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Abstract

In this article we address some of the fundamental issues that arise in analyzing high di-
mensional data and simultaneously making inference of many parameters. Shrinkage and
thresholding methods have been quite successful in improving various component-wise es-
timators. Recently, Johnstone and Silverman (2004) developed a class of shrinkage and
thresholding estimators via an empirical Bayes approach, which adapts to sparsity of the
parameter space. Here we introduce and develop another class of generalized shrinkage and
thresholding estimators, which are adaptive to both sparsity and asymmetry of the parame-
ter space. We use the Bayesian approach merely as a tool to place a measure on the sparse
and asymmetric parameter space, and therefore construct better decision rules adaptive to
the scenario at hand. The proposed estimators have the bounded shrinkage property under
a slightly broader condition than the one given by Johnstone and Silverman (2004). An
empirical Bayes construction is presented for estimating multivariate normal mean. Theo-
retical and simulation studies demonstrate excellent performance of the proposed estimators,

especially for both sparse and asymmetric high dimensional parameter space.

sparse parameter space, thresholding.




1 Introduction

The compound decision problems studied by Robbins (1951) address some of the fundamental
issues in analyzing high dimensional data: simultaneously making inference of p decision
problems with each of which has (1) a common probability structure; (2) an observation
which is independent of all the others; and (3) an unknown parameter. In the case of
estimating a multivariate normal mean, Stein (1956) showed that component-wise admissible
estimators failed to provide an admissible multivariate estimator when p > 2. Later, the
results by James and Stein (1961) as well as others, led to minimax parametric Bayesian and
frequentist approaches to this compound decision problem (Efron and Morris, 1972a, 1972b,
1973a, 1973b; Strawderman, 1971; Fourdrinier et al., 1998).

It is well-known that Bayesian approaches play critical roles in solving Robbins’ com-
pound decision problems. Making no appeal to dependence between the parameter values,
we take a Bayesian approach merely as a way to represent the topology of the parameter
space, and therefore construct coherent and more adaptive decision rules (Copas, 1969). In-
deed, Samuel] (1965) showed that, in the compound decision problem, all Bayes rules with
the asymptotic risk convergence property must correspond to a prior distribution offering
statistical dependence between the parameters.

Motivated by genomic and proteomic data analysis, we investigate estimation of a high-

dimensional parameter pu = (1, fo, - - - , fip) from the noisy data Y, = (y1, 2, ,%p), where

i — ;8 o(+), (+) is a symmetric log-concave density function. (1.1)
As is often the case, a large number of the components in p are zero, hence p resides in
a relatively sparse subspace. The common approaches to various problems in omics data
analysis, such as hard and soft thresholding, are not adaptive to sparsity of the parameter
space because of their fixed thresholds. Based on Stein’s unbiased risk estimator (SURE)
in estimation of a multivariate normal mean (Stein 1981), Donoho and Johnstone (1995)
proposed the SURE method. This estimator performs well when the size of non-zero pa-
rameters is small, however, its performance is poor when the size of non-zero parameters is

large. Abramovich et al. (2000) proposed a method based on Benjamini and Hochberg’s
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(1995) idea of controlling the false discovery rate (FDR) in multiple tests. This approach
is adaptive to sparse paraﬁleter space, but its performance is very sensitive to the choice
of FDR parameter. Fan and Li (2001) proposed a penalized least squares estimator with
the smoothly clipped absolute deviation (SCAD) penalty, which is also adaptive to sparse
parameter space but relies on two critical thresholding parameters. Due to these limitations,
Johnstone and Silverman (2004) recently proposed an empirical Bayes method that is adap-
tive to the high-dimensional sparse parameter space, and they also demonstrated some nice
theoretical properties and numerical advantages of their estimator.

Existing shrinkage and thresholding approaches inherently assume that the parameters
are symmetrically located within the parameter space around the origin. Under this sym-
metry assumption, we presumably have the same chance to observe negative and positive
values. However, many real data analyses do not support this observation. For example, the
genomics dataset shown in Section 3.3.1 has only 4,936 negatives out of a total of 16,734
endogenous genes, in which the proportional of negative values is estimated to be 0.295 with
standard error 0.0035. In extremal cases, we may have either all positive or all negative
parameters as shown by the proteomics data in Section 3.3.2. See other examples in Li
et al. (2003), Xu (2003), Finehout et al. (2005) and Zhang et al. (2005,2006). To solve
this practical issue, here we investigate a more general class of estimators, which have the
traditional shrinkage and thresholding approaches as special cases and are also adaptive to

sparse and asymmetric parameter spaces.

2 Generalized Shrinkage and Thresholding Estimators

2.1 Definitions

Formally, as defined in Johnstone and Silverman (2004), a function 6(y, 7) is called a shrink-
age estimator if and only if (i) 6(:,7) is antisymmetric (i.e., symmetric but with opposite
sign); (ii) 0(:, 7) is increasing on R for each 7 > 0; and (iii) 6(y,7) € [0,y], for all y > 0. The
shrinkage estimator §(y, 7) is further called a thresholding estimator with threshold 7 if and




only if
oy,T)=0&Jy <

With a given threshold 7, there are usually two types of thresholding estimators: hard

threshold refers to estimating the i-th parameter u; with

fii = Onard (Y3, T) = i1 (o0,~r)U(ri00) (¥0);

and soft threshold refers to estimating the i-th parameter y; with

fii = Bote (1, 7) = s1gn(ys) (14i] — 7)1 (—c0,-r)uir,c0) (¥i)s
where 14(z) equals to one if z € A, and zero otherwise.
Johnstone and Silverman (2004) investigate the case that ((-) is a Pélya frequency density
function of order three (abbreviated PF3) and propose a general Bayesian approach. A
mixture prior is constructed to have an atom of probability at zero and a density v with

tails heavier than those of the noise density ¢(-), that is,

15 Forion (1) = (1 = w)o(s) + wry(p). (2.1)
When the tails of the noise density ¢(-) are not heavier than exponential, the posterior
median [(y;; w) = median(p;|y;, w) is both a shrinkage estimator and a threshold estimator.
This estimator also has the bounded shrinkage property relative to its threshold 7(w).
Existing shrinkage and thresholding estimators are antisymmetric, which implies an in-
herent assumption that the parameter space of interest is symmetric around the origin. Here
we introduce a class of generalized shrinkage and thresholding estimators, which have the
traditional shrinkage and thresholding estimators as special cases. The generalized shrinkage
and generalized thresholding estimators are adaptive to sparse and asymmetric parameter

spaces.
Definition 3.1. For 7 < 0 and 7y > 0, §(y, 7,7, ) is a generalized shrinkage estimator if
it satisfies the following properties,

d(y, 7, 74) is increasing on y € R;

—lyl < 8y, -, ) < lyl, Yy € R;

oy, 7) = 6(y,—7,7) is antisymmetric for any 7 > 0.

4




Definition 3.2. §(y,7_, 7} ) is a generalized thresholding estimator if

0(y,7—,74) is a generalized shrinkage estimator;

Sy, 7—,7o)=0ifand only if = <y < 7.

It is obvious that 6(y, ) = 6(y, —7, 7) is a shrinkage estimator if §(y, 7_, 7, ) is a general-
ized shrinkage estimator; on the other hand, é(y, 7) = é(y, —7,7) is a thresholding estimator
if 6(y,7—,7+) is a generalized thresholding estimator. This implies that any generalized
shrinkage/thresholding estimator can simply reduce to a shrinkage/thresholding estimator
by setting negative and positive thresholds at the same sizes, when the data are truly sym-
metric. If, on the other hand, non-zero parameters can only be positive (or negative), it
is more desirable to construct a generalized shrinkage/thresholding estimator §(y, 0,7, ) (or
§(y, 7-,0)).

Corresponding to the hard thresholding estimator and soft thresholding estimator, we can
define, with the thresholds (7, 7y ), 7 < 0 and 74 > 0, two types of generalized thresholding

estimators: generalized hard threshold refers to estimating the i-th parameter u; with

fli = Onara(Yi, T, T4) = Yil(—o0,r_)u(rs s00) (¥2),

and generalized soft threshold refers to estimating the i-th parameter p; with

f; = soﬂ;(yi:T—:T+) = (yi - T—)l(—oo,T_)(yi) + (yi - T+)1(T+,oo)(yi)'

2.2 A Bayesian Approach

Here we construct generalized shrinkage and thresholding estimators for p in model (1.1)
using a Bayesian approach. With a unimodal and symmetric distribution function «(-), we
denote v4(1) = 27(14)1[0,00)(1) and (1) = 27(1)1(—00,0)(14). Consider a Bayesian estimator

of p by assuming that the components of p have the prior,

w2 (1= we —wy)0o(1) + woy_ (1) + wyys (), (2.2)

where dg(+) is Dirac’s delta function. Here w_ and w, are the weights for the negative and

positive parts with density distributions y_(x) and v, (u), respectively.
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Given the model and prior specification, we can obtain the posterior distribution of
each parameter. Let w_ and W, denote the posterior probabilities of u; being positive and
negative respectively. Then it follows that

~ . _ w9+ (¥:)
W+ (y” W=, w+) T (l—w——wi )y ) +wi gt (i) tw_g— (yi)

- . _ w-g-—(yi)
B35 W=, W) = oY) tor o GO R0 )

where

9-(w) = [°, 0y — p)y-(u)dp
9+ (i) = J57 (i — )y (u)dp.

Let f_ and f, denote the posterior conditional densities for the positive and negative parts

(2.3)

respectively, i.e.,

Filpalys wo, wi) = [milys, i > 0] = *—“—‘P(yi_”m;(m)

9+ (v

Filys woy wy) = [wilye, pe < 0] = tii=(),

g-(y:)

Then the posterior distribution of the parameter u;, given the observed value y;, is
pilyi, w—ywy ~ {1 — D (s w_, wy) — Wy (ys; wo, wy) o ()
4 (Y5 wo, wy ) fo (palys; w-, wy)
FW- (Y5 w—, wy ) f— (palys; w-, wy).

For fixed w- and w,, a Bayesian estimator of 4; (under componentwise absolute error loss)

is to use its posterior median, i.e.,
Ay w-, wy) = median (g yi; w_, wy ). (2.4)

Obviously, the performance of the estimator /i(y;; w_,w,) depends on the choices of the
hyperparameters (w_,w.), the density distribution of the noise, and (y_,v,) in the prior
(2.2). Here (w_,w,) describe not only the asymmetry but also the sparsity of the param-
eter space. Intuitively, an optimal (w_,w,;) may be elicited by maximizing the marginal
likelihood function. As we will show below that the estimator f(y;; w_,w,) is a generalized
shrinkage estimator and a generalized thresholding estimator when (w_,w,) lie in a region

predetermined by the following constant,

a=—20 ¢y (2.5)

9+(0) + #(0)
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Since ¢(-) is log-concave, it has at most an exponential tail. The symmetric and unimodal
7v(-) implies a decreasing function v, on R, = [0,00) and an increasing function v_ on
R_ = (—00,0]. Therefore, the constant a implies the flatness of the priors v, (-) and v-(+)

relative to the density of the noise. For each a € [0, 1], we define the simplex,
S(a) = {(w-,wy) € 0,1 : 20 — Dw_ +w,; < a,w_ + (2a — Dw, < a}. (2.6)

Theorem 2.1. With the constant a in (2.5) and the simplez S(a) in (2.6): (i) fiy; w_,wy)
is a generalized shrinkage estimator if and only if (w_,wy) € S(a); (i3) fly;w_,w,) is a

generalized thresholding estimator if and only if (w_,w,) € S(a).

We will prove this theorem in Section 4. It is interesting to observe that, for any a € (0, 1),
we always have S(0) = {(w/2,w/2) : 0 < w < 1} C S(a). Hence, the antisymmetric
estimator considered by Johnstone and Silverman (2004) is a special case of our estimator.
Note that Johnstone and Silverman (2004) develop their shrinkage/threshold estimator by
requiring a PFj3 density ¢(-) of the noise. Theorem 2.1 shows that their estimator is still a
shrinkage estimator as well as a thresholding estimator when ¢ is log-concave, or equivalently
PF,.

Theorem 2.1 also states a sufficient and necessary condition for our proposed Bayesian
estimator [i(y;w-,w,) to be a generalized shrinkage/threshold estimator, i.e., (w_,w,) €
S(a). This can be visualized using Figure 1. As mixing weights, (w_, w,.) can be ultimately
any point within the area under the line w, + w_ = 1, which is defined by S(1) and
corresponds to the grey area in Figure 1. Theorem 2.1 says that, in order for the Bayesian
estimator fi(y;w_,wy) to have the same sign as the observed data y, (w_,w,) needs to
be chosen from the shaded area, i.e., the intersection area under the two solid lines that
defines S(a). However, the antisymmetric Bayesian estimator developed by Johnstone and
Silverman (2004) essentially requires (w_,w,) € S(0), i.e., the lower part of the dashed
line lying completely in the shaded area (see Figure 1). Obviously, the Bayesian estimator
developed here gains more flexibility by offering a much larger space for (w_, wy).

When v, (-) and v_(-) approach to the noninformative priors such that ,(0) — 0 and

7-(0) — 0, the constant a defined by (2.5) essentially goes to one, which puts less constraint
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Figure 1: Visualization of Choices for (w_,w,)

for the above Bayesian estimator to be a generalized shrinkage/thresholding estimator. How-
ever, as shown in the following theorem, the tails of the priors cannot be too heavy in order
for this estimator to have the bounded shrinkage property, i.e., the size of the shrinkage needs
to be bounded such that the large signals will not be shrunk too much to be indistinguishable

from noise.

Theorem 2.2. Assume that: (i) there exists p > 0 such that ¢(y) exp{py} is decreasing for
sufficiently large y; and (ii) there exists A >0 and M > 0 such that

<A<p. (2.7)

d
sup Tu log v, (u)

u>M

Then, when (w_,w4) € S(a), there exists a constant c such that, for all w_, w,, and y, the

generalized shrinkage estimator i(y;w_,w;) has the following bounded shrinkage property

Y-y wo,wy) < mp(w_,wy) +¢ fory >0
My,wo,wy) —y < —7—(w_,wy)+c  fory <0,
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where the thresholds _(w_,w;) and 74 (w_,w,) are defined by w_(T_(w_,wy);w_,wy) =

0.5 and W (T4 (w_,wy); w_,w,y ) = 0.5, respectively.

Remark 1: Since ¢(-) is log-concave, it has at most an exponential tail and the first
assumption in the above theorem explicitly states that its tail cannot be heavier thémn the
exponential exp{—py}.

Remark 2: Since 7(-) is unimodal and symmetric, log~y, (u) is decreasing when u > 0, so
the second assumption in the above theorem implies that % logvi(u) > —A > —p, ie., the
tail of v,(:) is heavier than that of the noise density ().

Remark 3: With Gaussian error, i.e., ¢(-) = ¢(-), p in the first assumption can be chosen
arbitrarily large, so the second assumption essentially places no extra constraint on v, (-) (or
on v-(-)).

Remark 4: As shown later, for any (w_,w;) € S(a), there exist 7_(w_,wy) < 0 and
T4 (w_, wy) > 0such that &4 (74 (w-, wi); w-,wy) = 0.5 and W_(7_(w_, wy); w_, wy) = 0.5,
respectively, and therefore fi(y;w_,wy) = 0if and only if y € [7_(w_, wy ), 74 (w_, wi)].
Remark 5: As shown by Lemma 4.2 for y > 0, W, (y; w_,wy) is an increasing function in
both w_ and w,, which implies that 7, (w_,w,) is a decreasing function in either w_ or
wy. Similarly, 7_(w_,wy) is an increasing function in either w_ or w,. Therefore, we have

0< 7(w-,wy) < 74(0,wy), 02> 7 (w_,wy) > 7-(w_,0), and

T+ (max{w_, w+}7 max{w_, 'LU+}) < 7'+('LU__, ’LU+) < Th (min{w-? ’LU+}, min{w—-a ’LU+}),

T_(min{w_, wy }, min{w_,w;}) < 7_(w_,wy) < 7—(max{w_,w, }, max{w_,w, }).

3 Illustrations of the Theory

In the case that ¢(-) in model (1.1) is the density function of a standard normal distribution,
ie., ¢(-) = ¢(-), Johnstone and Silverman (2004) developed an empirical Bayes thresholding
estimator (which is called EB hereafter) based on a quasi-Cauchy prior for u, and compared
this estimator with others in the literature. The EB estimator showed excellent performance.

Here we will adopt this quasi-Cauchy prior to construct a generalized thresholding estimator




(which is called GEB hereafter), and compare it with the EB estimator, with a simulation

study, in terms of risks and numbers of false discoveries.

3.1 A Construction with Quasi-Cauchy Prior

We can construct the generalized shrinkage/threshold estimators with a quasi-Cauchy prior,

lLe., taking

Y+ (ply) = 2(% - 1)_1/2¢(1—/9$‘_—1)1[0,oo)(/1), 0, ~ Beta(0.5,1),

(3.1)
'7—-(:“[9—) = 2(51_" - 1)_1/2¢( 1/96_1)1(—00,0](/1')1 f_ ~ Beta(0.5, 1),

or equivalently,

() = /2 (1— LR 10 (),

v-(p) = \/2 (1 + %,(,S)) L(=o00}(4),
which have tails similar to those of Cauchy densities, i.e., much heavier than Gaussian
distribution as desired.

Assuming that ¢(-) = ¢(-) in model ( 1.1), we then have,

_ 1 Y exp(—12 _2yiexp(_yi2/2)
g+(y) = N (2@(%) p(—¥;/2) o )

and

2y; exp(—y;/2)

]‘ 2
() = W(m—@(ym—exp(—yi/zn = )

Since ¢(0) = 1/v/27 and g, (0) = limyo g4 (y) = 1/v/87, we have a = 2/3 from (2.5), thus
S(a) is defined by

wy +3w_ <2
3wy +w_ < 2.

Maximizing the marginal distribution of Y,, for (w_,w;) € 8(2/3), we then construct a gen-
eralized thresholding estimator with the posterior median, which is essentially an empirical

Bayes estimator.
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3.2 Simulation Study

Here we conduct a simulation study to evaluate the GEB estimator, and compare it with
the EB estimator. Assuming ¢(-) = ¢(-) in model (1.1), we simulate 1000 datasets in each
setting of the parameter p = (u1, pg, - -+ , p) with p = 1000, and estimate all parameters
using both estimators. The risk R(q) = > _; F[|i; — pi|9] is computed for different values of
g € (0,2], and the number of false positives (NFP) and the number of false negatives (NFN)
are also summarized for comparison.

Define py = #{i : p; > 0} and p_ = #{i : p; < 0}. We uniformly specify all positive
parameters with values p, and all negative parameters with values u_, ie., u; = p if
p; > 0, and p; = p_ if p; < 0. With sparse non-zero parameters, we consider different cases
of asymmetric parameter spaces: one with |u_| = uy but p, # p_ (see Table 1); one with
|u-| # py but p, = p_ (see Table 2); another one with |u_| # u, and p, # p_ (see Table 2).
For each parameter setting, we report R(2), R(1), NFP, and NFN in Table 1 and Table 2.

With the exception that |u_| = py, the GEB estimator always has smaller risks, in
terms of R(2) and R(1), than the EB estimator. The GEB estimator gets much more gain
over the EB estimator when the size of non-zero parameters is smaller. As the size of
non-zero parameters gets larger, it is much easier to differentiate them from noise, so the
GEB estimator can lose its advantage over the EB estimator for large non-zero parameters.
With the same size of non-zero parameters, the more p_ and p, differ, the more gain of the
GEB estimator over the EB estimator in terms of R(2) and R(1). When both |u_| # u,
and p_ # p,, the gain of the GEB estimator over the EB estimator depends more on the
difference between p_ and p,, which is reasonable as only the later is modeled in the specified
prior (2.2). When both |u_| = 4 and p_ = p,, i.e., the parameter space is symmetric, the
EB estimator is slightly better than the GEB estimator in terms of R(2) and R(1). In this
symmetric case, the ignorable gain of the EB estimator over the GEB estimator is due to
the variation in the observation, which results in slight difference between estimated w_ and
Wi

In the case that |u_| # p4., we have different observations on the performance of the two

estimators when evaluating them in terms of NFP and NFN. While the NFP of the GEB
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Table 1: Comparing the EB and GEB Estimators with |u_| = p,

(p+,p-)
(#+,u—) | Criterion (50,0) (50, 5) (50, 20) (50, 50)
EB GEB EB GEB EB GEB EB GEB
R(2) 195.43 186.37 214.20 206.43 268.83 265.14 372.81 372.82
(2.-2) R(1) 98.19 94.84 107.73 104.87 135.71 134.35 189.62 189.70
NFP 0.42 0.92 0.49 0.92 0.77 1.01 1.51 1.61
NFN 47.10 43.70 51.50 48.62 64.16 62.77 87.82 87.70
R(2) 266.86 219.48 285.77 255.29 337.46 329.29 424.59 425.16
(3-3) R(1) 102.02 90.27 110.24 102.79 133.77 131.88 177.16 177.38
NFP 2.57 4.02 3.00 3.97 4.48 4.92 8.49 8.62
NFN 25.22 18.42 26.66 22.18 30.16 28.94 34.60 34.65
R(2) 173.96 141.78 184.91 169.97 215.73 212.67 270.98 271.40
(4,-4) R(1) 72.98 67.08 79.20 76.53 97.61 97.13 133.97 134.15
NFP 5.24 6.46 6.01 6.96 8.85 9.32 16.46 16.65
NFN 5.57 3.19 5.64 4.55 5.67 5.44 5.13 5.16
R(2) 102.67 92.40 111.24 107.23 135.89 135.14 185.44 185.69
(5.5) R(1) 58.15 56.51 63.85 63.23 81.04 80.98 116.22 116.38
NFP 6.44 7.55 7.43 8.35 10.83 11.39 19.92 20.15
NFN 0.52 0.23 0.53 0.45 0.44 0.45 0.34 0.34
R(2) 81.84 78.08 89.78 87.85 113.27 112.81 160.63 160.83
(6,-6) R(1) 54.03 53.35 59.56 59.23 76.31 76.28 110.65 110.81
NFP 6.74 7.75 7.75 8.65 11.27 11.84 20.65 20.84
NFN 0.03 0.01 0.03 0.03 0.02 0.03 0.01 0.01

estimator is always larger than that of the EB estimator, the NFN of the GEB estimator
is always smaller than that of the EB estimator. However, the difference between NFNs of
the two estimators is usually larger than the difference between NFPs of the two estima-
tors, especially when the parameter space is strongly asymmetric, e.g., (p_,p;) = (50,0)
and (p_,puy) = (—3,3). Accounting for the sparsity of non-zero parameters, NFN may be
appreciated more than NFP as long as NFP is not too large. In this situation, the GEB
estimator has its advantage over the EB estimator. When |u_| = py and p_ = p,, both
NFPs and NFNs of the two estimators are close enough to ignore the difference.

In each case of p_ # p,, the gain of the GEB estimator in term of the risk R(q) gets
smaller when g decreases in (0, 2], and essentially disappears when q approaches to zero (see

Figure 2). On the other hand, the GEB estimator usually has smaller NFN but slightly
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Table 2: Comparing the EB and GEB Estimators with |u_| # puq

(P+.p-)
(pp4,p—) | Criterion (50,5) (50,25) (50, 50)
EB GEB EB GEB EB GEB
R(2) 281.99 239.85 341.36 317.37 412.95 403.99
(3-2) R(1) 110.53 100.29 144.15 139.07 185.17 184.13
NFP 2.72 3.92 3.44 3.82 4.53 4.54
NFN 29.02 23.36 43.68 41.79 60.91 61.55
R(2) 275.33 248.09 305.62 300.46 340.52 345.89
(3-4) R(1) | 106.88 99.56 126.92 125.43 153.08 154.76
NFP 3.25 4.22 6.60 6.89 12.31 12.27
NFN 24.41 19.78 21.44 20.25 18.14 19.30
R(2) 265.24 233.24 269.58 263.51 287.43 298.92
(3.-5) R(1) 104.66 96.36 119.20 117.70 141.82 144.78
NFP 3.38 4.35 7.31 7.58 13.94 13.71
NFN 23.50 18.49 18.61 17.54 14.44 16.42
R(2) 261.83 227.27 259.20 252.97 272.06 285.24
(3-6) R(1) 104.00 95.42 117.05 115.59 138.48 141.73
NFP 3.41 4.52 7.46 7.74 14.26 14.00
NFN 23.34 19.19 18.25 17.25 14.02 16.15

larger NFP. This implies that the GEB estimator tends to be reasonably larger than the EB

estimator in term of the size.

3.3 Application to Omics Data
3.3.1 Genomics Data

A common issue in genomic study with microarray data is to identify genes differentially
expressed under different conditions. For example, van de Peppel et al. (2003) designed a
microarray experiment to examine, in comparison to non-heat-shock cells, the heat-shock re-
sponse of primarily cultured human umbilical vein endothelial cells (HUVECs). The datasets
are available from ArrayExpress (http://www.ebi.ac.uk/aerep/) with accession number E-
UMCU-2. Here we only use the dataset collected three hours after heat shock for illustration.
In this dataset, the differential expression levels of a total of 16,734 endogenous genes are

under investigation (van de Peppel et al. 2003) and are normalized using the 960 external

13




300 T T T 180

160 7 4

1401 ,

4 7
4 /
~ _10p PARVARE
g Ic4 /.
14 4 4
100} i
,
///
80r e
////
P GEB
601 T - - ~EB

40
0

08 1 1.5 2

Figure 2: Comparing the Risks of the EB and GEB Estimators with (u_, u.) = (—6,3) and
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control genes (Zhang et al. 2006).

Figure 3 showed the results using the EB and GEB estimators respectively. All genes
with y; € (—0.3,0.3) have estimated p; equal to zero, and therefore are not shown here. A
positive u; means that the i-th gene is up-regulated, a negative y; means that it is down-
regulated, and a zero u; means that it is not differentially expressed. In total, using the
GEB estimator, 3,275 genes were identified to be up-regulated and 139 genes were identified
to be down-regulated. Instead, the EB estimator identified 53 more genes to be down-
regulated but 1,947 less genes to be up-regulated, as the symmetry assumption forces the
upper and lower thresholds to be the same, as shown in Figure 3. On the other hand, the
GEB estimator relaxes this assumption and thus allows unequal thresholds. While for small
and large scale y;, whether positive or negative, the two estimates coincide with each other,

their performances on medium scale y; are quite different due to the asymmetric data.

3.3.2 Proteomics Data

Mass spectrometry (MS) plays an important role in discovering clinically relevant pep-
tides/proteins and eventually understanding biological cancer processes. After preprocessing,
experimental MS data present many peaks residing on certain mass-to-charge ratios (m/z),

which is a result of either chemical background noise or peptide fragments. A critical step in
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Figure 3: Identified Up-Regulated Genes (Left) and Down-Regulated Genes (Right) Using
the EB and GEB Estimators Respectively.

identifying proteins using experimental MS data is to remove those peaks caused by chemical
background noise while keeping the peaks corresponding to peptide fragments so as to match
them with proteins in databases.

Shown in the top panel of Figure 4 is an experimental MS dataset from Keller et al.
(2002). The log-intensity values, after preprocessing and normalization, are shown in the
cental panel of Figure 4. Each point in the top panel corresponds to a peak observed in MS.
The EB estimator identified 14 peaks with estimated hyperparameters w_ = w0, = 0.0639, on
the other hand, the GEB estimator identified 33 peaks with the estimated hyperparameters
w- =0 and W, = 0.2767 (see Figure 4). All the peaks identified here observed positive log-
transformed intensities. Apparently, forcing w_ = w, in the EB estimator has significantly
reduced the number of identified peaks, which will also reduce the efficiency of searching

proteins in databases.

4 Proofs of the Theorems

4.1 Proof of Theorem 2.1

We will first show some preliminary results of the related functions, and then proceed the

proof of Theorem 2.1 by integrating these results.
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Lemma 4.1. If (-) is symmetric and log-concave, and y(-) = [y-(-) + v4+(:)]/2 is unimodal
and symmetric, then (i) 9.(y) = 9-(—=y), y € R; (i) 9. (y)/o(y) is increasing on R; (i)
g-(y)/e(y) is decreasing on R.

Proof. (1) It follows the facts that ¢(-) is symmetric and v, (1) = v_(—u).
(2) Since ¢(+) is log-concave, it is PFy. That is, for all v > 0 and y; < y», we have

e(y)e(ya — v) > p(y2)p(y1 — v),

which implies that ¢(y — v)/¢(y) is increasing in y for all v > 0. Hence, g.(y)/v(y) is

increasing on y € R since

g+(y) — /oo ga(y — U>’)’+(’U)d'U-

o(y) o(y)
(3) Similarly, for all u < 0 and y; < 32, we have

ey — u)p(y2) 2 o(y1)e(y2 — u),

which implies that ¢(y — u)/¢(y) is decreasing in y for all u < 0. The conclusion follows the

fact that
0 u—
9-() _ / oy “)7_(u) i
o(y)  Jow PY)
O
Note that
-~ 'LU+
w‘|‘(y7 ’LU_,'UJ+) - ’
wet (L= w - w,)/ (58 T £8/(=8)
W_(y, w_,wy) = w-
— y Wy W] —
ot (- wo - wy) /(S8 + w, 28 /(=0

Therefore, Lemma 4.1 leads to the following lemma.

Lemma 4.2. Assume (w_,wy) € S(1). With the same o(-) and (-) as in Lemma 4.1, (i)

W (y; w—, wy) s increasing in y € R; (1) W_(y; w_,wy) is decreasing in y € R.

Now we will use Lemma 4.2 to identify the conditions for our estimator to have the same

sign as the observed data.
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Proposition 4.3. With the same ¢(-) and y(-) as in Lemma 4.1, the Bayesian estimator
f(y; w_,wy) has the following properties, (i) p(y;w_,wy) > 0, Yy > 0, if and only if
w- + (20 — Nwy < a; (%) iy, w_,wy) <0, Vy <0, if and only if (2a — Vw_ +w, < a.

Proof. Note that g, (0) = g_(0). This proposition follows from Lemma 4.2 and the fact that
(1) A(y; w_,wy) >0, Vy > 0, if and only if W_(0; w-,wy) < 3;

(i) f(y; w-,wy) <0, Vy <0, if and only if W4(0;w_,w,) < 1.

O

Remarks: (1)If g, (0) — 0, then ¢(0)/{g+(0)+¢(0)} — 1, and both necessary and sufficient
conditions in the above proposition reduce to w_ + w, < 1, 1ie., (w_,w,) € S(1); (2) Since
Wy(y;w_,0) = 0 and &_(y;0,wy) = 0, a(y;w—,0) < 0 for all y € R and f(y;0,wy) > 0
for all y € R; (3) Since w_(0;a,0) = 0.5 and ©,(0;0,a) = 0.5, we have fi(y;a,0) < 0 for all
y < 0 and ji(y;0,a) > 0 for all y > 0.

Proposition 4.4. Assume (w_,w;) € S(a). With the same ¢(-) and v(-) as in Lemma 4.1,
we have |a(y; w_,w,)| < |yl for all y.

Proof. With Proposition 4.3, it suffices to prove that, for any y > 0, 4(y;w_,wy) <y, or
equivalently,

1
2l >ylY =yiwo,wy) < 5,V > 0.
Note that, for y > 0,

wy [, oy — p)r+(p)dp
1 —w_ —wy)e(y) + wegy(y) + w_g_(y)’

ﬂu>mY=%wﬂwn=(

By Lemma 4.1, we have, for y > 0,

iﬁlsiﬂaﬁwMDZ§%gw@)

( g
e(y) ~ »(0) )
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Therefore,

wy [, ey — u)ve(p)dp
plu>ylY =y,w_,wy) < (I—w — er)sa(szg(B)(y) +wege(y) + w_g_(y)
S oy — w)vs (w)dp
920+ 9-() + = [a—w, — (20— 1w ]
S oy — p)ve(w)du
9+(y) + 9-(y)

where the last inequality holds because wy + (2a — Nw_ <a < 1.

7

We will prove that,

Sy ey = wrwde 1
o) 270 )

which concludes the proof of the proposition. Since y(u) = 1{v4(u) + v-(u)] is unimodal
and symmetric, then for y > 0,¢ > 0,

Y+y =)+ —1t) 2 vy +t) +r-(y+1)

= /Oooso(t)m(y—tHv—(y—t 2/ eB) vy + 1) + v (y + t)dt.

Note that
/0 T Oy — &) + -y — 6))dt = / " oy — )l () + 1 (w)du
/0 T (Ol + 1)+ vy + 0))dt = | oty = wlnstw) + -l
and
04 (0) + 9-(v) = / oy — W)y (1) + 7 ()] d.
Therefore,

9+(y) +9-(y) > 2 / " oy — w)[y4+(u) + 7 (u)]du
= 2 / ) o(y — u)ys(u)du.

Then, we have the inequality (4.1).
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With the proof by Johnstone and Silverman (2004, p.1619), we can easily establish the

following proposition.

Proposition 4.5. If ¢(-) is symmetric and log-concave, then f(y;w_,w,) is increasing in

yeR.

The combination of Proposition 4.4 and Proposition 4.5 proves the first part of Theo-
rem 2.1, ie., 4(y; w_,w;) is a generalized shrinkage estimator. The second part of Theo-
rem 2.1, i.e., fi(y; w_,w,) is a generalized thresholding estimator, can be proved with the

following proposition, which follows directly from Proposition 4.3 and Proposition 4.5.

Proposition 4.6. Assume (w-,w.) € S(a). With the same () and 4(-) as in Lemma 4.1,
there exist Ty (w_,wy) > 0 and 7_(w_,w;) < 0 such that f(y;w_,wy) = 0 if and only if
T (w-,wy) <y < 7 (wo,wy). Furthermore, if wy = w_, then 4 (w_,wy) = —7_(w_,wy)

and hence f(—y;w-_,wy) = —(y; w-, wy).

4.2 Proof of Theorem 2.2

To prove the bounded shrinkage property of the estimator fi(y; w_, w, ), we need the following

lemmas.
Lemma 4.7. Under the same conditions as in Theorem 2.2,
(i) There exists B > 1 such that for ally € R and u > 0, 74 (y — u) < BeMy, (y);
(i) 9+ (y)/0(y) is increasing from g,(0)/©(0) < 1 to 400 as y — oo,
(1i) lim sup,,_, o, 7+ (y)/9+(y) < oo;
(iv) limsup, _, ., '% log g+(y)' <A<op.
Proof. (i) Since . (u) is a decreasing function on [0, M], there exists B > 1 such that

"y, (2) < BeMy,(y), for all 7,y € [0, M].

20




Since £ logv4(u) > —A when u > M, ey, (u) is an increasing function of u for u > M.

Therefore, for all y € R and u > 0,

Y+ (y — u) < Bey, (y),

because v, (y —u) =0 if y < .
(ii) With Lemma 4.1, it suffices to prove that limy_s g+ (y)/¢(y) = oo and g, (0)/¢(0) <

Indeed, g.(0)/¢(0) < 1 follows from

4:(0) = / " () (u)du < / " (01 (w)du = (0),

where the inequality holds because ¢(+) is unimodal and symmetric.

Since % logv4(u) > —A when u > M, we have

YY) 2 74+ (M) exp{AM} exp{—Ay},Vy > M.

Then, for y > max(M, 1), we have

g+(y) = /0 N oy — u)ve(u)du = / ’ (V)13 (y —v)dv

—00

> /0 () 74(y — v)dv
> 7.v) / (v)dv

v

) e (a1} [ ool ) xpf s}
C1 exp{~Ay},

>

together with the first condition in Theorem 2.2, there exists Cy > 0, such that, for sufficiently
large y, ¢(y) < Cyexp{—py}, thus we have

9+ (y)
¢(y)

(iii) From (i), we have, for u > 0,

> % exp{(p — Ay} == oo since A < p.

Y+(y) < Be™ vy (y + u)

= v(y+u) > B e My, (y).
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Then, for y > 0,

9+(y) =

which implies that, for y > 0

7+(y) B
W) = T e vdu

= limsup 7+ ()
y—oo  G+(Y)

< o0

iv) Let Ao = sup <2 Jog v+ (u)|. Together with the second condition in Theorem 2.2,
u>0 du

we have,

|y (u)| > Ayi(u), u > M;

Therefore,

’d%logm(y)‘ = —9+ ‘/9+(y)

= dy A w(y—u)7+(U)du

/ 9+(y)

= o - [ oty - g

/ 9+(y)
o(y)

< 1OL 1A « [ oty -wita Jiu /.0

A / y — )y (u )du/g+(y>

7+ (0) ‘P((y)) + Asoh(y) + A
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where

M

/0 oy — u)vs(u )dU/g+(y)
- /yMygo —vd'u/
J

, as Yy

IN
o

Av Y+ (y)
")

o(v
9+(y)
_)

l

Q.

The result follows from (iii) and the fact that [ ¢(v) exp{Av}dv < oo.
|

Combining Lemma 4.7 and Lemma 4.2, we will be able to define positive 7, (w_,w,) and
negative 7_(w_, w, ) such that W (74 (w_, wy); w_,wy) = 0.5 and W_(7_(w_, wy); w_,wy) =
0.5, respectively. Apparently, a(y; w—,ws) = 0 if and only if y € [7—(w—_,wy), 74 (w_,wy)].
For y > 0, W4 (7 (w-,wy);w_,w;) is an increasing function in both w_ and w,, then
7+(w-,wy) is a decreasing function in both w_ and wy. Similarly, 7_(w_,w,) is an in-
creasing function in both w_ and w,.. Therefore, we have 0 < 74 (w_,w,) < 7,(0,w,) and

T_(w-,0) < 7_(w_,w;) < 0.
Proof of Theorem 2.2. For any constant by, we have,

Plu>y—-blY =y)

> Plp>y—hlY =y,u> 0w (y; w_, wy).

Let us first look at the term P(u > y — 0|Y = y,u > 0), y > 0. From Lemma 4.7, we
have, for all by > M,

/0 e (Wely — u)du
ba
< / Bexp{A(by — w)}r (br)plu — y)du

b2
— BeMy, (by) / e Mip(u - y)du
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and

/ N Y+ (w)o(y — u)du

b2

/b " exp{A(br — w) v (ba)plu — y)du

v

o

= M2y, (by) b e Mo(u —y)du.
2

Therefore, for by > M,

Odds(p > by|Y =y, u > 0)
Jor, v (we(y — u)du
Jo? v (@ply — u)du
szo e Mp(u — y)du
B fobz e~Mp(u — y)du

Since A < p, we have [* e *p(u)du < co. So, there exists a value b, such that

0 —b1
/ e Mop(u)du > 3B/ e M (u)du.
_bl

-0

As long as y > b; + M, we will then have

Odds(p >y — 0|Y =y, u > 0)
Joos €M p(u — y)du

B foy_b1 e~ Mp(y — y)du
J%, e p(v)dv

B e
I5, e M o(v)dv

Bf_—ol;l e~ Mp(v)du

> 3,

v

v

so that
Plu>y—blY =y,u>0)>3/4, y>b + M.
Then, let us consider the term w, (y; w_,w,). When y > 0, we have

Wy (y; wo, wy) > W4 (y; 0, wy).
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With both conditions given in the theorem, and the result in Lemma 4.7, we can choose

To 2> M large enough such that, for u > 75, we have

d _ p—A d
° <_pA_P"2 il < —p.
g loggr(u) S —A———,  —-logp(u) < —p

Then choose wy such that 7, (w_, wy) = 7o, and let by = 2log2/(p — A).
Suppose w; < wp, so that 7 (w_,wy) > 7. Let Q(y;w_,w,) = Odds(p > 0|Y =

y; w—_,wy), then for y > 7 (w_,wy) + b,

Q4 (y; w-, wy)
Y
= o wiusuep { [
T (w—wy)

A —wo —wy) +wog (r(w, wy)) /(T (w-, wy))
(1 —w- —wy) +w_g_(y)/e(y)

v d
> exp { [ Liogguw- logsow)]du}
T (w—wy) AU

g g1 0) ~ og o) |

> o[ j@,_,m)["" - (o= M)/2+ gl

= exp{(p — A)(y — 4-(w_,w4))/2} > 2,

where the first inequality follows from Lemma 4.1. On the other hand, if w, > wy we will

have Q. (y; w_,wy) > Q. (y; w_,wp) > 2 as long as y > 7y + bz. In either case, we have
Wy (y; w—, wi) > 2/3.

In summary, we will have P(p > y — b1|Y = y) > 1/2 whenever y > max{h +

M, 7 (w—,wy) + b3, 7o + b3 }; otherwise, we have y — fi(y; w_, w,;) < y. Hence, for all y > 0,
y — Ay wo, wy) < max{by, by + M, 7y (wo, wy) + b3, 70 + s} < T (wo,wy) + ey,
where ¢, = 75 + by V b3. Similarly, for all y < 0, we can get

ﬂ(y;w_,w+) —y=< —T_(w_,'LU+) +c.

25




5 Discussion

We have proposed a class of Bayes procedures which lead to generalized shrinkage and
thresholding estimators, useful for estimating high-dimensional parameters. These estima-
tors generalize existing approaches, such as SURE method, FDR-controlling approach and
the EB estimators, in the sense of being adaptive to not only sparse but also asymmetric
parameter spaces. We have also developed generalized shrinkage and thresholding estimators
by allowing negative and positive parameters to have different mixing weights w_ and w,.
When restricting w_ = w,, the generalized shrinkage estimators reduce to the shrinkage
estimators by Johnstone and Silverman (2004). As shown here, both classes of estimators
require the error term following a PF; distribution, rather than the PFj3 distribution by
Johnstone and Silverman (2004). It is much easier to check whether a function is PF} as a
log-concave function suffices.

We also constructed a Bayesian estimator using the posterior median, which is essentially
a generalized thresholding estimator when (w_,w,) € S. Another Bayesian estimator can
be established with the posterior mean E[u|y;w_,w,], which, unlike the posterior median,
may only be a generalized shrinkage estimator but not a generalized thresholding estimator
as it is always continuous in y. We conjecture that, under similar conditions, this estimator
also has the bounded shrinkage property. Let (w_,,) maximize the marginal maximum
likelihood under the restriction (@w_,@w;) € S(a). We then can construct the generalized
empirical Bayes estimators based on either the posterior median or the posterior mean.
Utilizing the preliminary results in this article, we may be able to prove the intermediate
lemmas in Johnstone and Silverman (2004), which essentially lead to the uniformly bounded
risk property and the sparsity adaptivity properties of these two generalized empirical Bayes
estimators.

On estimating multivariate standard normal means, a computationally tractable imple-
mentation of the generalized empirical Bayes estimators follows using the quasi-Cauchy prior
(3.1). As shown in the simulation study, the GEB estimator has an excellent performance

when p_ # p,.. However, when |u_| # p., the GEB estimator may not gain its advantage
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over the EB estimator. Indeed, although the parameter space is asymmetric, the GEB esti-
mator may perform worse than the EB estimator when |u_| # p.. but p_ = p,, see Figure 5
for example. This is due to the fact that the prior (2.2) lacks sufficient ability to model the

asymmetric parameter space with |u_| # us but p_ = p,.

300

280}
260}
240}
220}

Z 200}
180
160
140

120

100
]

Figure 5: Risks of the EB and GEB Estimators When (u_, u4) = (—=6,3) and p_ = p, = 50.

A possible extension is to consider the Laplace prior, i.e.,

.’Y+(N|0‘+) = 5 exp(—pa) Lo,00) (1) (5.1)
[ V-(ule-) = 5 exp(po)1(—oo (k)
which is also investigated by Johnstone and Silverman (2004) to develop the empirical Bayes
shrinkage estimator with o, = a_. Employing o, and o_ makes it capable to model the
asymmetric parameter space with |u_| # py. Empirical Bayes estimators can be established
by maximizing the marginal likelihood function for the hyperparameter o, and a_, together
with the weights w, and w_. However, for any Bayesian estimator based on the prior (5.1) to
be either generalized shrinkage estimator or generalized thresholding estimator, we certainly
need restrictions on both (a_, ) and (w_,w, ), which is of our future research interest.
Let ¢(-) be a symmetric PF, density function on R, and Y = (y1,y2, -+ ,¥p) be the
observed data with y; — p; ¢(-/o). When o is unknown and the parameter space is
sparse, we can robustly estimate o as a trivial solution. However, it may be challenging

to construct an efficient estimate of ¢, which help establish the properties of the resultant

estimators. Alternatively, we can estimate ¢ by maximizing the marginal likelihood function
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together with other hyperparameters, which make it even more challenging to investigate all

the properties of the resultant estimators.
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