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Abstract

Summary. We propose the weighted fusion, a new penalized regression
and variable selection method for data with correlated variables. The weighted
fusion can incorporate information redundancy among correlated variables for
estimation and variable selection. Weighted fusion is also useful when the num-
ber of predictors p is much larger than the number of observations n. It allows
the selection of more than n variables in a new way. Studies show that weighted
fusion often outperforms lasso and elastic net.
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1 Introduction

We consider the problem of variable selection and estimation for the linear regression
model,

%
vy =XG" +¢, (1)
where y is an n-dimensional vector of random responses, X = (x3,Xg,... ,Xp) an
n X p design matrix, §* = (61,063, .., B,) a vector of regression parameters, and €

an n-dimensional vector of independent and identically distributed (i.i.d.) random
variables with mean 0 and variance o2. In this paper, we assume the response to be
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centered and each predictor x; = (215, %2j,...,%n;) normalized so that Y ;- ; z;; =0
and ||x;[? = 1.

Variable selection and estimation in high-dimensionality have become an inte-
gral topic in modern Statistics. This is largely driven by the availability of massive
data due to recent technological advancements (Fan and Li, 2006; Yu, 2007). For
instance, bioengineering innovations have presented new statistical challenges by
introducing functional MRI and gene microarray data. In many of these applica-
tions, we wish to achieve prediction accuracy and variable reduction. Due to its
simplicity, interpretability, and computational efficiency, linear models have become
the prevailing choice for high-dimensional data analysis.

It is well-known that ordinary least squares (OLS) performs poorly both in pre-
diction and variable selection. Hoerl and Kennard (1970a; 1970b), in proposing the
ridge, has successfully applied penalized regression in improving prediction accu-
racy. Recently, Tibshirani (1996), in proposing the lasso, has put forth penalized
regression as a viable approach towards variable selection. The related technique of
soft thresholding for wavelet approximation was proposed by Donoho and Johnstone
(1994) and Donoho et al. (1995).

Regression with correlated variables presents a challenging problem for variable
selection. The reason is that under collinearity the data has little information to
distinguish the effect of one variable versus another (Harrell, 2001; Mosteller and
Tukey, 1977). This often leads to arbitrary selection and under-representation of
important variables.

Under high-dimensionality, the situation is particularly dire. In a seminal paper,
Zou and Hastie (2005) proposed the elastic net for variable selection with highly
correlated variables. The elastic net,

B(EN) = (1 + X2) {arg min [ly — XA + Ml + 21617, @)

utilizes the lasso Z_Zy?:l |6;| and ridge 5-’:1 ,BJ? penalty to enable group selection.
When p > n, the ridge penalty further allowed elastic net to select more than n
variables, whereas lasso regression selects at most n variables before it saturates.
The multiplier (1 4+ A2) mitigates the double shrinkage imposed by using both the
lasso and ridge penalty to penalize 8 towards zero. The naive elastic net is obtained
by removing the multiplier.

The elastic net has the interpretation of a stabilized version of the lasso (Theorem
2 in Zou and Hastie (2005)), represented as

XTX 4+ M1

ZI26 - 2y7X0 + Ml ©

BEN) = argmin 67

We note that when Ay — 0, the elastic net is equivalent to lasso, and when




A2 — 00, the elastic net is equivalent to univariate soft thresholding (UST), u; =
sgn(yTx;) (lyTx;] — A1/2)4.

The elastic net penalty has shown improvements over lasso in many situations
(Wang et al., 2006). However, we observe that it has several important limitations.

1. The elastic net solution becomes strongly biased as it approaches that of UST.
In fact, univariate estimators are usually strongly biased except when predic-
tors are nearly independent.

2. The elastic net exhibits poor performance in selecting related variables as a
group when within-group correlations are non-extreme.

3. The elastic net penalty does not explicitly contain correlation.

Apparently, biasedness deteriorates prediction accuracy. It also results in poor se-
lection when used with techniques, such as cross-validation, etc., that depend upon
reasonable validation error for robust performance (Fan and Li, 2001). Moreover, in
many applications, the within group correlations are not extreme, |p| ~ 0.85. The
elastic net, as implied by its relation to the univariate estimate and Theorem 1 of
Zou and Hastie (2005), may have poor grouping effect when correlations are not
very close to 1. Furthermore, as its penalty does not explicitly contain correla-
tion, elastic net cannot incorporate correlation prior knowledge nor handle complex
correlation structures.

On consideration of the limitations of elastic net mentioned above, we believe
that a new approach is needed for estimation and variable selection under correlated
variables.

In this paper, we present the weighted fusion, a new penalized regression method
that addresses the limitations of elastic net. Recall that the problem of regression
under collinearity is that predictors containing similar information are treated as
though they are distinct. The weighted fusion penalty, proposed herein, fuses or
clusters coefficients of related variables via correlation-driven weights which induces
correlated predictors to be treated similarly in regression. The weighted fusion
penalty further solves the p > n dilemma by allowing the selection of more than n
variables in a new way. Both simulation and real data examples show that weighted
fusion often outperforms lasso and elastic net in prediction and variable selection.

In Section 2, we define the weighted fusion estimator and discuss the grouping
effect induced by weighted fusion. In Section 3, we propose the generalized ridge-
lasso estimator (GRIL) that generalizes both the elastic net and weighted fusion.
We present variable selection consistency results and a standard error formula for
GRIL. Section 4 discusses computational strategies for weighted fusion and analyzes
the effect of the weighted fusion penalty on solution path. Solution paths for the




prostrate cancer data are used to demonstrate our method in Section 5. In Section
6, we compare the performance of weighted fusion with lasso and elastic net.

2 Weighted fusion

2.1 Definition
We define the weighted fusion estimate as,

~

Y4
B, xo) = argmin {|ly — X812 + X Y 18] + 2 J(8)}, (@)
j=1

where Ay > 0, A2 > 0 are tuning parameters, and J a penalty function applied
to the pairwise signed differences of regression coefficients. We call the difference,
Bj — 8ij8; where s;; € {—1,0,1}, signed difference.

Let p;; = x;frxj be the sample correlation between predictor variables, s;; =
sgn(pij), and w;; > 0 are predictors correlation driven weights that will be defined
in Section 2.2. The weighted fusion employs the penalty function,

J(B) = 51)- > wii (B — siiB8)* (5)
1<j
Notice that when w;; = 0 for all 4,7 we obtain the lasso estimate. When Wi =
1{j—i=1) and p;; > 0 for all 4, j, we have the L2-norm fused lasso estimate (Tibshirani
et al., 2005).

The weighted fusion formulation penalizes for the pairwise signed differences of
coefficients according to w;;. Its penalty contour is shown in Figure 1 for the case
when p = 2. We note, in particular, that the predictors correlation driven weights
wy; impose only tendencies and not constraints on the signed-difference fusion. Pre-
dictors correlations express themselves in statistical models in complex ways and are
difficult to determine beforehand. Though intuition deems that stronger correlations
may result in stronger grouping effect, this is not a guarantee, and a coefficients pair
with a weaker correlation may express itself with a stronger grouping effect than
one with stronger predictors correlation.

Thus, we must balance our belief in the coefficients structure, that is formed on
the basis of predictors, with that of the loss £(y,X3) = ||y — X5||2. In a sense,
weighted fusion (4) discovers predictors correlation based grouping effect under the
supervision of the response and predictors joint distribution.

Consider the weighted fusion estimator (4) with Ay = 0. This results in,

B (M) = (XTX + %W)*ley, (6)
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Figure 1: Weighted fusion contour.

where,
27761 wlj —812W19 e —slpwlp
W= 22 ' . (7)
—Sp—1,pWp—1,p
i#p Wi

The above formulation is of interest on its own. We call it the ridge fusion estimator.
If the identity matrix I is used in place of W/p in (6), we have the ridge estimator.
When p > n, the covariance matrix X7 X is singular. Ridge regression increases
the rank of XTX by adding a constant Ay to each eigenvalue. This allows elastic
net to handle the p > n situation. Ridge fusion, on the other hand, increases
the rank of XTX by adding a constant factor of the matrix W. We note that
ridge employs a simple but not well-motivated strategy, whereas ridge fusion has
the interpretation of increasing the rank of X7X by drawing correlated coefficients
closer together in magnitude. This allowed weighted fusion to resolve the p > n
situation in a motivated way. In Section 6, we will show that ridge fusion may
sometimes outperform the ridge estimator.

Penalty function (5) has an alternative formulation, (1/p) ", < Wij|Bi — 84581,
using L1-norm. This alternative has the benefit of equating the magnitudes of co-
efficients of highly correlated variables. However, the L1-norm penalty introduces
O(p?) additional sources of non-differentiability that prevents the construction of ef-
ficient algorithms. Further, experimental studies did not show significant difference
between the Ll-norm and L2-norm weighted fusion in prediction and variable se-
lection for correlated variables. Therefore, in this paper, we restrict ourselves to the




L2-norm weighted fusion penalty (5), and we may explore the L1-norm alternative
in a future work.

The fusion penalty function, ; |B; — Bj—1|? for ¢ = 0,1, was proposed by Land
and Friedman (1996) for signal regression, whereas the fused lasso, that compounds
the lasso penalty, was proposed by Tibshirani et al. (2005) for variable selection with
ordered features. Their methods employ vanilla fusion penalty on sequential differ-
ences. Weighted fusion, on the other hand, uses the pairwise signed-difference fusion
penalty function modulated by correlation-driven weights for variable selection with
correlated variables.

2.2 Determining the weights

The following general properties are necessary for determining correlation driven
weights wg; € [0, 00) for the weighted fusion penalty (5):

1 wi; = wys,

2. w;; =0 when p;; =0,

3. wy; is non-decreasing in p;;,

4. |wir, — wjk] — 0 when |p;;] — 1 for all &.

Property 1 retains the symmetry of the correlation matrix; property 2 annuls the
effects of the weighted fusion penalty when predictors are independent; property
3 imposes the belief that stronger correlation results in stronger tendency for a
coefficient pair to be fused; and property 4 equates the effects of two predictors
when their correlation approaches 1.

We propose a weight for (5) that possesses the general weight properties,

where 7 > 0 is a tuning parameter. Moreover, the weight w;; has the specific
property of w;; — oo when |p;;| — 1.

We note that the weight function (8) imposes a continuous modulation on |p;;].
Discrete alternatives are possible. For example, a simple alternative may threshold
w;; at a fixed value of p;;, that is w;; = clyjp;|>ty for c,t fixed. However, dis-
crete modulation is sensitive to errors in estimation, and continuous alternatives
can usually achieve better performance.

Figure 2 plots the weight function for varying v. We note that as 7 increases
w;; ~ 0 for a broader range of |p;;|. Thus, we see that the data-driven parameter
7 indicates how large must the magnitude of a correlation be for its corresponding
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Figure 2: Continuous weight function.

coefficients pair to be fused. As correlation effects are complex, when must correla-
tions be recognized often varies from data to data, and it is imperative to determine
7 from the data at hand. We find that only a few representative values for vy need to
be cross-validated to obtain good results. We use only 5 values {0.5,1,2.5, 5,25} in
this paper. By using continuous modulation, the technique is not sensitive to small
differences in v. If previous experience with the data type is available, a reasonable
value for v can be chosen beforehand.

We note that the weighted fusion penalty (5) is very general and can incorporate
any nonnegative weights. Prior knowledge, when available, can be used to assign
weights accordingly. Robust estimates of correlation, such as Jackknife correlation,
etc., can also be used to improve performance.

2.3 Grouping effect

Grouping effect is expressed when the magnitudes of regression coefficients of a
group of highly correlated variables tend to be equal. Weighted fusion estimator
has the natural tendency of fusing each pair of regression coefficients according
to their correlations. We establish the grouping effect of weighted fusion in the
following two theorems; the proofs are in Appendix 9.1 and 9.2 for Theorem 1 and
2, respectively.

Theorem 1. Given data (y,X), A1 > 0, A > 0, w;; satisfying general properties, X
normalized, and 'y centered. Denote the weighted fusion estimator as § = B(A1, A2).
If additionally p;; — 1 implies w;; — oo, then |B; — s4;0;| — 0 as pi; — 1.

Remark 1: The weight function, that we proposed in (8), satisfies the require-
ments in Theorem 1. R
Remark 2: Theorem 1 can be applied to 3(A1, A3) with more general penalty

function than (5), for example, J4(8) = %Ziq‘ wi; (Bs — 84585)%, ¢ > 0.




In real situations, correlation may not be extremely close to £1. For moder-
ate correlation, we establish an upper bound for the signed difference of ,3(/\1, Az2)
without the additional assumption: p;; — 1 implies w;; — co. This result, shown
in Theorem 2, is analogous to the grouping effect result of elastic net in Zou and
Hastie (2005), Theorem 1.

Theorem 2. Given data (y,X), A1 > 0, Ay > 0, w;; satisfying general properties,
X normalized, y centered. Denote B = B(A1,Ap). If Bif5; > 0, then

bl

5 A Yllv/2(1 — pij +A/2,1 1, 1 WikSik  WikSike A
R P C !
. 7 .

A2 W;. Ao Wi P W;

1<k<p
(9)
where ;. = (ZISkSp Wik )/D-

Remark 1: Comparing with Theorem 1, Theorem 2 works for any p;; and does
not assume w;; — oo for p;; — 1. But when p;; — 1, we still have |G; — G;| — 0
because of the general properties and the fact s;x =~ sjz, Vk. On the other hand,
Theorem 2 only works for penalty function (5), whereas Theorem 1 works for J(8),
qg>0.

Remark 2: For fixed p;;, the dominating term of the weighted fusion upper

bound is
|yl (\/2(1 — Pij)
Ag W;.

for large n. Compared with naive elastic net, which has an upper bound of

lyllv/2(1 = piy)
A2

. (10)

(11)

(Theorem 1 in Zou and Hastie (2005)), our method has potentially stronger grouping
effect as large p;; can induce large w;. and ;..

3 Generalized ridge-lasso estimator (GRIL)

In this section, we study elastic net and weighted fusion regression via a generalized
formulation, which we call the generalized ridge-lasso estimator (GRIL).

BCRIL (A, \p) = arg min lly — XB8II” + A8l + 2287 QB, (12)

where Q is a positive semi-definite matrix with Cholesky decomposition Q = RTR.

Let,
) (&)
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then, GRIL may be defined as,

ASRIL(A; ) = argrrgn lly* — X*8112 + M|8l1- (14)

We note that GRIL becomes the naive elastic net when Q = I and the weighted
fusion when

1
= —
Q pW, (15)

where W is defined as in (7).

3.1 GRIL variable selection consistency

We study the variable selection consistency of GRIL by analyzing its sign consis-
tency, which is a stronger property. The results here can be applied to both elastic
net and weighted fusion by specifying Q. In order to compare with the results of
lasso sign consistency in Zhao and Yu (2006), X is not normalized in this section.
Suppose X satisfies the regularity conditions: (1) (XTX)/n = C* — C, Cis a
positive definite matrix. (2) {maxi<;<n(x7x;)}/n — 0. Denote the true parameter
vector B* = {,82‘1),,82‘2)}71, where ,8’(*1) = {B; : B # 0}, and ﬁa) = {6} : B; =0}. We
call a GRIL estimator BGRIL(/\l, A2) sign consistent if there exists A1 = A1 (n) = o(n)
and Ag = Az2(n) = o(n) such that

Jim_P(sgn(B5™ O, Xo) = sgn(6")) = 1.

The sufficient and necessary sign consistency conditions are analogous to the Irrep-
resentable Conditions in Zhao and Yu (2006).
Sufficient condition for GRIL sign consistency:

n \— * 2A n (v \— *
|C31 (Cy) ™ sgn(8)) — 71%(021(011 'Qu - Qu)fyl<1-n  (16)

for some 7 > 0, and some A;, Ap satisfying A1/n — 0, Ag/n — 0, A/(n(+e1)/2)
00, Ay/(n(1+e)/2) — oo,
Necessary condition for GRIL sign consistency:
n (-1 * 2X2  n pem -1 *
|C% (CT1) ™ "sgn(Bfy) — )\—1( 21(CT) ™" Qu — Q)| < L. (17)

Theorem 3. Given data (y,X) under regularity conditions on X, BCRIL (M1, Ae) is
sign consistent if condition (16) holds.

Theorem 4. Given data (y,X) under regularity conditions on X, BCRIL (A1, A) is
sign consistent only if condition (17) holds.




Remark 1: In real situations, the values of A\; and A, are determined by data.
To gain some insights for the weighted fusion estimator, consider two extreme cases.
First, if Ay = o(A1), then Conditions (16) and (17) are the same as Irrepresentable
Conditions in Zhao and Yu (2006) for lasso sign consistency. In this case, penalty

J(B) is negligible, only lasso penalty matters. On the other hand, if A\; = o()\), then
necessary condition (17) is violated; wherefore, ﬁGRH‘(Al Ag) is not sign consistent,
and over-selection occurs. This agrees with our intuition, because when lasso penalty
is negligible, ,BGR“IL(/\l, A2) degenerates to BEF (A2) in (6), and BRE (A2) is unlikely
to be sparse.

Remark 2: With Q chosen as the identity matrix I, we have variable selection
consistency results for elastic net. Similar results are also derived in Yuan and Lin
(2007), Theorem 4.

Remark 3: With Q chosen as in (15), condition (16) is satisfied when C%, is
close to 0, because that implies Q2; to be close to 0.

3.2 Standard error formula

We use the local quadratic approximation (LQA) technique in Fan and Li (2001) to
obtain a standard error formula for GRIL. The LQA method has been proven to be
consistent (Fan and Peng, 2004).

For a nonzero (3;, the LQA of the lasso penalty is

Suppose the first s elements of B are nonzero, then the GRIL estimator can be
derived by iteratively computing the ridge regression

B, 8:)" = (XX + X2 Qur + M Z(Bo))” Xy,

where ¥(8) = diag(1/|Bwl,---,1/|Bs0|), and 5((1) is the cholesky decomposition
of X(I)X(l) 4+ A2Q13. This leads to the estimated covariance matrix for nonzero
coefficients of the GRIL estimator,

&)7)(,3(1)) = U2(X5)X(1) + 22Qu + )‘12(3(1)))—1 : (Xa)xu) + A2Q11)
(XX +22Qu +MEBm)) (18)

The estimated standard errors are 0 for zero-valued coefficients (Tibshirani, 1996;
Fan and Li, 2001).
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4 Algorithms

4.1 'Weighted fusion

In Section 3 we have introduced the GRIL estimator. The weighted fusion is a
special case of GRIL with Q defined as in (15). One of the attractive features of
GRIL is its computational efficiency. By introducing a data augmentation (13),
we have reformulated the GRIL into a lasso problem (14) when A, is kept constant.
This allows the computation of the GRIL estimator via available efficient algorithms
for lasso.

The lasso solution paths were shown to be piecewise linear by Efron et al. (2004)
and Rosset and Zhu (2007). This property allows Efron et al. (2004) to pro-
pose the LARS algorithm that can compute the entire solution path of the lasso in
O(min(n,p)) steps with a complexity of O(np) at each step. This achieves the same
order of computation as a single OLS.

The GRIL data augmentation for weighted fusion increases the row dimension
of the design matrix from n to n + p. For p > n, we usually adopt an early
stopping strategy. In practice, an optimal solution is often achieved early in the
LARS algorithm. If we stop the algorithm in m steps, then the weighted fusion and
the GRIL estimator, in general, requires O(mp?) operations.

We further note that many alternative algorithms are available for lasso: blasso
(Zhao and Yu, 2007), glasso (Kim and Kim, 2004), etc. These algorithms may also
be applied for GRIL.

4.2 Effect of weighted fusion penalty on solution path

In this section, we will study the effect of the weighted fusion penalty on solution
path. In particular, we will demonstrate that highly correlated variables can enter
the weighted fusion solution path at close proximity.

We examine how the weighted fusion penalty is expressed in the LARS algorithm.
Suppose x; and x; are highly correlated, we want to show that once one of them,
say X;, is included in the active set, x; will be the next. We adopt similar notations
as in Efron et al. (2004), except that y and X are replaced by the reformulated y*
and X* as in (13). Let A represent the active set that includes all variables already
selected, and fi 4 the LARS estimate immediately after x; is included in the active
set. Let

e= (X' -p), €= max{alh  A={k:lal=0C},

and

, \ X ,
s, = sgn(é),Vk € A, X = ( \/Ef{A > = (- -8pZL - kea-
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Define
Ga=XWXa  Aa=4GH1)7
thenuy = X% A AG;lll A is the unit vector making equal acute angles with columns
of X%. i.e.
(X Tua=A41s  |lualP=1.
Let a = (X*)Tuy, then according to the LARS algorithm, the index of the next
variable entering the active set is
A ¢ - &r, C+ ek
k= i
argl?el%{AA —ak’ A4+ ay

F- (19)

In order to have k = J, it is enough to show that
C-¢ C+g o, C-u C+g
< min ,
keAck#i Aq—ar Agq+ai

T+

We analyze the numerators and denominators in (19) separately. Since & = (X*)T(y*—
pa) =XT (y—@7), where i is the first n entries of /i 4, weighted fusion penalty does
not change the order of numerators. For the denominators, let us consider A 4 —a;
first. The goal is to show that when s; > 0 and p;; — 1, we have A4 — a; — oo,
which implies that c¢; equals the maximal value of correlations in the updated active
set, so x; is the next variable entering the active set. Since A 4 = (six;‘)Tu A, direct
calculation shows that

Ag—a; = (sixf—x)T

j) WA

X4 g,
XEXA + A2Q4
Ry
Ado(siRi—R)T———A 7,
+ A 2(51R4 _7) XaxA n >\2Q.A A
Consider (s;R; — Rj)TR 4 in the second term. Since RTR; = Qsj, and Q is deter-
mined by (15), we have

= Aa(sixi —x;)"

Sisi]”wi]’

(3R = Ry Rt = o Qu — Qi) = (., E S50

When s; > 0 and p;; — 1, we have s;s;;w;; — 00, which implies A 4 — a; — co.

Similar argument can be applied to A 4 + a;, which shows that when s; > 0
and p;; — —1, we have A 4 + a; — oo. This implies that —c; equals the maximal
value of correlations in the updated active set, so x; is the next variable entering
the active set.

For the case with s; < 0, the argument above with changes of signs leads to the
same conclusion that x; is the next selected variable.

12




5 Analysis of prostate cancer data

In this section, we study the solution path of weighted fusion using the prostate
cancer data. The prostate cancer data is drawn from Stamey et al. (1989) and
consists of 97 observations. The predictors are clinical measurements: log(cancer
volume) (lcavol), log(prostate weight) (Iweight), age, log(benign prostatic hyperpla-
sia amount) (lbph), seminal vesicle invasion (svi), log(capsular penetration) (lcp),
Gleason score (gleason), and percentage Gleason scores 4 or 5 (pgg45). The original
data set does not contain strongly correlated groups. We added a noisy duplicate,
svi+0.06e, where e ~ N(0,1), to the data set. This induces a correlation of ap-
proximately .99 between svi and its duplicate. The response is log(prostate specific
antigen) (Ipsa). We used tenfold cross-validation to estimate tuning parameters with
a testing set of 67 observations (Hastie et al., 2001).

In Figure 3, we compare the solution paths for lasso, elastic net, UST, and
weighted fusion. The highly correlated variables, x5 (svi) and xg (svi+0.06e), are
represented in light and dashed lines, respectively. First of all, we note that for lasso
Xg enters the solution path only at the final OLS step where its coefficient estimate
is strongly negative. This demonstrates that lasso performs poorly under strong
collinearity. Secondly, the elastic net does not select xg9. The paths for coefficients of
x5 and Xg are far apart and cross-validation can not pick up both variables. Thirdly,
UST estimates are shown to be highly biased. Elastic net that bridges lasso and UST
may not work well when both lasso and UST perform poorly. Next, we portrayed the
solution paths of weighted fusion. We note that the paths for the coefficients of x5
and xg are very close and both are selected by cross-validation. The OLS estimate
of 85 on the original data without xg is around 2.5. Interestingly, the maximum
values of 85 and [y for weighted fusion halves the original OLS estimate of 35 at
around 1.25. This shows that the effects of G5 and Sy in weighted fusion are evenly
divided and are not exaggerated when variables are highly correlated. Further, the
solution paths for all other variables are very similar to that of lasso. This indicates
that weighted fusion preserves the good selection and prediction properties of lasso
and simultaneously deals with the problem of collinearity.

The test errors for lasso, elastic net, UST, and weighted fusion are 0.7610, 0.6491,
1.2502, and 0.6543, respectively. We note that lasso has a relatively large test error,
whereas UST has the largest. The errors for elastic net and weighted fusion are
very close with the error for weighted fusion a little higher due to selection of an
additional noisy duplicate.

We have shown weighted fusion to be a more reasonable method under collinear-
ity than lasso and elastic net using solution path analysis. In the next section, we
will demonstrate with simulation results.

13
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6 Simulation study

In the following examples, we compare the performance of weighted fusion and ridge
fusion with that of OLS, ridge, lasso, elastic net, UST, and oracle methods. The
oracle is an ideal estimator obtained a priori by OLS regression on the important
predictors. All algorithms were written in MATLAB codes. We used fivefold cross-
validation to estimate tuning parameters for each procedure.

For each example, we simulated 200 data sets from the true model,

y =XB+0¢, e~ N(0,I),

consisting of the training and an independent testing set. Our tuning parameters
were estimated using fivefold cross-validation on the training set. We used only
the representative values {0.5,1,2.5,5,25} to select the thresholding parameter -y
for weighted fusion. Estimated coefficients from the training set were then used
to compute the relative prediction error (RPE) on the testing set. The relative
prediction error (RPE) is defined by

RPE = (B~ BTC(3- )

where C is the population covariance matrix of X.
The details of the four scenarios are given below.

1. In example 1, each training set consists of 20 observations, and each testing
set has 200 observations. We use § = (3,1.5,0,0,2,0,0,0) and 0 = 3. In
addition, we set the predictors correlations as p;; = 0.5/=4! for all ¢ and j.
This creates a sparse model with a few large effects and predictors with first-
order autoregressive correlation structure.

2. Example 2 is the same as example 1, except that 8; = 0.85 for all j. This
creates a non-sparse model with many small effects.

3. In example 3, each training set consists of 100 observations, and each testing
set has 400 observations. We use true coefficients

B=(0,...,0,2,...,2,0,...,0,2,...,2)
R e i AL N
10 10 10 10

and o = 15 with p;; = 0.5 for all ¢ and j such that ¢ # j. This induces blocked
effects and predictors with constant correlation structure.
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Table 1: Median RPEs based on 200 replications

Method Ezample 1 Erample 2 Ezxample 3 Example 4
OLS 0.7669 (0.0364) | 0.7361 (0.0379) | 0.6837 (0.0164) | 0.6893 (0.0260)
Ridge 0.5433 (0.0310) | 0.3088 (0.0167) | 0.1153 (0.0025) | 0.2967 (0.0099)

Ridge fusion
Lasso

Elastic net
UST

Weighted fusion
Oracle

0.5397 (0.0246)
0.5984 (0.0282)
0.5712 (0.0273
0.7551 (0.0378
0.5060 (0.0255

NI N

0.2632 (0.0119)
0.6095 (0.0224)
0.5431 (0.0222)
0.6811 (0.0423)
0.3799 (0.0290)
0.7361 (0.0357)

0.1069 (0.0021)
0.2893 (0.0081)
0.5822 (0.0422)
1.1512 (0.0255)
0.2197 (0.0069)
0.2465 (0.0074)

0.3618 (0.0098)
1.8443 (0.1131)
1.2344 (0.0142)
7.8487 (0.1278)
0.3191 (0.0143)
0.2529 (0.0083)

0.1982 (0.0127

NOTE: The numbers in parentheses are the corresponding standard errors of the medians
estimated with 500 bootstrapped resamplings on the 200 RPEs.

4. In example 4, each training set consists of 100 observations, and each testing
set has 400 observations. We set ¢ = 6 and the true coefficients

=(3,...,3,15,...,15,0,...,0).
ﬂ 15 5 )

20

The predictors X are generated as,

Xj=21+01le; forj=1,...,15
x; ~N(,1) forj=18,...,40,

where Z; ~ N(0,1) and e; ~ N(0,1) independent. This creates a within
group correlation of approximately .99 between the first 15 predictors.

Examples 1-3 were used in the original lasso paper by Tibshirani (1996), and example
4 is modified from Zou and Hastie (2005).

In Table 1, we summarize the prediction results of our simulations. First of
all, we note that UST shows poor and unstable performances in all examples. The
increase of UST in RPE from that of lasso in examples 1, 2, 3, and 4 are 26%,
12%, 298%, and 326%, respectively. Furthermore, elastic net shows relatively small
reduction in RPE from that of lasso in examples 1, 2, and 4, with 5%, 11%, 33%
reduction, respectively, whereas in example 3 elastic net under-performs lasso with
101% increase in RPE. Interestingly, the prediction accuracy of ridge fusion is similar
to ridge, and it even outperforms ridge in examples 2 and 3. Finally, weighted fusion
outperforms elastic net and lasso. The reduction in RPE from elastic net in examples
1, 2, 3, and 4 are 11%, 30%, 62%, and 74%, respectively; the reduction in RPE from
lasso in examples 1, 2, 3, and 4 are 15%, 38%, 24%, and 83%, respectively.
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Table 2: Median number of selected variables based on 200 replications

Method Ezample 1 | Example 2 | Ezample 8 | Ezample 4
c I c I c I ¢ I
Lasso 3 1 5 0 12 6 9 0
Elastic net 3 25 7 0 16 12 15 0
UsT 3 3 7 0 17 14 15 0
Weighted fusion | 3 3 75 0 14 8 19 3
Oracle 3 0 8 0 20 0 20 0

NOTE: ”C” represents the median number of selected nonzero coefficients, whereas *I”
represents the median number of zero coefficients selected incorrectly.

The simulation results indicate UST as an extremely poor estimator for pre-
diction. The elastic net bridges the lasso and UST and thus is unlikely to show
strong advantage in prediction as indicated by the simulation results. Ridge fusion
is stable and sometimes may outperform ridge. The results indicate that weighted
fusion dominates both lasso and elastic net for correlated variables.

Table 2 presents the variable selection results for our simulations. The results
indicate that weighted fusion produces sparse solutions. Further, by considering
grouping effect, weighted fusion tends to select more variables than lasso. In exam-
ples 1, 2, and 3, weighted fusion has similar selection behavior as elastic net. In
example 4, which has 15 highly correlated and 5 independent significant variables,
lasso performs very poorly and selects only 9 important variables. UST selects only
15 variables, and elastic net is the same. On the other hand, weighted fusion selects
19 variables.

7 Discussion

In this paper, we have proposed the weighted fusion, a new penalized regression
method that can incorporate information redundancy among correlated variables
in regression and variable selection. Both simulation and real examples demon-
strate that weighted fusion often outperforms lasso and elastic net in prediction and
variable selection.

The weighted fusion penalty (5) may also be applied in conjunction with other
optimization criteria in addition to least squares. For example, Huber loss can be
used for robust estimation and hinge loss for classification.

Further, we utilized the lasso penalty to produce sparse solutions in (4). How-
ever, this is not the only choice. If one’s interest is in unbiasedness or consistency,
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SCAD (Fan and Li, 2001) or adaptive lasso (Zou, 2006), respectively, can be ap-
plied. Another interesting choice is the method of Dantzig selector by Candes and
Tao (2007).

We note that the key in producing good performance for estimation and se-
lection for correlated variables is the weighted fusion penalty (5). The weighted
fusion penalty introduces predictors correlations-induced structure on regression co-
efficients. Interestingly, performance results of ridge fusion, which employs just the
weighted fusion penalty, show that it can sometimes outperform ridge regression.
This demonstrates the stability of the weighted fusion penalty for regression under
correlation.

In this paper, we have introduced the GRIL estimator. We believe that GRIL
encompasses an important class of computationally efficient estimators for penalized
regression.
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9 Appendix

9.1 Proof of Theorem 1

By the construction of (4), it is straightforward to see that when pi; — 1 implies
wgj — 00, the term w;;(B; — 8;;0;)? diverges unless |§; — 8:50;] — 0. Since 3 is the
minimizer of |[y — Xg||2 + M\ ?:1 1B;]+ (A2/p) > i< Wii(Bi— sij8;)?, we must have
|8: — s438;| — 0. o
9.2 Proof of Theorem 2

First, let

p Ao
L(B) = |ly = XBII> + M ) 18] + > > wii (B — si585)%.

j=1 i<j
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When §; # 0, solving

0

a5 LB) = —2x{(y Xﬂ)mlsgn(ﬂz)ﬂt——[ szk szkszkﬂk

implies

A 1 2 A 1 N
;= — 2Xi~r —X03) — Asgn(B)] + — W;kS; s
Pi = oy 2% (v = XB) — Ausgn(f)] p— zk: kSik Dk

and similarly,

)= sy — X 501+~ 3 g
B = 2o ;. [2Xj (y —Xp) — A1sgn(,3])] + o Zk:wjksﬂk'gk'

Denote
1o |26 —XB) - hsen(B) 2] (v —XB) — dusen(fy) RS
W;. ;. ’
then .
A A w; kS E w ks ik
BByl < g T 3 (e ik
2 P li<p
S0, it is enough to show
2ly|[+/2(1 — ps; 1 1
1< WIVEEZ25) | oy a1 2 - Ly 1)
w;. w;. ’LUJ‘.

Since |a/b—c/d| < |(a c)/b|+|c| |1/b—1/d|, BiB; > 0, and |(x i —x;)T(y—XB)| <

”x%_xyll lly — X/B” < V2 1":011 |[]], then
2
I< ||Y||\/ — Pij) T oad

(y — XB) — Misgn(5;)| - ]T_El

For the second term above, we have |2x] (y — XB) — Misgn(6;)] < |2xT (y — XB)| +
A1 Z2l|x5] - Iyl + A1 < 2|jy]] + A1, then, (21) follows. O

9.3 Proof of Theorem 3

Let 4 = GCRIL (A1, A2) — 8% = {{y), i)}, then sign consistency is implied by

ol <|Bpl, G =0. (22)
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Let
V(u) = |le = Xul]* + Aa(u + 87 Qu + B%) + Al (u + 8|1,

then 4 = argmin, V' (u). For notation simplicity, let
W =XTe/vn={W(1),W(2)}". (23)
Since

%He — Xu||? = — W' XTXu — 27 Xu) = 2(XTX)u — 2¢/nW,

au(
-;’—U(AQ (u+ BTQu+ B7) = Aza%(uTQu +26TQu) = 222(Qu + QTH"),

then

e le=Xal[*+da(u %) Qu+67) = AVAC™+ Q) Fu—2VAW +22Q75".
(20

By KKT condition and (24), (22) is equivalent to
n /\2 ~ >\2 * )‘1 *
(Chh + T Qu)Vnl) —W(1) + Z=Quiy = —57=sen(Fy),  (29)
[ < 160, (26)
A1 A2 R
—Fl <(Ch + ;QM)\/ﬁu(l) -W(Q)+ \/—Qﬂﬂ 1) = 2\/—

Denote C11 =C} + %Qu, C~’2’“1 =Ch + %Qm, and replace Gy in (26) and (27)
by expression of ;) in (25), then the above is implied by

2y @)

W I
Gt W)l < va(lgy) - G5 sen(By) + 22 Quiy))
_ \ o
1C5:Ch "W(1) - W) < ﬁﬁ{l - |c3Cy 1sgn(ﬁ2‘1))
2

-5 22(C3Ch Qu - Qu)f 1)1}

where the left hand sides
~ 1 _
CY W(1) -4 N(0,C)
~ o~ _1 -
Cp,Cr,  W(1) — W(2) —4 N(0,Czp — CC'Cr2) (28)
by C~71L1 — Cjy; for A\2/n — 0. Result follows after applying condition (16). O
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9.4 Proof of Theorem 4

Sign consistency implies KKT condition, then we have
o, 422 Vb — W) + 22 R 29
(Chy + - Qu)vng) - W(1) + :/——T—LQH'B(I) = —ﬁﬂgn(ﬁm) (29)

AL

*71 <(Ch+ —2Q21)\/7—lﬁ(1) - W(2) + \/—Q215 < 2\/—1 (30)
held with probability 1. Combine (29) and (30), we have
in i 1 A1
CHhCh W(Q)-W(2) 2> 2\/—( 1+v) (31)

with probability 1, where v = C%;(C}, ‘1sign(ﬁ{1)) = (2X2/M)(CH(CH)IQy1 —
Qzl)ﬂz‘l). Suppose (17) fails, then there exists an element in v that is greater than
1, therefore, the right hand side of (31) has at least one positive element. On the
other hand, (28) implies that there is a non-vanishing probability that any element
of the left hand side of (31) is negative. Result follows by contradiction. O
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