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Abstract

Many high-frequency financial data can be described by unimodal stationary processes.
In this paper, we propose to apply the Grenander maximum likelihood estimation for esti-
mating unimodel densities of stationary processes. We derive analogous asymptotic results
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1 Introduction

In empirical finance, estimating returns on assets such as stocks, market indexes and exchange
rates is of broad interest. Classical Black-Scholes model assumes that the logarithmic return of
a stock price can be represented by an Ito stochastic differential equation:

leg St = [,Ldt + U'th,

where S; is a stochastic process representing the stock price at time ¢, u the expected rate of
return, o the volatility and W, a standard Brownian motion. Motivated by this pioneering work,
different continuous-time processes have been proposed to capture the dynamics of the process
S¢. Parametric model helps to reveal potential relationships among various financial factors. It
also has the flexibility to adopt restrictions based on economics theory into the formulation (Hull,
2000). However, parametric model is usually sensitive to its assumptions. Empirical research
has brought forth a considerable amount of stylized facts indicating erratic behavior of financial
assets (Franses and Dijl, 2000). In this paper, we are interested in nonparametric methods that
are suitable for analyzing financial data. Without assuming a particular model, nonparametric
methods capture the empirical feature of the data set more precisely and are free of the joint
hypotheses on asset-price dynamics and risk premia that are typical in parametric models. A
commonly used nonparametric method is the kernel estimation (Scott, 1992), which estimates
density function using smoothing procedures.

We observed some shape related features that are common for high-frequency data. For
example, the histograms of logarithmic returns of S&P 500 Index often show unimodal shapes
that have peaks around 0 (See Figure 1). This motivates us to consider the well-known Grenander
estimator, which estimates a non-increasing continuous density by the slope of the concave
majorant of the empirical process. One advantage of Grenander estimator compared with other
nonparametric methods is that it is free of smoothing parameters because of the built-in shape
constraint. Grenander estimator has been shown to achieve efficient convergence rate when
sampling from i.i.d. observations (Rao, 1969). Also it can be easily modified to estimate a
unimodal continuous density. For financial data, however, the independent assumption is usually
unnatural. Stochastic processes that allow dependency among observations are often used to
model the data. In order to incorporate the dependency, we study the Grenander estimator
in the case of sampling from a stationary process. We argue that the stationary assumption
is reasonable, especially for short-term and high-frequency data. As a nonparametric method,
Grenander estimator can be applied to many financial instruments. One example is demonstrated
on the S&P 500 Index data in Section 4. We find that Genander estimator captures the empirical
features much better than the Black-Scholes estimate.

The rest of the paper is organized as follows. In section 2, the Grenander estimator is
introduced with an estimation efficiency result for i.i.d observations. Then we generalize this
result to the case of sampling from a stationary process. In Section 3, we apply Grenander
estimator to the S&P 500 index data. We conclude in Section 4.

2 Method and asymptotic results

Given observations Y;,1 < i < n, from a unimodal distribution. If the mode, mg, is known, the
Grenander estimator of density f(y) is defined as

Fa(yimo) = Bfn(yiy < mo) + (1 — ) fulysy > ma),

where P is the proportion of observations taking values in {—o0,mg], faly;y = my) is the slope
of the concave majorant of the empirical distribution F, at point y given y > my, i.e.

2o _ o Fn(v) = Fu(u)

fo(yry 2 mo) = 3\;1;1{32 T
and fn (y; ¥y £ myp) is the slope of the convex minorant of the empirical distribution F, at point
y given y < mo (Grenander (1956), Grenander (1983), Groeneboom (1985)).




In our case, the true mode my is unknown. Let 71 be a consistent estimator ofA myp. Then the
density estimator f,,(y;7) has the same asymptotic property as the estimator f,(y;mo). The
consistent mode estimator can be calculated by MLE method as follows. Let

j=argmax ) _log(fa(¥isYs), (2.1)
i#tj

then, 7h = Y¥; (Bickel and Fan, 1996).
The following asymptotic property of Grenander estimator is derived in Rao (1969).

Lemma 2.1 Given X1, ..., X, independently observed from o distribution with decreasing density
f on [0,00), which has a nonzero derivative f'(z) at a point z € (0,00). If f, is the Grenander
estimator of f based on X1, ..., Xn,, then

n32 @) @) fala) — £(a)) L 22 (22)

where Z is distributed as the random location of the mazimum of the process (W (u) —u?,u € R),
and W is a standard two-sided Brownian Motion on R originating from zero (i.e., W(0)=0).

2.1 Asymptotic results in the case of sampling from a stationary pro-
cess

In empirical finance, it is common to assume that the logarithmic return of a asset or volatility
follows a stationary process. Therefore, we are motivated to study Grenander estimate under
the stationary assumption. Since the independence assumption in Lemma 2.1 does not hold
anymore, we assume the following mixing condition to describe and control the dependency
among observations (Hall and Heyde, 1980). Define the a-mixing coefficient of a triangular
array as
a(f)=_ max  sup (|P(ANB)-P(A)P(B)|)
n,i:1<i<n—j AGX?H,BGX}

where xiand X7y; denote the o-fields generated by {Xx,k = 1,...,i} and {X4,k =i+ j,...,n},
respectively. We assume the mixing condition,

> afj) < co. (2.3)

j=1

We will show that the asymptotic result in Lemma 2.1 still holds under this more general
setting. The idea is to reduce the problem of calculating the asymptotic distribution of the slope
of the concave majorant of Fy,(y) over the interval [z — 2cn~1/3,z 4+ 2cn~1/3] at y = x to the
corresponding problem of a Brownian Motion over [—2c, 2¢]. Define

Y (6n) = /2 Fp(z + 6n) — F(z + 6,)] — n/2[Fo(z) — F(z)] (2.4)

and
D=-f(z)/2>0. (2.5)

Let an(z) + 0,8 (z) denote the tangent to the concave majorant of n=*/2Y;,(6,) — D62[1 + o(1)]
at 6, = 0. Then B,(z) is the slope of the concave majorant of n=1/2Y;,(6,) — D&2[1 + o(1)] at
0n, = 0. Therefore, we have

falz;m) = f(z) + Bulz). (2.6)
Next, define
Wa(¢) = n—l/zyn(‘sn){'r%D]_ly (2.7)
where
T = [fD 013 (2.8)




and 8, = r,(, then

n=Y2Y,(6,) — DE2[1 + 0(1)] — an(z) — Gnfn(z)

2
= 72D (Wal0) - (4 5250 = (35— o) - Cot).

1t is obvious that B,[r, D] is the slope of the concave majorant at ¢ = 0 of the process

Xn(€) = Wa(C) — ¢*[1 + 0o(1)] (2.9)

on [—q,q], where ¢ = 2cD%/3f-1/3,

The above reformulates the problem by some suitable normalization. It can be shown that
within the neighborhood ¢ € [—¢, ¢g], the process X,,(¢) converges in distribution to the process
X(¢) = W(¢) — (2, where W is a standard two-sided Brownian Motion. The key step is to show
the asymptotic normality of W, (¢). But first of all, the asymptotic variance of W, (¢) should be
derived under the setting of stationary process.

Lemma 2.2 Let X,,..., X, be a time reversible stationary process with common distribution
function F(z). The joint density functions of X, and X, 2 < k < oo, are continuously differ-
entiable. If the a-mizing condition is satisfied with Zj’;l a(j) < oo, then, for any ¢ in [—q,q],
Wn(¢) has asymptotic variance |¢|.

In order to prove asymptotic normality of W, ((), we will use the results in Liebscher (2001).

Suppose T, = 34— Unk, where {Ung, k = 1,...,n} is a triangular array with EUpy = 0. Let
T, = maxi<k<n EUZ,. The following condition is imposed on Upy in Liebscher (2001).

Condition C'(0c0): Ty = O(n™1), 3°72, a(f) < oo, and esssup |Unk| := Cnx < oo for all
k =1,...,n. There exists a sequence m,, of positive integers tending to oo such that

nMpYn = 0(1)

where
M= 1 SBRE g T 10 Unt
and
oo n
> a()d  Cl=o(1).
j=man+1 k=1

The following lemma can be found in Liebscher (2001), Section 2.

Lemma 2.3 Assume {Up;} is an a-mizing array, and Condition C'(c0) holds. Suppose that
there is a sequence T, of positive real numbers such that T, = o(y/n), Tn — 00,

Tn < ( an)_l

max
1<k<n
and n

T—a([_e'rnj) — 0 foralle>0.

n

Moreover, assume that

(
lim ZEU& =0 > 0.
i=1

n—00 4

Then
Ty — N(0,0%) in distribution.

With the help of the above two lemmas, we have the following theorem.

Theorem 1 For any  in [~q,q], Wr({) is asymptotically normal with mean 0 and variance |(|.




Next, we show that W, ({) converges in distribution to a standard Brownian motion W(().
Two sufficient conditions for this purpose has been derived in Chenstov (1956) and Sethura-
man (1965). They essentially constrain the variance-covariance matrix and the tightness of the
process. We verify these conditions under our situation in the following Lemmas.

Lemma 2.4 For any collection (;, 1 < i < p, |(;| < g, the joint distribution of [Wp(¢1), . .., Wa((p)]
converges to the multivariate normal distribution with mean 0 and the variance-covariance matric

[6(Cs, G )mian(| Gl 1G],

where
d(a,b) = 1{sign(a) = sign(b)}.

Lemma 2.5 For any (1 < 2 < (3 in [—q, 4],

E[[Wn(¢1) = WalClIWa(G2) — WalG)l] < Clés = il
where C is a constant independent of n, (1, {2 and (3.

Now, we are ready to apply the following Lemma, which is due to Chenstov (1956). A proof
can be found in Sethuraman (1965).

Lemma 2.6 Let X, be a sequence of stochastic processes in Dla,b] and X be another process in
Dia,b] such that

1) for any (t1,....tk) in [a,b], the joint distribution of [Xn(t1),..., Xn(tk)] converges weakly
to the joint distribution of [X (1), ..., X (t)], and

2) for any t; <ty < t3 in la,b],

E[[Wn(C1) — Wa(C)I™ [Wa(C2) — Wa(Gs)™] < Cls — G|+

for some numbers v;, i = 1,2,3 and a constant C' > 0 independent of n,t1,t2 and ts3.
Let v, and v be measures of Xy, and X on Dla,b]. Then, v, converges weakly to v.

We have shown that within the neighborhood ¢ € [—g¢,q], the process X, ({) converges in
distribution to the process X(¢) = W(¢) — ¢2. Since the slope of concave majorant of process
X(¢) has the same distribution as that of 27, where Z is the location of the maximum of
process X(({), then, by combining (2.9) with (2.6), (2.8) and (2.5), the following theorem is
straightforward.

Theorem 2 Given Xi,..., X, observed from a time reversible stationary process with a decreas-
ing density f on [0,00), which has a nonzero derwative f'(z) at a point z € (0,00). Assume
mizing condition (2.3), then the Grenander estimate f,, satisfies

-1/3
> (Fole) - 7(@)) 2222 (210)

@) (@)

n1/3

where Z is distributed as the random location of the magimum of the process (W (u) —u?,u € R),
and W is a standard two-sided Brownian Motion on R originating from zero (i.e., W(0) =0).

2.2 Penalized maximum likelihood estimate of f(/7i+)

When sampling from i.i.d observations, it is known that, even though fn(x) is a consistent
estimator of f(x) for z > m, it does not follow that f,(m+) is a consistent estimator of f(m+)
(Woodroofe and Sun, 1993). If the mode m is unknown, a consistent estimator 77 can be found
by (2.1), but f, often show spikiness near the location mh+.

One way to reduce the the size of fn(ﬁz—i-) is to penalize the nonparametric likelihood function
for large value of f(rh+). In Woodroofe and Sun (1993), a penalized MLE is proposed, which

Y



is consistent at 7+. The approach is as the follows. First, a smoothing parameter o > 0 is
introduced, and the penalized likelihood function is of the form

la(f) = D _ logf(z:) — naf ().

i=1

For a fixed @ and «v € {0,1], let

s/n
hily) = maz1gen po—
and let 4 denote the solution of the equation
y=1-afi(7),

so that

g =mimeisn (30— D)+ JEr+ 0= 24 7).

Zs

Then, the consistent estimator f,(7+) at 7+ is

fn(m+) = ! ;’Y'

Once 7 is found, computing the penalized MLE fn is no more difficult than computing the
unpenalized MLE f,. In fact, the penalized MLE is equal to an unpenalized MLE with a
transformed data set a + 4z, k=1,...,n.

Note that the smoothing parameter « should satisfy the following conditions:

O0<a=a(n)—0

and
na(n) — oco.

For example, a(n) can be l—‘;gnﬂ, or en™P9, where 1 < p < o0 and ¢ = 2—51:1.

3 Density estimation for the S&P 500 Index

In order to examine the empirical relevance of the unimodal density estimator, we study the
daily log returns of the S&P 500 Index obtained from CBOE. Figure 1 is the histogram of two
data sets. The left one is the daily log returns of S&P 500 Index from January 1st, 2002 to
December 31,2002, and the right one is from January 1st, 1986 to September 30, 2003. Both
the one-year and longer-term data show peaks near 0, and frequencies decrease with increasing
absolute log returns. This fact motivates us to assume that the daily log returns of S&P 500
Index have unimodal density function with mode near 0.

S&P 500 Index is among the most actively traded assets in the world. Since jumps are
less likely to occur in indices than in individual equities due to diversification, the dynamics
of S&P 500 Index likely follows a stationary process. The main features of the data set are
shown in Table 1 by calculating the first four moments. We can see that both the skewness and
the kurtosis in 2002 is quite unusual compared with those from the longer-term data set. The
positive skewness means that large positive returns tend to occur more often than large negative
returns, and the small kurtosis implies thin tails.

Both one-year and longer-term data show evidence of unimodal distribution of the log returns
of S&P 500 Index. We apply the Grenander estimator to estimate the density. We compare
the behavior of our nonparametric approach with the Black-Scholes model. In Figure 2, the
estimated densities of Grenander estimate and Normal distribution are shown for the 2002 data.
The normal density is implied by Black-Scholes model, and its parameters are estimated by
matching the first two moments.
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Figure 1: Histogram of daily log returns of S&P 500 Index.

Mean Var Skew Kurt
2002 | -0.1083 | 2.6831 | 0.4268 | 3.6252
86-03 | 0.0348 | 1.2749 | -2.0689 | 45.0045

Table 1: Summary statistics of daily log returns of S&P 500 Index.
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Figure 2: Grenander estimate versus Black-Scholes estimate.

The summary statistics of Grenander estimate and Black-Scholes estimate (BS) are compared
in Table 2. We can see that the Grenander estimate matches the skewness and kurtosis of the
data more successfully.

Based on Theorem 2, it is possible to construct a confidence interval for the density estimator
of log returns. The limiting distribution Z is simulated with the 5% and 95% quantiles being
—0.14 and 0.14. The 90% confidence interval plots are shown in Figure 3.




Mean Var Skew Kurt
Data -0.1083 | 2.6831 | 0.4268 | 3.6252
Grenander estimate | -0.1973 | 2.6825 | 0.4640 | 5.3666
BS -0.1083 | 2.6831 0 3

Table 2: Summary statistics of Grenander estimate and Normal estimate.
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Figure 3: Confidence interval plot for Grenander estimate.

4 Conclusion

In this paper, we study the asymptotic properties of Grenander maximum likelihood estimator
in the setting of sampling from a stationary process. We find that both the convergence rate
and the limiting distribution remain the same as those in the i.i.d. setting under suitable mixing
condition. We apply the Grenander estimator on the S&P 500 Index to incorporate the unimodal
shape of the frequency. Compared with the parametric method using Geometric Brownian
Motion, our approach captures more empirical features of the data. Because of its robustness,
the proposed nonparametric method may be useful for modelling other financial quantities, for
example interest rate and volatility.

5 Appendix

5.1 Proof of Lemma 2.2
By (2.7), (2.8) and (2.4), we have

Wa(C) = f723DYV3pYS (Vn(Fo(z + 8a) — F(z + 6n)) — vVa(Fu(z) — F(z))) .

Let
My (z) = \/E(Fn(m) ~ F(x)),

then
Wa(¢) = f723DY3n 8 (M (z + 6,) — My(x)) .




Next, we calculate Var(M,(z)), Var(M,(z + §)) and Cov(M,(z), My (z + &,,)), respectively.
First,

Var(Mn(z)) = Var (Z?—ﬂ%—gﬂ)

- %ZVGT(I(Xi <)+ 2% S 3 Co(I(X < ), 10X, < )
=1 i=1 j=it1

n—-2n—i

1
= Var(I(X1 <))+ 2- Z > Cov(I(Xy < @), I(Xg < z))
i=0 k=2
" n—k+1
= Var(I(X1 <z))+2)_ { Cov(I(Xy < z),I(X < 2)—— ),
k=2
where the third equality is by the stationary property. Similarly,
Var(Mo(z+6,)) = Var(I(X: <z+6,))
n
+2)° (Cov(I(X1 <z+8,),I(Xp<z+ 5@)%11-)
k=2
and,
Cov(Mp(z), Mp(z +6,)) = Cov(I(X1 <), I(X; <z+6))
n
+23 (cw(f()q <z I(Xp<z+ 5,,))”"—k+1> .
k=2
Therefore,
Var(Mp(z + 6,) — My(z))
i n—k+1
= |(Var(I(X1 <z +6,))+2) Cov(I(Xy <z +6,),[(Xe <z + Sn))— —
k=2
- n—k+1
+ (Var(I(Xl <z))+ 2ZCov(I(X1 <z), I(Xi < x))T)
k=2

’ <OOU(I(X1 <), [{(X1 <2+ 60)) + 2iCO’U(I(X1 < @), I(Xg < 7+ 6,)) 2= —:+ 1> .
k=2

Without loss of generality, assume 6, > 0. Since

Var(I(X; £z +6,)) + Var(I(X1 £ 2)) — 2cov(I(X1 <z +6,), [(X1 < z))
= EI(X1£z+6y)— (BI(X1 <z +48,))% + EI(X; <) — (BI(X, < z))?

~2(EI(X; < x) — BI(X1 < 2+ 6,)EI(X1 < z))

F(z +68,) — F(z) — (F(z + &) — F(x))*

f(x)on + 0(6n)




and,

zi {(C’ov([(Xl <z +6,),I(Xe < 3 +8,)) + Cov(I(X, < z),I(X < 7))

k=2
—2Cov(I(X; <2),I(Xpy <z + 5n)))£—_—_—;lki+—l}

= 23 {(BIC < o+ 8)I(Xe S 4 8) + EI(X < 2)I(Xe < )
k=2

—2EI(X: < 2)](Xp <z +0p) — (Flz +6,) — F(m))2)n_ k+ 1}

n

n
= 22{(P(X1 ST +8n, Xk ST +6,)+P(Xy <2, X, <z)
k=2

—2P(X; <z, X <z +0p) - (F(a:+5n)_p(m))2)n—k+1}

n

n
- QZ{(P(:D<X1_<_2:+6n,Xk§x+6n)—P(X1§a:,:c<Xk§:c+5n)
k=2

~(F(a+82) ~ F@)?) "2,
n
Then
n
Jim Var(Wa(¢)) = ]+ lim fRD 30N " {(P(x <Xi<z+6, Xp <z +68y)

k=2
—P(Xy <z < Xp <x+6,)— (Flz+6,) — F(x))z)f’“_:z”’ll}_

It is left to show that the second term of the right hand side is 0. Without loss of generality,
assume &, = n~1/3, then we have
nl/szn: {(P(:c <Xy <z4+n Y3 Xy <z+n"l?
k=2
—-PXi<zz<Xpg<z+n V3 (Flz+n~1/3) - F(m))z)—tzll}
= nl/3i {(P(w <Xi<z4+n"z< X <z+n"13)
k=2

—(Flz+n V%) - F(x))2)”—‘7’§~ﬂ}

n
= n'/? Z {(P(:I: <Xp<z+n 3z < Xy <z 4n"VAY(F(z4+n"Y3) - F(z))
k=2

~(F(z +n~3%) = F(z))?) n__k.i'_l}

n

n
= n!A(F(z+n"'*) - F(z)) Z {(P(x <Xp<z+n Yz < X; <z+n P
k=2

-Plz< X <z+ n“1/3))n—_7k7j-1},

where the first equality is implied by the time reversibility property. Since

[e o]
Z'P(m <Xp<z+n Vlr <X <z+n"V-Pla< Xy <z+n"13)
k=2

< ia(k—l)<oo

k=2

10




by mixing condition (2.3), then by Dominated Convergence Theorem, we get

n—o0

n
lim {n1/3(F(m +n7Y3) — F(z)) Z (Pz < X <z +n Pz <Xy <z +n713)
k=2

_Pz<Xy<z+ n—l/S))n_—k"'l}

n

oo
= f(m)Z lim (Pz< Xz <z+ nBlr<Xy<z+n ) —Ple< X<z +n_1/3))
kzzn—’oo

z<Xp<z+n B r< X1 <z +nt3)
Pz < X; <z +n1/3)
) -2/3

A fielz,z)n
= @3 Jim P

- @Y Jim 2L
k=2

= 0’
where f1x(x,2) is the joint probability density of X; and Xj. Therefore, result follows.

5.2 Proof of Theorem 1

We will verify Condition C’(c0) and other conditions in Lemma 2.3.
Let m, = [n/8], then we have

(1) T, = maxy<i<p BU2, = EUZ, = L2028 g2 - O(n-1)
(2) Yopoy (k) < oo is given. o
(3) Crr = esssup|Upi| = esssup]f——T—T?wanl, where Z,; is a non-degenerate random

variable wtih P(|Zn5| > n%) — 0 as n — oo for any @ > 0. Pick a < 3, then Cpi < oo for
sufficient large n.
(4) nmpyn = nnt/S max;zg E|UnjUnk| = n*/¢ f~4/°D?/3 max; 4 E|Zp; Znk|, and

Eiananc]
= pE|(I(z < X; Sz+6p)— (Flz+6;) — F(x)) — (I{z < X Lz 4 8p) — (Fz+ 6,) — F(z)))]
= n1/3]P(x <X;Lx+6n,z< Xg < z+6)— (F(2))2(6)%
= o),
where the last equation is from 2-dimensional Taylor expansion. Then we have
nMmaYs = 0(n~1/8) = 0(2).
(5) Since

(32 o00) (Se) = (35 e0) (Stesrme

Mn+1 Mn+1 k=1

f——2/3D1/3an )2
\/ﬁ ?
where Zyy, is a non-degenerate random variable and 32 @(j) — 0. Then we have

(fj a(y‘)) (kz_jl c,%k) = o(1)

Mn+1

Condition C’(c0) is verified by Fact (1)-(5).
Next, we check other conditions in Lemma 2.3. Let 7, = n%/12, then

1 — Vv
(6) 7 < maxi<k<n Cnk O(esssuPTanl)'

(7) Za(lem]) = n7/12¢(|en5/12]). For simplicity, assume a(j) = O(Tl;), then it is true that

Tﬁa(l_e'rnj) — 0 foralle>0.

n

Result follows by applying Fact (6)-(7), Condition C’(c0), and Lemma 2.3.

11




5.3 Proof of Lemnma 2.4

Recall
Wr(C) = f2/3 D30 /oY, (8y).

It is clear that the limiting distribution has mean 0. The variance-covariance matrix can be
calculated by similar procedure as in proof of Lemma 2.2.

Cov (Yo (84), Ya (62)) Cov (Mn(z + 8,) — My (z), My (2 + &) — My (z))
= Cov(Mp(z +8%), My(z +62)) — Cov (My(z + 8%), My(x))

—Cov (Mp(z), Mn(z + 61)) + Var (My(z))

Therefore, by similar procedure as in Theorem 1 we have asymptotic normality on
WH(CI) P
AT : SR A()
Wn(Cp) =1

— z ,Z’;::l an(C’L)
= ;,\l____\/ﬁ
ZZ:l (Z?:l )\zanc(Cz))
Jn

LA

where A is a normal random variable and A is any conformable nonzero vector.
Finally, by Cramer-Wold device, we have

Wn(G1) W)

Wn(Gp) W(G)

where the random vector on the right hand side follows a multivariate normal distribution.

5.4 Proof of Lemma 2.5

By direct calculation

E (|Wn(C1) — WalG)||Wr(C2) — Wa(Ss)))
Vvar(Wa((1) — Wa(C2))vvar(Wa(C2) — Wa((s))
CVC1 + G — cov(Wn(C1), Wn(G2))V/ (2 + G — cov(Wn(C2), Wa((s))

CvVGi—G@vVe—G
Clés = ¢l

for some constant C independent of n.

IANIN DA A
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