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Abstract

Newton’s recursive estimate [23] of a mixing distribution is an accurate
and computationally efficient competitor to the Bayes and ML estimates.
It has been shown [20, 33] that if the mixture model is correct, then the re-
cursive estimate is consistent in the weak topology under mild conditions.
Here we address the asymptotic behavior of the recursive estimate when
the model is incorrect. We show that the corresponding estimate of the
marginal distribution converges almost surely in L; to the “best possible”
mixture of the specified form. This generalization allows us to extend the
algorithm’s scope of application, particularly, to the case where additional
unknown parameters are present in the model. A “likelihood-based” es-
timate of the additional unknown parameters is proposed. Important ap-
plications are considered—fitting finite mixtures and large-scale multiple
testing—and the performance of the resulting methodology is investigated
in several simulated- and real-data examples.

1 Introduction

Historically, mixture distributions have been used primarily to model data that
show population heterogeneity or involve latent variables. More recently, the
growing popularity of nonparametric empirical Bayes methodology, thanks to
scientific advances such as DNA microarrays and medical and satellite imaging
technologies, has opened the door to many new and exciting applications of
mixture distributions. Typically, the inference problem requires a nonparamet-
ric estimate of this underlying mixing distribution which, in addition to being
a challenging computational problem, often requires rather strict assumptions
on the sampling model.

Suppose that the pairs (X;,8;) € X x © are independently distributed ac-
cording to the following model:

01~f and X1|97_~p(|01), i=1,...,n (1.1)

where p(z]@) is a known parametric density on the sample space X and f is a
density on © with respect to a o-finite measure y. The 8;’s are unobservable,
so0 the marginal density of Xi,..., X, is the mixture '

m(z) = /e p(z10)£(6) dy(6). (12)




From a Bayesian perspective, f represents the prior distribution for the param-
eters 61,...,6,. In high-dimensional problems, such as nonparametric regres-
sion [22, 5] or DNA microarray data analysis [13, 1, 21, 4], where the the number
of parameters n is very large, fixing f completely or only up to a few unknown
parameters can be unsatisfactory. The empirical Bayes [28] approach—using
the data directly to estimate the prior—is a more flexible alternative and has
been applied quite successfully in many problems.

In this paper, we focus our attention on the empirical Bayes approach and,
in particular, on a fast recursive algorithm for nonparametric estimation of f,
due to Newton [23]; see also [24, 25]. Suppose we have an independent sample
X1,..., Xy from the mixture m(z) in (1.2). Newton proposed the following
algorithm for estimating the mixing density f.

Recursive Algorithm. Choose an initial density fo on © and a sequence of

weights wn,...,w, € (0,1). For i =1,...,n, compute
p(Xil0)fi-1(6)

(X310") fi—1(6") du(9")’

fi(0) = (1 —w;) fi-1(0) +'wifp fcO (1.3)

and produce f, as the final estimate.

While f, is not a Bayesian posterior quantity—it depends on the order
of the data—the original motivation [24] was that f, would be approzimately
Bayes. Indeed, if f is given a Dirichlet process (DP) prior distribution with
base measure fy and precision 1/w; —1, then f is exactly the posterior mean of
f. This connection breaks down for n > 1, but Newton, et al. [24] conjectured
that, by extending the analogy, f, would serve as a suitable approximation to
DP prior Bayes estimate. Simulation results presented in [15, 20, 33] suggest
that this conjecture is false, but it is possible that f, approximates some other
posterior quantity, maybe under a different prior.

Until recently, very little was known about the large-sample behavior of
the estimate f,. Ghosh and Tokdar [15] used a novel martingale argument, to
prove, in the case where © is a finite set, that f, — f almost surely. Martin
and Ghosh [20] prove a slightly stronger consistency theorem by making use of
a stochastic approximation representation of the recursion (1.3). Most recently,
Tokdar, et al. [33] have handled the case of a more general parameter space
© by extending the martingale argument [15] to the X-space, proving that the
marginal density estimate

(@) = / p(16) £ (6) dpu(6) (1.4)

converges a.s. to m(z) in the L; topology. From this, consistency of f, in the
weak topology on © is deduced.

In these earlier treatments of the recursive estimate, the operating assump-
tion is that the density m is a mixture of the form (1.2). This assumption seems
to unnecessarily limit the scope and applications of the algorithm. For example,
in the Bayesian context, where existence of prior density f is usually taken for
granted, there remains some uncertainty regarding the conditional density of the
data p(z|#). The theoretical and practical performance of the recursive estimate
has been investigated only in the case where 6 completely specifies the density
p(z|6). This excludes, for example, the case where p(z|6) is a N(8,0?) density




with unknown variance 2. The natural solution would be to estimate o2 from
the data and use a plug-in p(z|d, 62) in the recursive algorithm. Unfortunately,
the present theory can say nothing about the performance of such a procedure
because m(z) is not a mixture of p(z|6, 5?) densities.

The assumption that the data follows a mixture distribution is most of-
ten based on empirical evidence; e.g., if a histogram of the data shows multiple
modes, then a mixture model might be used to analyze the data. This procedure
is justified by the well-known fact that any density on Euclidean space can be
closely approximated by a suitable mixture; see, for example, DasGupta. [8, The-
orem 33.1]. Considering the computational speed and simplicity of the recursive
estimate, coupled with the approximation theorem just mentioned, one might
propose using the recursive estimate in general density estimation problems; see
Section 6. Again, the present theory says nothing about the performance of
such a procedure.

The goal of this paper is to understand the asymptotic properties of the
recursive estimate in the more general case. What kind of asymptotic properties
can we hope for? Of course, if m is not a mixture of the form (1.2), then there
is no hope that m,, is a consistent estimate of m. This is not a fault of the
estimate, but a consequence of the model mis-specification. A natural question
arises: if there is no f such that m(xz) is of the form (1.2), then what are f, and
my, estimating? We will show that m,, converges to the “best possible” mixture
of the form (1.2) in a sense to be made more precise below.

Problems of this kind have been considered by many authors, for exam-
ple, Csiszér [6], Osiszér and Tusnddy [7], Dykstra [9], Leroux [17], Shyamalku-
mar [31] and others. In one way or another, the concept of “Kullback-Leibler
(KL) projections” is introduced. A KL projection of a probability measure P
onto a class of probability measures @ is the measure @* € Q which is “closest”
to P is a KL sense; i.e.,

K(P,Q")=inf{K(P,Q): Q€ Q},

where K(P,Q) = [log(dP/dQ)dP is the KL divergence of Q from P. More
details on these KL projections, including sufficient conditions for the existence
of Q*, are given in Section 2.

For a preview of our results, we first define some notation. Recall that X
is the sample space, and © is the parameter space equipped with a o-finite
measure 4. Let M = M(X,v) be the set of all probability densities on X with
respect to a specified o-finite measure v and & = {p(:|9) : 6 € ©} C M a
parametric family. Let F = F(©, i) be the set of all probability densities on ©
with respect to 4. We assume that the data X,..., X, € & are iid observations
with common density m € M. This m is unknown to us but we model it with
a mixture (1.2). That is, we assume m € Mg C M, where

Mg ={meM:m=m,peF}.

where my(z) = [ p(z|0)p(9) du(6) is a p-mixture of &. If indeed m € Mg, then
the consistency theorem in [33] would apply. Here we prove, more generally, that

K(m,my) — inf{K(m,m') : m' ¢ Mg} as. (1.5)

where K(m,m') = [log(m/m')mdy. That is, even when the model is mis-
specified (i.e., m € Mg), Newton’s estimate m,, in (1.4) converges a.s. in L; to
the KL-best mixture in Meg.




A general discussion of Kullback-Leibler projections, along with a theorem
giving sufficient conditions for the existence of such a projection, can be found
in Section 2. In Section 3, after establishing some preliminary results, we prove
our main theorem and show that the consistency results of Tokdar, et al. [33]
follow as special cases. Qur “likelihood-based” extension of the recursive algo-
rithm is presented in Section 4. The resulting methodology is applied to two
important statistical problems, namely fitting finite mixture models and large-
scale simultaneous hypothesis testing. For the former, we can estimate both the
mixture complexity as well as the mixture characteristics and, for the latter, we
use a more flexible zero-assumption than Efron [12]. We assess the performance
of these procedures in real- and simulated-data examples. Some final remarks
are given in Section 6.

2 Kullback-Leibler projections

For probability measures P,Q € P, with P <« @, the Kullback-Leibler (KL)
divergence of @ from P is

K(P,Q) = / log(dP/dQ) dF,

where dP/dQ is the Radon-Nikodym derivative of P with respect to Q. If both P
and @ have densities p and g, respectively, with respect to a common measure
v, then K(P,Q) = [plog(p/q)dv. KL divergences arise quite frequently in
statistics, primarily due to the ubiquity of likelihood ratios. In our case, the
occurrence of the KL divergence is quite natural. Martin and Ghosh [20] show
that the KL divergence acts as a Lyapunov function, controlling the dynamics
of the algorithm and forcing the estimates to converge to a stable equilibrium.

We will be interested in identifying a probability measure @* € Q, with
Q < P, such that @* is closest to P in a KL sense; that is,

K(P,Q") = K(P,Q) = inf{K(P,Q): Q€ Q} (2.1)

We call @* the KL projection of P onto Q. In this section we prove a simple
theorem which gives sufficient conditions for the existence of a KL projection in
our special case of mixtures. Many interesting details on more general divergence
measures can be found in Liese and Vadja [18].

The most important issue here is ezistence—uniqueness is automatic from
convexity of Q and of the KL divergence mapping @ — K (P, Q). The following
theorem gives conditions which imply the existence of a density f € F such that
K(m,mys) = K(m,Me).

Theorem 2.1. IfF is weakly compact and 8 — p(z|6) is bounded and continuous
for v-ae. z, then 3 f € F such that K(m,mys) = K(m,Me).

Proof. Choose any ¢ € F and a sequence {p;} C F such that ¢, — ¢ weakly.
Let my,(z) = [ p(x]0)p(8) du(8) define the corresponding sequence my = my,,
of mixture densities in Mg. Then weak convergence of ¢y to ¢ and the assump-
tion that 6 ~ p(z]0) is v-a.e. = bounded and continuous implies, by Scheflé’s
theorem, that my — my, in L1(v). Let k(@) = K(m,my,). Since mg — m,, in




v-measure, it follows from Fatou’s lemma that

k(p) = /liinlog(m/mk)mdu
< limkinf / log(m/mi)mdy = limkinf k(or)

Thus & is lower semi-continuous with respect to the weak topology and, there-
fore, must attain its infimum on the compact F. O

Theorem 2.1 shows that my is the KL projection of m onto Me. Convexity
implies my is unique, but identifiability is required for uniqueness of f.

3 Convergence of the recursive estimate

in this section we prove the claim (1.5) that my,, converges a.s. in L; to the KL
projection of m onto Mg, where Mg C M is the convex hull of & = {p(-|9) :
0 € ©}. Here, and in what follows, we will consider the following conditions:

Al Y, wp=o0and 3, w’ < co.
A2, F is weakly compact.

A3. 8 — p(z]f) bounded and continuous for v-a.e. x € X.
A4. There exists a constant B < oo such that, for every 6,6’ € @

/x [5((;'5/))]2 m(z) dv(z) < B.

The condition Al on the weight sequence {w,} is natural, given the stochastic
approximation representation of the recursive algorithm presented in Martin and
Ghosh [20]. Conditions A2 and A3 together imply the existence of a density
[ € F such that K(m,ms) = K(m,Meg); see Theorem 2.1. Note that this f
need not be unique without identifiability. A sufficient condition for A2 is that
© be a compact metric space. The square-integrability condition A4 is by far
our strongest assumption. Since we are not assuming m(z) is of the form (1.2),
condition A4 cannot be written as a property of the parametric family &2 alone
as in Tokdar, et al. [33]. A4 does hold for many common families &7, such as

o Normal with mean 6 and any fixed variance 02 > 0
e Gamma with rate # and any fixed shape o > 0
¢ Poisson with mean 8

provided that © is compact and m(z) admits a moment-generating function on
©. The following proposition gives an important implication of A4.

Proposition 3.1. For any ¢, € F, Ad implies

mw(m)r

———=| m(z)dv(z) < B. 3.1
[ |28 mie) vt 5.)
Proof. Follows from Jensen'’s inequality. O




The proof of our main result will be partially based on the development in
Tokdar, et al. [33]. We proceed by recording a few of these results for future
reference. First, let B(z) be the remainder term of a first-order Taylor expansion
of log(1 + z) at = = 0; that is,

log(l+z) =z —z°R(z), z>-1. (3.2)
Two useful inequalities will be needed:
0 < R(z) <max{l,(1+z)7?}, z>-1 (3.3)
and, for a > 0 and b € (0, 1),
(a —1)?max{1, (1 +b(a — 1))"?} < max{(a — 1)?, (1/a — 1)?} (3.4)

The mixture density m, € Mg in (1.4) corresponding to Newton’s estimate
fn € F is of the form

Mn(z) = (1 — W )Mp—1(2) + wrha x, (2),

where (&l0)p(&/16) fn—1(6)
p\xv)pz n—1 /
7 proved X.
R R e TO N
For notational convenience, also define the function
o) = 222G e .
Mn—1(Z)

Then the KL divergence K, = K(m,m,) satisfies
K,-K, 1= / mlog(mp—1/my) dv
/ mlog(l + wpHy x, ) dv
=—wn/man du+w/m XR'wn Hy, x,)dv

where R(z) is defined in (3.2). Let 2%, ; be the c-algebra generated by the
data sequence Xi,...,Xnp-1. Since K,_; is &),—;-measurable, upon taking
conditional expectation with respect to 2%, we get

E(Kn|#n-1) = Kn-1 = —w,T(fn-1) + w2E(Zn| 1) (3.5)

where T(-) and Z, are defined as

2
0= { mw p(al6) dv(a )} o) du®)~1, pecF  (3.6)
Zp = f mHﬁ)X"R(wan,xn)du (3.7)
X

Note that T'(fp-1) is exactly M} defined in [33]. The following property of T'(:)
will be critical in the proof of our main result.




Lemma 3.2, T(p) > 0 with equality iff K(m,m,) = K(m,Me).
Proof. Treating 6§ ~ ¢ as a random element in ©, define

m

p(z|0) dv(z), ¢ €P. (3.8)

Then E,lg,(8)] = fg‘p(pd,u = 1 and T(p) = Volge(0)] > 0, with equality
iff g, = 1 p-a.e., where E, and V,, denote expectation and variance under ¢,
respectively. To show that T(cp) = 0 implies K(m,m,) = K(m,Me), we follow
Shyamalkumar [31]. Define

Glg) = log { [ 5001 £0) du(f?)} ,

where f € F is such that K (m,my) = K(m,Ms). Note that T'(¢p) = 0 implies
G(p) = 0. By Jensen’s inequality

Glp) log{ LI e plele) oz ) f(0)d#(0)}
— log { / ) (m)du(m)}

z)

my(z)
my ()
/ log ( ((:C;) m(z) dv(z)

= K(m,my) — K(m,m;s) 2 0
so that G(g) = 0 implies K(m,my,) = K(m, my). |

From (3.5) we see the makings of a supermartingale in K. Indeed, if it were
not for the term involving Z,, we would have a non-negative supermartingale and
convergence of K, would follow immediately from the martingale convergence
theorem [2]. Fortunately, the presence of Z, causes only minor difficulties.

Lemma 3.3. Under A4, {Z,} is uniformly bounded a.s.
Proof. Inequalities (3.3) and (3.4) show that

2 2
HT2L X R(wan,Xn) < max { (M — 1> , (mn—l _ 1> }
A M1 hn,xn

and, since hy_ x,,Mp—1 € Meg for each n, the claim follows from A4 and Propo-
sition 3.1. In particular, Z, < 1+ B a.s. |

Our last preliminary result, Lemma 3.4 below, establishes the necessary
smoothness properties of the mapping T'(-) on F.

Lemima 3.4. Under A3-A4, T'(-) is continuous with respect to the weak topology
on F.

Proof. Take a sequence {¢,} C F such that ¢, — . Since the weak topology
is metrizable, it suffices to show that T'(p,) — T(p). From weak convergence of
©n to @ we can conclude Li{v) convergence of m,, to m, by A3 and Scheffé’s
Theorem. Recall the definition of g, and g, in (3.8). The integrand in g,,,, (6) is




bounded by v/B for u-a.e. 8 by A4, so 1t follows from the domlnated convergence
theorem that g,, — g, and, hence, gw — g p-a.e. Moreover, g < B by A4,
so {g2_} is uniformly 1ntegrable Then E,, [gg, ] = Eylg2] and it follows that
T (cpn) — T (). But {¢n} and ¢ were arbitrary so T’ must, therefore, be weakly
continuous on F. O

At last, we now have the notation and machinery to precisely state and prove
our main result, namely, that m, converges to the KL-projection of m onto the
space Mg of mixtures.

Theorem 3.5. Under A1-A4, K, — K(m,Mp) as.
Proof. The proof begins with (3.5). Define the random variables

[e ]

Z w?E(Z;| o) (3.9)

and set K,, = Ky, + 6,. The sequence {d,} in (3.9) has three important prop-
erties, which we establish below.

(i) Obviously &, > 0 by definition, so I?n > 0 too.

(ii) Under Al, Lemma 3.3 implies that )., w2E(Z,) < oo and it follows that
the d,’s are bounded. Since Y 2, ., w?Z; — 0 as n — oo, we conclude
from the bounded convergence theorem that 6, — 0 a.s.

(iii) Since &7,_; C 9%, we have

E(bn| 1) = Y, wiE(Zi| @)
i=n+1
which implies
E(0n|#n-1) — On—1 = —WEE(Zp|p-1). (3.10)

Combining (3.5) and (3.10), we get

E(Kn| 1) — Kn-1 = E(Kn|Hh—1) = Kn—1 + E(0u| 1) — 51
= =Wn (fn—l) + wnE ZnLWn—l) - wnE(an-dn—l)

= ~wpT(fa-1)
<0

Therefore, I~(n forms a non-negative supermartingale and, hence, there is a
Ko = K(m,Mg) such that K, — Ko a.s. In fact, K, —» Ko by (ii). It
remains to show Ko, = K(m,Mg) as.

Suppose K, > K{(m,Mp) with positive probability. From the previous
display we have

Kio1 — E(Ki|e_1) = wiT(fi-1), Vi. (3.11)




Fix any two integers N and n. Taking conditional expectation with respect to
&1 in (3.11) and summing gives

N+n N+n . -
> wET(fimr)| 1] = Y E[Kio1 — E(Ki|#-1) | #y-1]
i=N Nin ) i=N )
=3 {E(Ki-lldN—l) — E[E(Ki|i-1) | JZ7N—1]}
ol (3.12)
+n B
= Z E[K;—1 — K; | &n-1]
i=N
= Kn-1 — E(Kninlofv-r)
< Kno1

If Ko > K(m,Me), then there exists £ > 0 such that
K(m,m,) > K{(m,Mg) +¢

for all but finitely many n. In the proof of Theorem 2.1 it was shown that the
mapping &(¢) = K(m,m,) is lower semi-continuous with respect to the weak
topology on F. Consequently,

O.={peF:x(p)>K(mMg)+e} CF
is a weakly open set. Its closure O, is compact and
O.N{peTF:xr(p)=K(m,Mg)} =0.

Since f, € O, for all but finitely many n, it follows from Lemma 3.4 that T(f,)
is bounded away from zero. This, together with A2, implies that, with positive
probability, the left-hand side of (3.12) goes to co as n — oco. But Kn-; is
finite with probability 1—a contradiction! Therefore, Ko, = K(m,Mg) as.,
completing the proof. [

Theorem 3.5 states that the recursive estimates f, converge to the f at
which the infimum K(m,Meg) is attained. But to conclude weak convergence
of f, from L, convergence of m,, we need two additional conditions:

Ab5. Identifiability: m, = my v-a.e. implies p = ¢ p-a.e.
A6. For any € > 0 and any compact Xy C X, there exists a compact ©y C ©
such that [, p(z|0)dv(z) < e for all § ¢ ©q.

With conditions A5-A6 and Theorem 3 of Tokdar, et al. [33], the next two
corollaries follow immediately from Theorem 3.5.

Corollary 3.6. If conditions A1-A6 hold, then f, — f a.s. in the weak topol-
ogy, where f € F satisfies K (m,mys) = K(m,Mg).

Corollary 3.7. If m € Mg, then under A1-A4, m, — m as. in the I
topology. Moreover, if A5—A6 hold then f, converges a.s. in the weak topology
to the mizing density f € F that satisfies (1.2).




4 Extensions: the RE+ algorithm

Thus far, we have assumed that the sampling densities p(z|f) are completely
specified by the parameter 8. However, greater modeling flexibility can be
achieved by choosing a richer family of sampling densities and using the data to
specify the additional unknowns. A serious drawback of the recursive algorithm
is that it cannot directly handle additional unknown parameters [3]. In this sec-
tion, we extend the recursive algorithm to find the best possible mixture over
the augmented space of mixing distributions and the additional parameters.

Let £ € E represent this “non-mixing” parameter and let p(z|6,€) be the
corresponding family of sampling densities on X. In this section, we will assume
that the density m is a mixture of the form

m(z) = / p(z16,€)1*(6) dyu(6), (4.1)

where both f* and £* are unknown and to be estimated. Even the dominating
measure 4 can depend on £* (i.e., p = pe+) but we shall generally suppress this
dependence in the notation. Let mys¢ denote a mixture of the form (4.1) with
(f,€) in place of the unknown (f*,£*). Martin and Ghosh [20] considered the
problem of estimating the pair (f*,£*) in the case of a finite ©. They assumed
replicates Xj1,..., X were available from p(z|6;,£) for each ¢ = 1,...,n and
proposed a simple modification of the algorithm which could recursively estimate
both f and €. Our approach here is different.

Our jumping off point is that, for fixed £ € E, the marginal density mp ¢ =
my, ¢ based on the recursive algorithm will converge, by Theorem 3.5, to the
mixture of p(z|,£) densities that minimizes the KL divergence. This observa-
tion suggests that we estimate the pair (f*,£*) by minimizing K(m,mj¢) over
F x Z. Unfortunately, the density m is unknown so this quantity cannot be cal-
culated. The natural modification would be to replace expectation with respect
to m by expectation with respect to the empirical distribution of X;,...,X,.
That is, instead minimize

Ln(€) = 5 > log{m(Xo)/mi-1.¢(X)} (42)

over 2. Note that minimizing L,(£) is equivalent to maximizing a pseudo-
likelihood function Ly, (€), given by

La€) =) logmi1¢(Xs), (4.3)

i=1

so evaluation of m is not required. To rigorously justify our intuition, we need
a modification of assumption A4 used in the proof of Theorem 3.5. Recall that
we are assuming that m is itself a mixture, so condition A4 can be rewritten in
terms of the sampling densities p(z|6,&). Specifically,

A4'. There exists B < co such that

2
/X [%] p(x|0s,&3) dv(z) < B

for any (0,&) €@ X E, k=1,2,3.

10




Theorem 4.1. Under conditions A1-A3 of Theorem 8.5 and A4’ above,
Lp(§) » inf{K(m,my¢) : p € F} as.
asn — oo for fixed £ € 2.
Proof. Define the random variables
U = log[m(Xi)/mi—1,(Xi)] — K(m,mi—1¢), 121
and note that E[U;le4_1] = 0, where &1 = o(X,...,Xi—1). Therefore,
{(Un, &) : n > 1} forms a zero mean martingale sequence. Furthermore, if

we let £ = {m < m;_1¢} C X, then by A4’ and several applications of Jensen’s
inequality we get

2
E[Uf[M_1]§A<log mTlE) mdv
=/ (1ogw)2 mdl/—l—/ log —~ 2mdz/
£ m ge Mi-1¢
. 2 2
S/(M—l) mdu+/ mn -1} mdv
£ m e \Mi-1,¢

<C:=2(B+1)

Then the so-called conditional variance of the process {U,}, defined as

n
V2 =Y E[U2|1],

i=1

satisfies an+/V2 < n'/2a,/C — 0, where a, = n!loglogn. Also, by Cheby-
shev’s inequality,

Z P{lUn| > a;! | #n1} < C'Za% <o as.

n=1 n=1

and it follows from Corollary 2 of Teicher [32] (with b, = n and 8 = 1) that
n~1 Y%, Ui — 0 a.s. Therefore, we can conclude that
1 n
Ln(f) - ZK(m,mi_l,g) —0 a.s.

n
i=1

However, we know from Theorem 3.5 that K (m, m;_1¢) and, hence, the sample
average n”1 Y 1 K(m,m;_1¢) converges to inf, K(m,my¢). The claim now
follows immediately. 0

Remark 4.2. Consider the very general Bayesian model

Xla' . '7Xn "‘3 p(|f)£)’

where f—possibly a mixing density—has a prior distribution f ~ II and ¢
is a hyperparameter. The marginal likelihood of £, after integrating out f

11




with respect to I, equals [}, mi—1,¢(X;) where m;_1¢(z) equals the poste-
rior predictive density of X; given Xi,...,X;_1. Therefore Ly (¢) in (4.3) can
be explained as the (log) marginal likelihood of £ under the Bayesian formula-
tion f ~ DP(1/w; — 1, fo) obtained by an approximate filtering algorithm in
which at step 4, the conditional posterior distribution of f given X,,...,X;_1
is approximated by DP(1/w; — 1, fi-1,¢).

Remark 4.3. Theorem 4.1 does not imply convergence of the sequence of es-
timates &, = argmax L,(£) unless £ is restricted to a finite set; in general,
uniform convergence is needed.

Remark 4.4. In many cases, when additional unknown parameters are intro-
duced, the model may become unidentifiable. For example, a location mixture
of normal densities with unknown variance ¢? is unidentifiable. This can be
problematic when the parameters of interest are “real-world” quantities. How-
ever, the mixture model structure is often artificially imposed—for modeling
simplicity and flexibility—so any set of parameters that provide an adequate fit
to the data would suffice.

Remark 4.5. Evaluation of the pseudo-likelihood En(§) in (4.3) is performed
by passing through the recursive algorithm, either with or without averaging
over permutations of the data, with the specified € in the sampling density
p(z|6,&). Maximization can then be performed using any available optimization
procedure. In our experience, maximization of En(é) is relatively fast, usually
requiring only a few, relatively inexpensive function evaluations.

Next we present a simple simulation study that demonstrates the perfor-
mance of the above procedure, which we call RE+ or PARE+, dependeing on
whether an average over permuations is included. In this example, we maximize
the pseudo-likelihood function L, () in (4.3) numerically using the nlm routine
in the R statistical software package [26].

Example 4.6. In this example we revisit one of the simulation studies high-
lighted in Tokdar, et al. [33], namely, when m(z) is a location mixture of nor-
mals. Specifically, take © = [0,1] and

0; ~ Beta(3,30) + 2Beta(4,4), X;|6; ~ Normal(6;,0?),

where sampling is independent across i = 1,...,n. In [33] it was assumed that ¢
was known. Here we compare the performance of the recursive algorithm when
o = 0.1 is known versus the extended version, as described above, that treats o
as unknown and estimates it from the observed data.

In this case, the variance is the unknown parameter and we want choose o
to maximize L, (o?). Evaluation of L,(c?) is done via a single pass through the
recursive algorithm with weights w; = (4 +1)~! and initial guess fo taken to be
a Unif(©) density. Once the maximizing 2 is found, we estimate the mixing
density with the plug-in recursive estimate, averaged over 25 permutations of
the data. For N = 100 samples of size n = 250, the estimates of the mixing
and mixture densities are displayed in Figure 4.1. The top row (RE) shows the
estimates when o = 0.1 is known and the bottom row (RE+) shows the esti-
mates under the extended algorithm with estimated 2. There is no noticeable
difference between the estimates with ¢ known versus those with ¢ estimated.
Figure 4.2 shows the L; distance L;(m, ) of the RE and RE+ estimates from
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Fig 4.1: Plots of the estimated mixing and mixture densities for RE (top) and
the RE+ extension (bottom) for the Beta-Normal simulation in Example 4.6.

the truth, as well as a summary of the N = 100 estimates of o2. From the L,
plots we see that the RE+ estimates are slightly worse, the loss of RE+ being
about 15% larger than that of RE, on average. However, with the exception of
just a few extreme cases, the RE+ estimates of o are quite accurate, suggest-
ing that there are no identifiability problems in this example. The optimization
required between 6 and 7 evaluations of L,(£) on average. Overall we find that
little efficiency is lost—computational or otherwise—when ¢ is unknown and
estimated versus when ¢ is known.

5 Applications

In this section we consider two important problems and demonstrate how the
extension of the recursive algorithm described in Section 4 can be used to solve
these problems.

5.1 Fitting finite mixtures

Finite mixture models play an important role in applied statistics. When the
number of mixture components is known, numerical methods such as the EM
algorithm can be used to estimate the various parameters. When the number
of mixture components is unknown, as is generally the case, the problem be-
comes much more difficult. In such cases, often the goal is to find the most
parsimonious mixture—the one with the fewest components—that provides an
acceptable fit to the observed data. A nice procedure, based on minimizing a
Hellinger distance, is given by Woo and Sriram [37}.
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Fig 4.2: Summary of the L loss (left) for RE and RE+ and of the RE+ estimates
of o2 (right) for the Beta-Normal simulation in Example 4.6.

Suppose m(z) is a finite mixture of the form

R
m(z) =Y p(al8r) £*(9,),
r=1

where f* has an unknown finite support {1, ...,9r} of unknown size R within
some known bounded set ©. Martin and Ghosh [20] considered this problem
of unknown support of a finite mixing distribution and suggested the following
approach: choose a suitably fine grid of points © = {#1,...,0s} from © as
a candidate support and estimate f* with Newton’s estimate f, on ©. This
intuitive approach will produce a decent answer very quickly but, unfortunately,
there are two serious drawbacks.

e fn and f* possibly have different (fixed) supports so the consistency the-
orem in [20] cannot be applied.

o fn is too smooth in the sense that too many points in © are given positive
mass; see, e.g., Figure 3.1 in [20] or Figure 19.1 in [15].

For the first problem, Martin and Ghosh [20] conjectured that, for large n,
the recursive estimate would produce the KL-best mixture over the candidate
support ©. Theorem 3.5 confirms their conjecture. For the second problem
above, it would appear that a modification of the recursive algorithm is required.
Instead of modifying the algorithm, we design an estimation procedure that
favors small supports. This can be done using the method described in Section 4,
treating the support as an unknown non-mixing “parameter” ¢.

Recall that © = {6,...,0g} is the candidate support grid. Let £ be a binary
S-vector, with &, indicating whether or not 8, receives positive mass. That is,
¢ controls which points of © are included in the mixture. More precisely, we
consider mixtures of the form

Cae1 (185 (B)és

I TORTS
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It follows from Theorem 4.1 that Ly (€) — inf; K{(m, my,) for fixed £ asn — oo,
which justifies choosing & € E := {0, 1}5 to maximize L, (£). For this optimiza-
tion problem, the solution space has 25 elements so an exhaustive search proce-
dure cannot be used, even for relatively small S. Instead, a simulated annealing
procedure [29, Section 5.2.3] is used to maximize the pseudo-likelihood L{¢)
over the space E of possible solutions. The initial state £} of the simulated an-
nealing procedure is taken to be the full vector of 1’s, which corresponds to the
support of Newton’s original estimate f,. The majority of the early stages of
the algorithm will eliminate candidate support points, causing the algorithm to
favor smaller supports. At later stages, candidate support points can be added
in the move £) — ¢t+1), but this would typically require an increase in the
pseudo-likelihood function; i.e., Ly, (6®)) < L, (6¢+D).

Example 5.1. Consider a simple five-component mixture, with mixture com-
ponents centered within © = [~5,5] and we choose a grid of candidate sup-
port points © = {-5.0,—4.75,...,4.75,5.0}. Each mixture component p(z|0) is
taken to be a N(6,0.52) density. 100 datasets X1,..., X, were simulated from
the true mixture for n = 100, 250, 500. Figure 5.1 shows the RE and RE+ esti-
mates from one particular dataset of size n = 250. Note that the RE+ estimate
of the mixing distribution closely matches the truth in both the support points
and the weights it assigns. Also, the RE+ estimate of the mixture is visually
better than that of the RE estimate, although its KL divergence K (m, fipp+)
is slightly larger. Figure 5.2 summarizes these KL divergences for the two esti-
mates over the three sample sizes considered. We find that the RE+ estimate
is a bit unstable for small n but, on average, outperforms RE. Also, in terms
of the estimated mixture complexity, RE estimated a constant 41 mixture com-
ponents while RE+ averaged 9.47, 5.80 and 4.98 mixture components for the
three sample sizes, respectively.

In the following example, we apply the above methodology to the well-known
galaxy data studied in [30, 14, 27, 35] to name a few.

Example 5.2. Empirical evidence shows that the universe is in a never-ending
process of expansion, giving motivation to the Big Bang explanation of how
the universe and all its matter came to be. The attraction of matter to other
matter—the cause of planet, star, and galaxy formation—also suggests that
galaxies themselves should be attracted to one another. Therefore, under the
Big Bang model, galaxies should form clusters and the relative velocities of the
galaxies should be similar within clusters. Roeder [30] considers data on the
measured velocities of n = 82 galaxies, relative to our own galaxy. She models
this data as a finite mixture of normal densities, with the number and location of
mixture components unknown, and assumes that each galactic cluster is a single
component of the normal mixture. Multiple mixture components is consistent
with the hypothesis of galaxy clustering.

We apply the methodology outlined above to estimate the mixing distri-
bution itself, which immediately gives an estimate of the mixture complexity.
Other authors, including Escobar and West [14] and Richardson and Green [27],
have fit Bayesian hierarchical models that require a fairly complex Monte Carlo
sampling scheme for posterior inference on the number of mixture components.
To illustrate our approach, we will consider a simple mixture of normals model
in which each normal component has variance 02 = 1. The choice of 02 =1 is
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Fig 5.1: Plots of the estimated mixing (left) and mixture densities (right) for
the recursive estimate (RE, top) and the extension (RE+, bottom) based on a
simulated annealing optimization for one particular dataset of size n = 250 in
Example 5.1.

based on the a priori considerations of Escobar and West [14]: their common
prior for the variance of each normal component has unit mean.

From the observed velocities, it is apparent that the mixture components
must be centered somewhere in the interval © = [5,40], so we choose a grid of
candidate support points © = {5.0,5.5,6.0,...,39.5,40.0}; here § = 71. Fig-
ure 5.3 shows the estimates of the mixing and mixture based on the recursive
algorithm and the extended RE+ algorithm via a simulated annealing opti-
mization. The recursive estimate of the mixing density is much too smooth to
accurately assess the number of mixture components, and the corresponding
mixture density estimate fails to adequately capture the shape of the observed
distribution of velocities, as depicted by the histogram. On the other hand, the
RE+ estimate of the mixing distribution clearly identifies six, or possibly seven,
mixture components, closely matching the conclusions in [30, 14, 27]. The pos-
itive weight given to two neighboring #’s by the RE+ is likely an attempt by
the algorithm to account for the heavier tails of the component with the second
highest peak. Finally, note that, compared to RE, the RE+ mixture density
provides a much better fit to the observed galactic velocities.

5.2 Large-scale simultaneous hypothesis testing

Performing numerous statistical tests simultaneously is an important statistical
problem these days. Such situations routinely arise in genetics, proteomics, as-
trophysics, education science, etc. An abstract representation of these situations
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Fig 5.2: Summary of the KL divergences K(m, ) for RE and RE+ over the
100 simulated datasets of sizes n = 100, 250, and 500 in Example 5.1.

is testing a large set of hypotheses
Hy; : the i*P case manifests a “null” behavior, i=1,...,n

based on summary test statistics 21,...,2,. In applications, n can range from
a few hundred to several thousand. Recent statistical research in this area has
focused on an empirical Bayes framework that allows for information sharing
between cases, even though a separate decision is to be made for each case. Our
interest is in the two-groups model championed by Efron [10, 11, 12], where the
z; are agsumed to arise from a mixture density

m(z) = mmg(2) + (1 — m)ma(z), (5.1)

with mg encoding the null behavior and m; describing the often unspecified
alternative behavior of the z-scores.

Usually, by design, the null behavior of z is supposed to match that of a
standard normal distribution; think of z; = ®~*(F;(¢;)) where ® is the stan-
dard normal CDF, ¢; is a suitable statistic and F; is the corresponding null
distribution for testing the i*" case in isolation. But as Efron [12] argues, mg
in reality often appears different from the theoretical null. A number of factors
can contribute to this phenomenon, inter-case correlation being one of them.
This necessitates estimating mg from the data.

Estimating both mg and my (as well as 7) from data, however, is fraught with
many dangers. The most severe of these is a lack of identifiability-——exchanging
the labels of the null and the alternative produces an identical marginal be-
havior for the 2-scores. To counter this, one needs strong assumptions on the
components of m(z). For example, the zero-assumption in Efron [12] states that
most of the z-scores near zero are null cases.

We consider a different scenario where such a segregation between the ob-
servables is deemed unlikely to occur, but the basic essence of Efron’s zero-
assumption prevails. Instead of focusing directly on the z-scores, we make a
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Fig 5.3: Plots of the estimated mixing (left) and mixture densities (right) for
the recursive estimate (RE, top) and the extension (RE+, bottom) based on a
simulated annealing optimization for the galaxy data in Example 5.2.

zero assumption about my and m, as follows:
m1 has strictly heavier tails than myg. (6.2)

This is weaker than Efron’s zero-assumption in the sense that the z-scores near
zero are only more likely to have come from mg than from m;.

A simple model that encodes our zero assumption (5.2) into the two-groups
model (5.1) is

m(z) = wp(alfo, %) + (1 = m) [ p(el6, *)g(6) 6, (53)
where p(z]6,0?) is a Normal(6,c?) density and the parameters fp, 0%, 7 are

unspecified, along with the mixing density g(#). The following theorem shows
that this model is identifiable in (6o, 0,7, g).

Theorem 5.3. Let 2 denote the space of probability densities with respect to
Lebesgue measure on R; te., 2 ={f € L1(R): f =0, |fll1 = 1}. Then the
map M : R x (0,00) X (0,1) Xx 2 — 2, given by

M(6,0,7,9)(z) = 7p(2l6,0%) + (1 — ) / p(l9',0%)g(@) d8' (5.4)

is one-to-one.
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Proof. Assume M(6y,01,71,91) = M{(63,02,73,¢92). Then, in terms of charac-
teristic functions, we must have

e~oit’/2 [71'16it01 + @1 -m)(t)] = g3t /2 [wzeitez + (1 —m)a(t)] (5.5)

for every t € R, where 1; is the characteristic function of g;, j = 1,2. Since
g; € 9, we know that
P;(t) =0 as t— too. (5.6)

Now, suppose 01 > 0O3. Choose a sequence {t,} C R such that t, — oo
and e¥~% = 1 for all n. Then, for large enough n, (5.6) would imply that
g + (1 — m2)Pa(tn) # 0. On rearranging the terms in (5.5) we get

eti(ei-ad)/2 _ mien®t + (1 - m )¢ (tn)
g + (1 — m)a(tn)

As n — oo, the left-hand side of (5.7) blows up to infinity while the right-
hand side is bounded. Therefore, to avoid contradiction, we need o, < og; by
symmetry, it follows that o; = 2. With this equality, relation (5.5) easily leads
to the equalities §, = 02, m = 73 and g1 = g, completing the proof. O

(5.7)

For a given configuration £ = (p, 0), one can write

m(z) = / p(219, €)(8) dye (6) (5.8)

where f = w6(6y) + (1 — 7)g is a probability density with respect to the dom-
inating measure pe = §(6p) + A—a point mass at 8y plus Lebesgue measure.
The formulation (5.8) is ideally suited for the estimation theory developed in
Section 4. That is, by treating £ = (6y,0) as the “non-mixing” parameter we
can employ the PARE+ method to produce estimates £ = (0}),&). The corre-
sponding mixing density fn¢ = #6(8g) + (1 — #)§ then provides estimates of
and g. The empirical null is Normal(éo,&z).

In implementing the above procedure, one needs to take care in specifying
the initial estimate fo = med(6) + (1 — 7mp)go in the recursive algorithm. In
spite of having large n, the initial guess mp can have a substantial effect on
the final estimate f,, ; when one of the two groups is scarce. In most modern
applications, the non-null group consists of a very small proportion of the total
sample. This motivates us to include 7y as one more (tuning) parameter and
carry out the PARE+ maximization over the vector £+ = (6y,0, ).

Example 5.4. Gene expressions for four HIV+ males are compared to the same
in four normal males in van’t Wout, et al. [34]. The histogram in the left panel of
Figure 5.4 shows the z-scores for 7680 genes under investigation. The z-score z;
was calculated by suitably transforming a two-sample t-statistic that compares
the expression levels for gene ¢ in the HIV+ patients against the normal subjects.
The genes which had similar expression levels in the two groups were likely to
produce z-scores close to zero, while the differentially expressed ones were likely
the produce z-scores away from zero. The goal is to identify the genes that are
differentially expressed.

On applying the PARE+ procedure described above to the HIV data set, we
estimated the empirical null 7 to be a Normal(—0.11,0.74?) density, shown in
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Fig 5.4: Plots associated with the HIV data set described in Example 5.4. Left:
histogram of the data with the PARE+ empirical null (thin line) and mixture
(thick line) overlaid. Right: Plots of the estimated local fdr—Efron (thin line)
and PARE+ (thick line).

the left panel of Figure 5.4. The optimization was carried out numerically using
the optim routine in R [26], each evaluation of L,(¢1) was made based on a
PARE derived from a fixed set of 25 permutations of the data. The optimum
&t = (—0.11,0.74,0.57) was then used to estimate # = 0.86 and § through a
longer run of PARE based on 100 permutations. The estimated mixture 7 is
shown in the left panel of Figure 5.4. The right panel shows the estimated local
false discovery rate (fdr)

fdr(z) = amo(2)/m(2).

The thin line shows the fdr estimated with the locfdr package [26] due to Efron,
Turnbull and Balasubramaniam.

Our estimate of the empirical null density closely matches the one reported
in Efron [12], namely 7o = Normal(—0.11,0.75%). But our estimate # = 0.86 is
substantially lower than the # = 0.93. This is due to the difference in the zero-
assumptions underlying the two methods. Our method allows a small fraction
of non-null z-scores to be close to zero, while Efron rules out this possibility
at the outset. Consequently, the two methods estimated quite different fdr
values for the central z-scores. Note, however, the striking similarity to their
treatment of the non-central z-scores. In fact, with a cut-off of fdr(z) < 0.2, our
method identifies 173 differentially expressed genes, closely matching the 160
genes identified by Efron.

6 Discussion

In this paper, we have shown that Newton’s recursive estimate of a mixing
distribution can do reasonably well even when the model is in some way in-
correctly specified. Since the modeling error incurred by using an incorrectly
specified mixture would generally be small relative to the error incurred by us-
ing a finite sample, this result greatly extends the potential applicability of the
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recursive estimate. Indeed, the “likelihood-based” extension can be applied in
many important statistical problems that the original recursive estimate could
not. While the numerical results in Section 5 are quite promising, they are also
somewhat limited—deeper investigation into the performance of the (PA)RE+
algorithm in these and other problems is the focus of ongoing research.

It is interesting that the nonparametric MLE of the mixing distribution be-
haves similarly to Newton’s estimate in the sense that they both try to minimize
a KL divergence. Shyamalkumar [31] shows that the nonparametric MLE finds,
for every fired n, the mixing distribution that minimizes the KL divergence of
the estimated mixture from the empirical distribution. This fixed-n “optimal-
ity” of the nonparametric MLE is a nice property, something that Newton’s
estimate lacks. There are, however, two important drawbacks to the nonpara-
metric MLE. First, the resulting ML estimate of the mixing distribution is
almost surely discrete [19], so if the mixing distribution f is known a priori to
have a continuous density, then using the MLE for inference on f is nonsen-
sical. Secondly, computation of the nonparametric MLE, in general, is quite
non-trivial [19, 16, 36]. The recursive estimate, on the other hand, suffers from
neither of these drawbacks. Therefore, by combining these nice properties of
Newton’s estimate with the result of Theorem 3.5, we see that the recursive
estimate might serve well as an alternative to the nonparametric MLE.

In Section 1 it was suggested that m,(z) in (1.4) might be used in a general
density estimation problem since almost any density can be well-approximated
by a suitable mixture. As a matter of fact, Newton’s recursive estimate seems
to be a generalization of the popular kernel density estimates, so one would
naturally expect that it too would perform well. Indeed, in preliminary experi-
ments we have found that the recursive density estimate, with p(z]d) a suitable
normal density, performs comparably to and, in some cases, better than a Gaus-
sian kernel estimate. By a “suitable normal density” we mean one with mean
0 and standard deviation chosen according to the RE+ algorithm of Section 4.
Further investigation into the performance of the RE+ estimate in the general
nonparametric density estimation problem is required.
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