if and only if (5.43) holds. O
Remark 5. The condition (4.34) provides much more room for small than for large
a. This phenomenon reflects different sensitivities of type I and type II errors to
the change of the threshold, already discussed in Remark 2.

Lemma 3 Under Assumptions of Theorem 8 the rule controlling BFDR at the level
Qup = ﬁ, with s € (0,00), is asymptotically optimal. The corresponding critical
value is of the form

chrpr = logv —loglogv + Cs + 0y, (4.36)
where Cy = In (%g“—;ﬁ) The corresponding type I error is of the form

Ds

tlB = W(l + Ou,v) . (437)
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Note that the threshold of the proposed optimal BFDR controlling rule is smaller
by O(loglogv) term from the threshold of the Bayes oracle, provided in Theorem
1. In the result, the rate of the corresponding type I error is larger than for the
Bayes oracle (it lacks v/logv term in the denominator). However, the total risk is
still determined by essentially larger type Il error component and is of the same rate
as for the Bayes oracle.

Lemma 2 states that BFDR controlling rule is asymptotically optimal if the
corresponding BFDR level o decreases when the signal magnitude u and the relative
cost of type I error 0 increase. The following lemma throws some light on the
behavior of the BFDR controlling rule with a fixed BFDR level a.

Lemma 4 Under Assumptions of Theorem 8 BFDR controlling rule at a fized level
o 18 optimal iof and only if the ratio of loss functions converges to 0 in such a rate
that

52
log(0®u) _, . (4.38)
logp
and 52
U
ozp — (4.39)

Proof. Observe that

log(fov/u) _, _ log(dav/u)

log(f /) - log(f/a)

Note also that that when « is fixed assumptions of Theorem 3 imply that p — 0.
Thus the condition (5.42) of Lemma 2 reduces to (??). To complete the proof
observe that the condition (5.43) of Lemma 2 implies that

2log(dv/u) —loglog f — o0 ,

which is true if and only if (5.45) holds. 0

Lemma 3 states that under Assumption (A) the rule controlling BFDR at a
fixed level o can be optimal only if the relative cost of type II error increases when
p — 0 and u — oo. Specifically, it implies that such a rule can not be optimal with
respect to minimizing the misclassification rate. This result illustrates different as-
pects of the behavior of BFDR controlling rule than those discussed in Abramovich
et al (2006). Note that Abramovich et al (2006) proved that in the context of the
estimation of u, the rule controlling FDR at the level @ — ag < 0.5 is asymp-
totically minimax. To show some similarities between our results and the results
of Abramovich et al (2006) we now present two lemmas describing the behavior of
BFDR controlling rules for the signals on the verge of detectability. First of these
lemmas states that for the signals at the verge of detectability, BFDR controlling
rule with a fixed BFDR level o € (0,1) is asymptotically optimal if and only if
the ratio of loss functions ¢ decreases to 0 at a very slow rate. The second lemma,
dual to the first one, states that for the signals at the verge of detectability and
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when ¢ = const, the BFDR controlling rule is asymptotically optimal if and only if
BFDR level o decreases to zero at the same, very slow, rate. This last result can be
specifically used to judge the optimality of the BFDR controlling rule with respect
to minimizing the misclassification error.

Lemma 5 Assume that p — 0 and ~%2 — C, with 0 < C < 0o0. Then the rule
controlling BFDR at level o, 0 < a < 1 is asymptotically optimal if and only if

. logd _
6 — 0 in such a rate thatiggz—().

Proof. Direct consequence of Lemma 3. O

Note that under Assumptions of Lemma 4 M — (), i.e. u is at the verge of
detectability.

Lemma 6 Assume that p — 0, 6 = const, and —%ﬂ — C, with 0 < C < o0.
Then the rule controlling BFDR at level «, is asymptotically optimal if and only if
a — 0 in such a rate that 11%;% = 0.

Proof. The proof is analogous to the proof of Lemma 3 and therefore omitted. O

Note that, as expected, the level of BFDR for the optimal Bayes rule, specified
in Remark 4, satisfies the Assumption of Lemma 5. Also, the ratio of loss functions
yielding a Bayes oracle with a fixed BFDR, specified in Remark 4, satisfies the

Assumption of Lemma 4. However, the conditions of Lemma 4 and 5 illustrate

vail LRLalRauaais e Taiaiz,

much wider range of flexibility in the choice of these parameters, so the BFDR
controlling is still optimal.

Lemma 7 Let cqw denote the approzimation to the BH threshold provided in [16]:

(1 - (I)(CGW)) W |
(1_p)(l—@(ccw))_{_p(l_q)(&_%)) uv

When p — 0 and the assumptions of Theorem 8 are fulfilled then

cow (4.40)

C2GW =cp + Oup
where cg 1s the BFDR controlling rule at the level .

Proof.
The proof follows the line of the proof of Theorem 3 and therefore is omitted. O

Corollary 3 The multiple testing rule based on the threshold cow 1s asymptotically
optimal when p — 0 and the assumptions of Lemma 2 are fulfilled.
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5. Optimality of the Bonferroni correction

The Bonferroni correction at the level a rejects all the null hypothesis for which
Z; = B{U—’l exceeds the threshold

o
CBon 1 — (I)(cBon) = % .

Under the assumption that m — oo, the threshold of the Bonferroni correction
can be written as

., = 2log (%) —log (2 log <%)> + log(2/m) + oy, -

By the comparison with the asymptotic expansion of the BFDR controlling rule
(4.26) and the line of proofs of Lemmas 2-6 one can easily derive the optimality
properties of the Bonferroni correction for the case when pm — ¢, with ¢ € (0, 00).

Lemma 8 Assume that m — oo and pm — ¢, with ¢ € (0,00). Moreover assume
that the Assumption (A) holds. Bonferroni correction at the level o,y is asymptot-
ically optimal if and only if

log(md/u)

=148y , 41
log(m/au,.) L (5.41)
where
Sup — 0 (5.42)
and '
28y log(m/ayn) — loglog(m/ay ) — —o0 . (5.43)

Lemma 9 Under the assumptions of Lemma (8) Bonferroni correction at the level
Qyy = ﬁ, with s € (0,00), is asymptotically optimal.

Lemma 10 Under the assumptions of Lemma (8) Bonferroni correction at a fized
FWER level o is optimal if and only if the ratio of loss functions converges to 0 in
such a rate that

2
log(6"u) _, | (5.44)
logm
and 52
U
Togm (5.45)

Lemma 11 Assume that m — oo and pm — ¢, with ¢ € (0,00). Moreover assume
that ?—lﬁfﬂ — C, with 0 < C < 00. Then the Bonferroni at the level o, 0 < e < 1 18
asymptotically optimal if and only if 6 — 0 in such a rate that %’g&% =0.

Lemma 12 Assume that m — oo and pm — ¢, with ¢ € (0,00). Moreover assume
that 21—°fﬂ — C, with 0 < C < 0o and 6 = const Then the Bonferroni correction

at the level o, is asymptotically optimal if and only if « — 0 in such a rate that

loga __ 0
logm ~— 7°
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6. Optimality of the Benjamini and Hochberg pro-
cedure

In this section we will prove the optimality of the Benjamini Hochberg procedure
for p converging to zero in such a rate that for sufficiently large m, p,, > l—"’;:L—m, for
some constant v > 1. We also provide an auxiliary result, which suggests that BH
procedure with o converging to zero is asymptotically optimal also when mp — C,
with C € (0, 00).

Let Z? = %ﬁ and p; = 2(1 — ®(Z;)) be the corresponding p-value. Let us sort
p-values in the ascending order py <pp) < ... < pem) and let

kr = argmaz; {p(i) < %} : (6.46)

BH at the FDR level a rejects all hypotheses for which the corresponding p-values
are smaller or equal than p(y.

A

Let us denote 1 — Fi,(y) = #{Yi > y}/m. It is easy to check (eg. see [11]) that
the Benjamini-Hochberg procedure rejects the null hypothesis Hy; when Z? < &%,

where
T Gl 1¢)) R
CBH = f{y 1—-ﬁ’m(y) _<_ } .

Remark: BH as the empirical Bayes version of BFDR.

Note also that BH rejects the null hypothesis Hy; whenever Z? exceeds the
threshold of the Bonferroni correction. Therefore we define the random threshold
for BH procedure as

CBH = min{cBon, éBH} .

The proof of the optimality of BH will consist of two steps. In the first step we
will show that the corresponding type II component of the risk R4 = §4FL 4, where
L 4 is the number of false negatives, is of the optimal rate.

To prove the theorem on the optimality of the type II component of the risk we
will at first prove two auxiliary lemmas.

Lemma 13 Consider the multiple testing rule based on the GW threshold, defined
in (4.40). Assume that p — 0 and that the level o is chosen in such a way that the
assumptions of Theorem 3 are satisfied. Then for any constant & € (0,1) it holds

A

p (L(CGW) > (14 g)») < exp {—imp(]lg?(l + ou,v)} (6.47)

1 — F(cew)
and
1- ﬁm(CGW) 1 9 }
_— =7 — < _ - .
P( 1= Fleaw) < (1 §)> < eXp{ 10 (140wt (6.48)
where D
C1=1_a0>0 . (6.49)
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Proof. Let 1—F(cew) = (1—p)ti(cow)+p(1—ta(cew)), where t1(cow) and ta(cow)
denote the type I and type I1 errors of the procedure based on GW threshold. Lemma.
7 implies that 1 (cew) and t2(cew) are of the same rate that the corresponding type
I and type II errors of the BFDR controlling rule. Therefore, using Theorem 3 we
obtain

1-— F(Caw) = p01(1 -+ Ou,v) . (650)

A

Now, observe that Y = m(1 — Fi,(cew)) is a Binomial B(m,1 — F(cgw) random
variable. Therefore, by the Bennett’s inequality (e.g. see [33], page 440) it follows
that

P(Y > m(L - Fleow))(1+€)) < exp {~3mpCié?(1 + 0,0)

and

P(Y < m(1 = Fleaw))(1 = §) < exp { - 7mpCie(1 + 0,,)

and the proof of Lemma 13 is completed. |

Lemma 14 Assume that o and p satisfy the assumptions of Lemma 18. Let cgy
be the BH threshold at the level a and let &, be the GW threshold at the level o =
a(l —¢&), where € is a constant included in (0,1). It holds that

P(CBH Z 51) S exp {—%mpclfz(l ~+ Ou,v)}

Proof. By the defintion of cgy it holds that
| 2(1 — B
P(CBH <51) > P<(—A((~:—1—)—)- Sa)
(1= Fn(é))

d (2(11—_ ey ;;f()) = “) -7 (%‘)2 =1- 5)

Now the thesis of Lemma 14 follows by invoking Lemma 13. O

Theorem 4 Consider BH rule at the level o, which satisfies the assumption of
Lemma 2. Assume that m — o0, pn — 0 in such a rate that for some constant
vy > 1, pm = Li,’fﬁ. Moreover, assume that the signal magnitude u,, satisfies

_—2(1"%52:037””) — C € [0,00) (i.e. Assumption (A) holds) and that

Um < exp{2Comp} (6.51)

for some constant Cy € (O, %C’l), where Cy is defined in Lemmma 18. Then the type
IT error component of the risk of BH satisfies

RA < R(l + Ou,v) )

where R is the optimal risk provided in Theorem 1.
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Remark. The condition (6.57) can be relaxed to Compy, + %log (lﬁi—”) — 00.

Proof. Note that that the expected number of false negatives satisfies
E(L4) < E(Lalegr < ¢&1)Plegy < &) +mP(cgy > &) .
Now observe that
E(Laler < &)P(cpr < &) < E(Li|cgy < &)P(cpy < &) < EL;

where L, is the expected number of false negatives produced by the rule based on the
threshold ¢;. Note also that «; satisfies the assumptions of Lemma 2 and therefore
the rule based on ¢; is asymptotically optimal, i.e. 4EL; = R(1 + 0,,). Thus

Rp=064FLs < R(]. + Ou,v) + méAP(cBH > 51)

and by Lemma 14

Rs= R(1+ op)+mdaexp {—%mpC’lg(l + om)} : (6.52)

The thesis of Theorem 4 follows by observing that under (6.57) the second compo-
nent on the righthand-side of (6.58) is o(R). O

To prove the optimality of the type I error component of the risk of BH we will
at first show that with a very large probability czy can be bounded from below with

an asymptotically optimal BFDR controlling rule.

aaapl vIUA

Lemma 15 Assume that p,, — 0 in such a rate that p, > (l—ogwlznﬂ, for some constant
v > 1. Moreover assume that the FDR level o, satisfies the assumptions of Lemma
18. Let cgy be the BH threshold at the level oy, and let co be the GW threshold at
the level aom = am(1+€), where € is a constant included in (O, min (1, aio — 1)) It
holds that for every constant n > 0 and sufficiently large m

P(CBH < 52) < m™"
Proof. Let ¢y be the solution to the equation

_logm

1—F(Co)— \/’I')—’L

At first we consider the case when ¢; < ¢ (or equivalently when p,, > @%19\;‘7—%(1—!—
0m), where C is defined in (6.49)). Note that

2(1 ht (I)(CBH))
1-— F(CBH)
Now, observe that by the definition of cgp

2(1 — (D(CBH)) <

~

1-— Fm(cBH) -

Plcpy < cy) =P ( > a(l + §)> . (6.53)
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Thus

= P(sup F(c) — Fn(c) > (1 - F(c))¢)

c€[0,c2]
A logm
< P(sup |F(c)— F(m)|l > . 6.54
(sup 1F(e) = Fm)| > €2720) (6:54)

Now, by invoking Rubin-Sethuraman [27] innequality for moderate deviations we
obtain
P(cpy < ¢2) < exp(—2£21og®m)

and the thesis of the Lemma 15) easily follows.
Now, consider the case when ¢y > c¢y. In this case
P(cgm < ¢2) = Plegy < ¢) + P(cgy € [co,¢2]) -
Repeating the arguments from (6.53) and (6.54) we can easily show that
P(cpm < co) < exp(—2€%log*m) .

Now, observe that, similarly as in (6.54),

o) < P( sup 1“—Fm(clz<1+5>) =

' ) CG{C(—),C2] I- F(C)

X
[+2

Using the standard uniform transformation U; = F ( ), we obtain

P(cpy € [co,ca]) < P < sup 1=Cn®) > (1 +€)> ,

te[zlm:z2m] 1 - t

where 21, = F(cp) =1 — li’\;‘mﬂ, Zom = F(c2) = 1 — C1pm(1 + 0p), and Gpy(t) is the
empirical cdf of the uniform distribution on [0, 1].

Let u; = X, kim = |m — v/mlogm], and kym = [m(1 — Cipy)]. Observe that

k2m - klm S \/ﬁlogm '

By the monotonicity of Gp,(t) and ¢ it holds

P s (1-Gu(t)>1-00+9) <

te[zlm»z2m]

k?2m

> P(1-Calw) 2 (1—w-)1+8)) (6.55)

i=Kkim

Observe that
log(m)* 1

m m

1—u; > C
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and therefore .
(1—Ui—g) =(1—u)1+om) .

Now, from Benett’s inequality, we obtain that for every ¢ € (kim, kom)

~

P = Gn(w) > (1 —w)(1+6)(1+0n)) < exp (-——%m(l _ ui)§2>
exp (—%(log m) (1 + om)) . (6.56)

and the thesis of Lemma (15) easily follows. O

Theorem 5 Assume that the assumptions of Theorem 4 and Lemma 15 hold. More-
over, assume that for some positive constant v,

Svu <m” | (6.57)
Then the Benjamini-Hochberg procedure is asymptotically optimal.
Proof. Let Ly be the number of false rejections produced by BH. Note that
E(Lo) < E(Lo|cn > ¢2)P(cpr > ¢a) + mP(cgry < ¢o) -
Now observe that
E(Lolegr > c2)P(cpn < ¢o) < E(Lslepy > ca)P(cgn > ¢3) < ELy

where L, is the expected number of false rejections produced by the rule based
on the threshold ¢;. Note also that «y satisfies the assumptions of Lemma 2 and
therefore the rule based on ¢, is asymptotically optimal and 6o ELy; = o(R). Thus,
the null component of the risk

Ro=6pFELy < O(R) + m50P(CBH < 62)
and by Lemma 15, for sufficiently large m,
Ro < O(R) + 50m"“’2+1 s (658)

The thesis of Theorem & follows by observing that under (6.57) the second compo-
nent on the righthand-side of (6.58) is o(R). O

Now we will consider the performance of BH under the assumption that m — oo,
p — 0 and mp — Cs, where 0 < C5 < oo. According to our knowledge the
results on the optimality of BH in this limiting case have not been proven yet.
Note that under this assumption the Bonferroni controlling FWER at the level
a = ﬁa is asymptotically optimal and differs from the asymptotically optimal
BFDR controlling rule only by a constant. It is also easy to check that in this case
a fixed threshold FDR controlling rule is asymptotically optimal. Moreover, based
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on the comparison with Bonferroni correction it holds that the type II error of the
component of the risk of BH is of the optimal rate. All these facts together suggest
that the BH procedure is asymptotically optimal also in this limiting case. Below we
present an illustrative theorem, which states that if &« — 0 then for any € > 0 the BH
threshold can be bounded by two asymptotically optimal rules with a probability
larger than 1 —e.

Let us denote by cgy the threshold of the Benjamini and Hochberg procedure
at the level a = ﬁ.

Theorem 6 Assume that m — oo , p — 0 and
mp — Cs , (6.59)

where 0 < Cs < 00. Moreover, assume that §\/u — oo and that the Assumption (A)
holds. Then for every e > 0 there exists a constant Dy > 0 such that for sufficiently
large m

P(|cky — carprl > D2) <€ . (6.60)

Proof.

Observing that under the assumption (6.59) cp,, is different from cgrpr only
by a constant, it is enough to prove that for any ¢ > 0 there exists a constant D,
such that for sufficiently large m

P(CZBH < C2BFDR — DQ) <€ . (661)
Let us denote by Ry and R4 the number of null and alternative hypothesis
rejected by BH. Note that BH controls FDR. at the level o = ﬁ Therefore

Ry
P—>0.5)=PR> <% . 6.62
(RO‘I“RA_ (O—RA)_ . ( )

Note also that R4 < my4 , where my4 is the total number of alternative hypothesis.
Now, observe that m,4 is a Binomial random variable B(m,p). Thus, by Benett’s
inequality and assumption (6.59), we get that for any natural number Dy > Cs

P(ma > Dy) < exp (—i(p2 —CH)(1+ om)) . (6.63)
(6.62) and (6.63) yield

P(Ro + Ra > 2D,) < 20 + exp (—211—(172 _ o)1+ om)) . (6.64)

Let D3 = 2D and let zp, be the BH threshold for Ds-th largest test statistic. Note
that zp, is given by the equation
OZD3 SD3

2(1 e (ID(ZD3)) = 7)’1,— = 05\/’(—)' .
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Thus

D
25, = logv — loglogv — 2log (%) + 0 -
5
Now observe that the event {c}y < 23, } implies that Ry + R4 > Ds. Therefore, by
(6.64), we obtain that

1
P(chy < zps) < 2004 exp <_Z(D3/2 —Cs)(1+ om)>

and the proof is completed by observing that o — 0 as m — oo. O

7. Discussion

We have investigated the asymptotic optimality of the multiple testing rules under
sparsity, using the framework of the Bayesian decision theory. Similarly as in [1]
we have proved some asymptotic optimality properties of the rules controlling the
false discovery rate. However, in our setup the proofs of the asymptotic optimality
of FDR controlling rules are substantially simpler than the proofs in [1]. Moreover,
our results provide some hints on how the “optimal” FDR level should be chosen
depending on the expected magnitude of true signals and the ratio of loss functions
for type I and type II errors.

One could ask why we investigate the properties of the Benjamini-Hochberg
procedure or the Bonferroni correction within the framework of the Bayes decision
theory. It seems that a more natural way to mimic the Bayes oracle is to use a plug-in
method based on the estimated mixture parameters or to use a full Bayes approach
and integrate the unknown parameters with respect to some prior distribution. The
advantages of these approaches, both in parametric and nonparametric settings, were
illustrated e.g. in {37], [10], [7] and [8]. However, as noted in [7], the applicability
of these methods is limited by serious problems with the estimation of the mixture
parameters when the mixing parameter p is very small. These difficulties occur
even in the simple parametric context and are related to the problems with the
nonidentifiability of the mixture parameters. The strength of BH lies in the fact
that it requires only the estimate of the cdf of the mixture, which for large m
can be quite accurate even when p is approaching T—%; Therefore, as shown by the
simulation study reported in [7], BH can outperform the rules directly mimicking
the Bayes oracle when p is very small. The results reported in this article give a
thorough theoretical explanation of this phenomenon.

Our results are derived under the assumption that the data are generated by the
scale mixture of normal distributions. This allowed us to reduce the technical com-
plexity of the proofs and concentrate on the main aspects of the problem. Further
extensions to the situation where the prior on y; comes from a general scale family
are possible and are the topic of our ongoing research.
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