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Abstract: Contemporary very-high-dimensional (VHD) statistical problems call at-
tention more than ever to solving the fundamental problem of scientific inference,
that is, to make situation-specific inference with credible evidential support. Af-
ter scrutinizing the great innovative ideas behind Fisher’s fiducial argument and
the Dempster-Shafer (DS) theory for scientific inference, we recognize that given a
postulated sampling model, reasoning for statistical inference (about a particular
realization of random variables) should be different from reasoning for data gener-
ation. The classical belief in distributional invariance of pivotal variables does not
distinguish these two types of reasoning processes and is thus often too strong to
be believable. Intuitively, beliefs with higher credibility can be obtained from the
classical belief by making it weaker. This general idea is termed as the “minimal
belief” (MB) principle. Technically, the proposed method is built on the DS the-
ory, and provides ways to capture realistically more “don’t know” and thereby to
build better DS models for solving VHD problems. It is shown that for general
single-parameter and certain multiparameter distributions, the MB posteriors are
obtained in closed form. The method is illustrated with a variety of examples, in-
cluding the simple test of significance, the Behrens-Fisher problem, the multinomial
model, and the many-normal-means problem. The many-normal-means example of-
fers an MB perspective of often-crude Bayesian and related shrinkage techniques,

which have been considered necessary in the last half a century.

Key words and phrases: Bayesian methods, Dempster-Shafer theory, fiducial infer-
ence, Likelihood principle, Stein’s paradox.

1. Introduction _

Modern statistical problems in dealing with massive data with complex struc-
tures impose more challenges than ever to statistical inferential methods. New
challenges make scientists who care about their situation-specific assessment of
uncertainty to think carefully about frequentist and Bayesian methods and the

fundamental problem of scientific inference. We take the view shared by Fisher
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(1959) and Dempster (2007), among a few others, that the fundamental problem
is to make situation-specific inference with credible evidential support. Under
this view, scientists would find that (1) frequentist theory somewhat obfuscates
by answering questions about a “long run” that is almost always irrelevant to the
practitioner’s situation, among other criticisms concerning efficiency and multi-
parameter /multiassertion problems; and (2) Bayesian argument always requires
“probabilities for everything” and hence often leads to ad hoc probability as-
signments that lack credible empirical support, especially in tackling very-high-
dimensional (VHD) problems. Fisher’s fiducial argument and the Dempster-
Shafer (DS) theory were proposed to tackle the fundamental problem of scientific
inference. These methods are nowadays rarely visible in the statistical literature,
perhaps, due to the criticisms led by Savage (1976). To the authors, the great
innovative idea behind Fisher’s attempted solution to scientific inference, that is,
the fiducial argument, has not been well understood by people, including Fisher
himself, in the past century.

1.1. The fiducial argument

The fiducial argument was introduced by R. A. Fisher in his paper “Inverse
Probability” in 1930 in an attempt to derive posterior distributions for unknown
parameters without use of priors, as an alternative to the Bayesian argument.
Since then, the fiducial argument has been a subject full of discussions and con-
troversies. To many contemporary statisticians, for example, “fiducial inference
stands as Fisher’s one great failure” (Zabell (1992)). To a few statisticians, how-
ever, Fisher’s attitude toward statistical inference from late 1920’s to late 1950’s
is a key to understanding inference. The spirit of letting data tell all in fiducial
inference has inspired continued efforts in understanding the fiducial argument
for scientific inference (e.g., Dempster (1966), Fraser (1966), Dawid and Stone
(1982), Wang (2000), to name a few).

The idea behind fiducial argument is as follows. A set of observations is sup-
posed to have been taken from a population distributions F'(x;6) with unknown
parameter §. Without prior information about the true value of the parameter
8, we want to specify our a posterior uncertainty about # by assigning a pos-
terior distribution for §. To make this idea more clear, consider the following

example. Suppose that a single observation z is a realization of the random
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variable X, where X ~ N(#,1) with unknown mean # and unity variance. We
write X = 0+ Z, where Z ~ N(0,1). Unlike the Bayesian argument, the fiducial
argument does not assign a distribution to 8 a priori. Given the observed data
z, we specify our posterior uncertainty about 6 through a posteriori reasoning
via continuing to believe Z ~ N(0,1). This leads to the fiducial posterior distri-
bution 8|z ~ N(z,1). The variable Z is called the pivotal variable, which plays a
central role in developing frequentist procedures. It is well known that inference
on § based on the fiducial posterior 8|z ~ N(z, 1) is well-calibrated, a property
that is not necessary but is nice to have. This fact makes fiducial inference ap-
pealing. Unfortunately, the fiducial inference is not in general well calibrated
for inference about functions of # such as 62 in the present example and about
multiparameters in general. Stein’s paradox (see, Stein (1956))provides a famous
example. This implies that the a posteriori belief in Fisher’s fiducial argument
is typically too strong.
1.2. The DS theory

Dempster’s (1966) extensions of the fiducial argument are fundamentally
important. First, he extended the fiducial argument to the cases with discrete
observable variables. Second, he suggested to approximate continuous observ-
able cases using the multinomial distribution. To some extent, the multinomial
model can be thus viewed as the atomic component in DS models. Recently,
Dempster (2007) introduced the Poisson model as an alternative atomic model
for DS, which appears easy to work with technically and is practically the same
as the multinomial model. As a result, this leads to a new inferential method
known as the Dempster-Shafer (DS) theory. A new elegant and powerful calculus
that deals with the associated (a)-random sets for DS analysis has been devel-
oped in Dempster (1966), Shafer (1976), and Dempster (2007). To the authors,
the new idea known as “data fusion” of DS is particularly intriguing because it
suggests that one does not have to believe or start with the likelihood principle
for situation-specific assessment of uncertainty. Dempster’s rule of combination
plays an important role in DS and leads DS itself to an extension to the Bayesian
method (e.g., Dempster (1968, 2007)).

Dempster (2007) introduced a useful and convenient formulation of DS out-

put in terms of (p, g, ), as opposed to Bayesian output (p, ¢), for assertions. More
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specifically, p expresses the probability for the truth of an assertion, g expresses
the probability against the truth of the assertion, and r represents a residual
probability of the new category of “don’t know”, an important component that
is needed in scientific inference and has been missing in other inferential theories.
1.3. The MB Principle

In building practical DS models, DS users have been adopting traditional
a pbsteriom’ reasoning used in Bayesian, frequentist or confidence-interval, and
fiducial arguments, which we refer to as the classical belief (CB) principle. To the
authors, however, the classical belief principle appears to be somewhat stronger
than necessary. Intuitively, beliefs with higher credibility can be obtained from
the classical belief by making it weaker. We term such a general idea in this
paper as the “minimal belief” (MB) principle. Intuitively, the MB principle
admits realistically more “don’t know” and, thereby, allows for more credible
DS inference. If is in this sense, in terms of “don’t know”, that MB is weaker
than CB. In other words, MB is introduced in an attempt to achieve higher
credibility. However, the MB principle serves as a general guidance rather than a
precisely defined mathematical term. It may take different mathematical forms
for sampling models of different data structures. The intuitive idea of MB is
explained by a motivating example in Section 2 and discussed further in Section
3.

Technically, the proposed inferential method is built on the DS theory be-
cause the MB principle is intended to be a new way to build alternative DS
models. We refer to Dempster (2007) as an important introduction to the DS
theory. We believe that MB-DS models, or simply MB models in the sequel, are
particularly useful for solving VHD problems. We focus in this article on the
fundamental idea of MB.

The remaining part of this article is arranged as follows. A motivating exam-
ple is given in Section 2. Some basics of minimal belief principle are formulated
in Section 3. Single parameter cases are treated in section 4 for both discrete and
continuous models. In section 5, multiparameter cases are investigated with sev-
eral illustrative examples, including the normal distribution with unknown mean
and variance and the Behrens-Fisher problem. MB estimation of the multinomial

model is treated in section 6. Section 7 concludes with a brief discussion.
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2. A Motivating Example: the many-normal-means problem

As a motivating example, an MB perspective of Stein’s paradox is presented
in this Section. Suppose that X;’s are independent and X; ~ N(u;,1) for ¢ =
1,--. ,n, where u;’s are unknown parameters to be estimated. The least squares
estimator (or maximum likelihood estimator) is found to be inadmissible under
square loss when n > 3. This discovery is known as Stein’s paradox. James
and Stein (1961) showed that the James-Stein estimator, which was originally
proposed by Stein (1956), always achieves lower mean square error than the least
squares estimator. Efron and Morris (1973) gave a (parametric) empirical Bayes
interpretation of the James-Stein estimator. All these methods shrink the least
squares estimator towards a common value, such as zero.

We write the sampling model as follows: X; = u; + Z;, where Z; 4 N 0,1)
for ¢ = 1,...,n. Given the observed data, Z;’s are known to have occurred and
remained unknown to us. With CB, we make inference about u; by repeatedly
“firing a shot at (Z1, ..., Z,)" in the n-dimensional Euclidean space R™ with a
random draw (Y71,...,Y,) from N™(0,1) = N,(0,1I,).” The deviations of the
points in the 2-dimensional (2D) scatter plots from the diagonal line in the upper .
panel of Figure 2.1 indicate the failure of the attempt of CB to make (joint)
inference about (u1, ..., 44n)’ as n increases. This implies that CB is typically too
strong to be believable, meaning that we may actually know less than what is
formulated via CB.

A weaker belief that came to mind is to “fire a shot at the ordered Z;’s,
denoted by (Z(1y, ..., Z(n))’, with an ordered draw (Y{y), ..., ¥{))".” The 2D scatter
plots in the lower panel of Figure 2.1, although somewhat misleading in that the
surrogates are in R™ rather than R?, show the dramatically increased credibility,
of course, in the case with the known order or permutation. Note that this
weaker belief differs from CB by an unknown permutation. In reality, statistician
“doesn’t know” how the ordered values correspond to the observations. Thus,
introducing the “don’t know” component into inference, as in the DS theory, is
fundamentally important for credible inference.

For convenience, we term the general idea of using beliefs weaker than CB
the minimal belief (MB) principle in hopes of achieving mazimal credibility. For

inference, we could live with either vacuous knowledge about the permutation
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or credible knowledge, if any, about the permutation, both can be handled in
general by using the DS calculus. In this paper, we focus on the case with the
vacuous prior on permutations, while leave the general treatment of permutations
to future research. The purpose of this paper is to elaborate the MB idea and
see how it performs.
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Figure 2.1: Classical Belief (CB) vs. Minimal Belief (MB). The sampling model: X; =
wi+Z;fori =1,... ,nwith Z; ud N(0,1). The upper panel is the scatter plots of ¥;’s vs.
Z;’s. The surrogate variables {Y;}} are used for inference under CB (upper panel). The
lower panel is the scatter plots of ordered Y;’s vs. ordered Z;’s. The surrogate variables

{Y()}1 are used for inference under MB (lower panel). n is the sample size.

For readers who are not familiar with the DS theory, we demonstrate what

MB can offer by presenting an experimental study. For those who are more




THE MINIMAL BELIEF PRINCIPLE 7

15

10

Frequency

Figure 2.2: The histogram of a sample of size n = 100, {X;}7,, with X; generated from
N{(us, 1), where p; = 0 for i =1, ...,80, and p; 4dg + Expo(1) for ¢ = 81, ...,100.

familiar with the usual probability calculus, such as Bayesian posteriors, than
with the DS calculus, we need to specify a usual conditional distribution of the
unknown permutation given the observed data X;’s and the surrogate variables
Y;’s or simply Z;’s, for both notational simplicity and a posteriori thinking about
the unknown Z;’s. We warn the reader that forcing “don’t know” to go away,
that is, = 0, can lead to incredible inference. Nevertheless, the experiment
presented below does offer, to some extent, an MB perspective of what is going
on in making inference about the surrogate variables that are related to Stein’s
paradox.

One idea of specifying a usual conditional distribution for sensible a posteriori
reasoning is to consider the empirical process on the real line:

{Xi: Xi<z,i=1,..,n}

Fo(z) = - (—o0 <z < 00) (2.1)

where |{X; : X; < z,i = 1,...,n}| stands for the number of the observed X;s
that are less than or equal to z. For given permutation m = (m1,...,m,)" of

(1,...,n), and thereby uniquely defined pa, ..., tin, Frn(x) has the following mean
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and covariance functions

F(z) = B %2: () (00 < @ < o) (2.2)
and
E(Fn(z), F 2 ZF zlpi)[l — F(ylwi)] (-co<z<y<oo) (2.3)

where F(z|u) denotes the cdf of N(u,1). Our belief for specifying a posterior for
the permutation is that the process

Fo(z) — Fo(z) (2.4)

is approximately a Brownian bridge with covariance function given in (2.3), where
F,(x) and F},(z) are defined in (2.1) and (2.2). For producing preliminary results,
we considered the usual distribution for the permutation, that is, in the DS
context non-zero masses are assigned only to singletons in the set of all the
possible permutations.

For a simulation study, n = 100 u;s were chosen as follows. 80 u;s were set
to be approximately zero and the other 20 u;s were generated from the “shifted”
exponential distribution 3+ Expo(1). The data Xpps = {X;}.; were then gener-
ated from N(u;,1) for 2 =1, ...,n. The simulated data is shown by the histogram
in Figure 2.2. The marginal posterior distributions of x;, based on 1,000 posterior
draws, are displayed using boxplots in Figure 2.3, where the whiskers represent
approximately 99% “confidence intervals”. Note that the (normal-distribution
based) 99% “confidence intervals” length is about 5.15. We see from Figure 2.3
that implicit shrinkage has taken place. More shrinkage is applied to clustered
X;s, for example, those in neighborhoods of 0 and 4. For values approximately
from 2 to 3, the marginal posteriors of the corresponding u;s have wider “confi-
dence intervals”, representing more uncertainty than that produced by the fidu-
cial argument. For the isolated observed values, such as those near 6, it does not
have a big shrinkage effect.

The procedure for computing the preliminary results is outlined as follows.
A finite number of points in (0,1) covering the observed data range is used to
approximate the Brownian bridge. The values of a Brownian bridge at the se-

lected points form a discrete Brownian bridge. For taking a posterior draw of the




THE MINIMAL BELIEF PRINCIPLE 9

10
|

I I [ I T I ) | 1 i ]
Hxy  Mxo  Mxen  Bxan  Mxen  Pxey ey Bxeg  Mxeny ey HXao

Figure 2.3: The marginal posteriors of y;, indexed by the ordered observed data, X (1) <
X < ... £ X(n), where blue curve: X(;), box-and-whisker plots: (marginal) posteriors
of px;, and red asterisks: true values of ux,, which are unknown in reality.

permutation for given {X;}7; and {Z(;}]-;, the basic idea is to simulate a (dis-
crete) Brownian bridge and find a permutation that matches Fy,(z) — Fy,(z) (with
the associate variance-covariance matrix) to the simulated Brownian bridge. This
idea is in spirit the general idea of “continuing to believe”, subject to the “non-
conflict” /feasibility constraint in DS sense. That is, a simulated Brownian bridge
B(z) is said to be feasible if there exists at least one permutation that makes
B(z) match F,(z) — F,(z). Approximation methods are used to generate non-
conflict Brownian bridge. Technical details, together with the general MB-DS
approach (i.e., with “don’t know”), shall be reported elsewhere.
3. The Basics of MB Principle

The MB principle introduced in the motivating example in Section 2 leads
us to the thought that there should be a fundamental difference between “data

generation” and parameter inference, which are treated as the same in CB infer-
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ence. By “data generation”, we mean that the random variables, such as pivotal
variables in Fisher’s fiducial argument, follow their long-run frequency distribu-
tion, before the observable data are obtained. On the other hand, by “parametric
inference”, we mean inference about unknown quantities that are associated with
particular realizations of random variables. We refer to these pivotal variables
as surrogate variables not to abuse the well established concept of “pivotal”. As
a matter of fact, the concept of “surrogate” is more general than “pivotal”. It
makes us reason using random surrogates associated with individual data points
rather than using sufficient statistics based on the likelihood principle. As is seen
in the motivating example in Section 2, MB leads to realistically or credibly more
“don’t know” in the DS context than CB. Technically, we make use of the DS
concept of random sets and the (p, g, 7) formulation to make posterior probability
statements about assertions of interest.

The formulation of a general framework for a posteriori reasoning towards
building MB models can be helpful. An MB model for posterior distribution
based inference can be defined as follows. Suppose the data are generated ac-
cording to the sampling model: Xpps = G(6,U), where § € © C RY, U has a
distribution of f(u), v € S,. Without loss of generality, we assume the surro-
gate variable U = (Uy,--- ,U,) with U; Wy (0,1). A continuing-to-believe (CB,
a slightly abused notation) variable C is defined via a many-to-one measurable
mapping: C = M(U). For example, M(Uy, -+ ,Up) = (Uqy, -+ ,Up)). The
inverse set consists of all feasible U for given C and Xps:

S(C)={U :C=M(U) and Xpps = G(8,U) for some 0 € ©}
The MB model is then specified by:
(1) the distribution of C|X s that is the same as the sampling distribution of
C, that is, the CB principle is applied to C; and
(2) a conditional DS-distribution over S(C) for given C and X, which is a
usual probability mass function on the power set of S(C).

The following two simple examples illustrate how MB inference is performed.
More examples are given in Sections 4, 5, and 6.
Example 3.1. Normal distribution with known variance. Consider the normal

distribution with unknown mean p and unity variance. We can write X =
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p+ ®1(U), where U ~ U(0,1). Assume that only a single observation z is
available, then we are sure that there is a corresponding u, which is a realization
from U (0, 1) but unknown to us. Note that there is no permutation issue involved.
The surrogate variable is nothing but the pivotal variable. The MB posterior

distribution for u = z — ®~!(u) can be written as
ple ~ N(z,1)

which is correspondingly the same as the fiducial distribution.

Example 3.2. Two normal samples with known variances. Consider the sim-
plest case in which we have two independent observations, namely, z; from
N(p1,1) and z9 from N(ug,1) with unknown parameters (11, u2). We are inter-
ested in making inference about functions of (u1, t2), e.g., k1 — pa, 43 + u3, ete.
MB gives the a-random set for (u;, uo):

{(azl —Zl,xg—Z2) or <a: ~Z2,:c2—Zl>}

where Z; and Z5 are understood as permutation or order statistics of two inde-
pendent standard normal random variables. For inference about p; — ug, we use
the a-random interval

(21— 22) = V212], (21 — 22) + V212

by considering the projection on the line of p1 — p9, where Z is a standard normal
random variable and v/2|Z| has the same distribution as (Z(2) — Z(1)), the range
of the two order statistics. A justification on the use of above a-random interval
can be made along the line of introducing generalized MB below. The probability
(p) and plausibility (p + r) about the assertion {u; — po < A} is plotted as in
Figure 3.4. It is noticed that the 7 (don’t know) for the foregoing assertion is
close to 1 for A = z7 — 5. For the testing problem, for example, Hp : p1 < po
vs. Hg @ pg > po, one would confirm Hy if zg > z1, and H, if 1 > zo.

To end the discussion on the basics of MB, in the spirit of MB we consider
an extension of the idea of specifying posterior using weaker belief by replacing
a surrogate point with a random set. This can be referred to as the gener-
alized MB (GMB) principle. For example, taking an ordered draw, denoted by
(Y -y Yiny)' with Y3 a U(0,1) and construct the n-dimensional box determined
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Figure 3.4: The probability p (blue) and the plausibility (p+7) (red) about the assertion
{1 — p2 £ A}. The dashed line represents the “don’t know” (r) part.
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Figure 3.5: The MB posteriorv CDF (red) and the adjusted posterior CDF's for a single
normal variate with known variance, assuming that the surrogate is between [U/2, (1 +

U)/2].
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by
Yy +Y0)/2 <Us < (Y + Yig))/2, (E=1,..,n) (3.1)

where Y{g) = 0 and Y{, ;1) = 1, we fire a shot with the n-dimensional box (3.1),
instead of the single point (Y{1), ..., ¥{n))’, at the target (U1, ..., Uwmy)’. This idea
is particularly useful for adjusting a-random sets defined by multiple points (see,
e.g., Example 5.2). GMB is also useful for solving the problem of hypothesis
testing, which is illustrated with the following example.

Example 3.1. (cont’d). Suppose that u is known to be [4,15Y] under the
above GMB scenario, where U ~ U(0, 1), it is easy to calculate the GMB poste-
rior (cumulative) distributions for the lower bound and upper bound of u, which
are:

2®(po —x) for po < z,

H(polz) =
1 for po > x

and
F(iolz) = 0 for po < z,
20(po—x)—1 for po> <z

where ®(.) is the cumulative distribution function for standard normal random
variable. The GMB posterior functions are in fact the probability (p) and the
plausibility (p + 7) about the assertion {u < po} for given x (see Figure 3.5).
The problem of significance testing, such as Ho : u < po vs. Hg @ p > pp, is then
resolved nicely by using the DS (p, g, ) output to confirm either the null or the
alternative, or fails to confirm either when r is large. In other words, the DS
“don’t know” component makes it unnecessary Fisher’s argument with the force
of a logical disjunction for significance testing.
4. The Single Parameter Case

It is relatively easy to perform MB inference when there exists at most a
unique feasible permutation. This is typically the case with univariate distribu-
tions. In this case, CB and MB are the same, subject to a factor n! associated
with the feasibility condition. The difference is that in MB inference, the infea-
sible permutations are excluded before making inference. While in CB inference,
a similar treatment is conducted implicitly when applying Dempster’s rule of

combination. In most cases, MB inference has a closed form solution.
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4.1. Continuous Distribution

For the continuous sampling distributions, we have the following result:

Theorem 1 Suppose that {z1,- - ,:z:n} is a sample of size n generated by U; =
F(X;|0), where U; & U(0,1) fori=1,---,n. F(-|9) is the cumulative distribu-
tion function for X;’s with parameter 6 € © C (—o0,00). Assume that:

(1) U = F(X|6) is one-to-one mapping for any two variables given the third
variable being fized;

(2) For any x in sampling space X, ©, = {0 : F(z|f) € (0,1)} is a non-
empty interval;

(8) F(z|0) as a function of 8 is strictly monotone (increasing or decreasing)
and differentiable over ©4; and

(4) F(z|0) as a function of x is strictly increasing and differentiable over X;
For any § > 0, let the intervals [z;, z; + 8] be a coarsened version of the sample,
then the a-random sets for MB inference about 6 are all singletons with the MB

posterior distribution proportional to

IBF(:::ZW) | n wzw
[Z OF (25]6) ]H (4.1)
j=1 T8z =1

in the limit of § — 0.

Proof: Noticing that the permutation is unique, we shall use DS argument to
prove the result. Without loss of generality, we assume F'(z|6) as a function of
6 is strictly decreasing over the interval ©,. For any z € [z;,z; + 4], ©, is an
interval, and therefore ©; 5 = Uy, <z<z,+60z is an interval due to the continuity
assumptions. Hence, given the observed interval [z;,z; + §], U; is uniform over
the interval U; s = {u : F(z|) = u;z; < ¢ < x;+6}. Thus, the coarsened version
of the sample obtained by replacing each z; with the interval [z;, z; + d] induces

an a-random interval for 0 (see Figure 4.6 ):
[O(UM Il'i), Q(Uh zi + 5)]’

where U; is uniformly distributed over U4; 5. For any real numbers a,b € N;Oy,
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Figure 4.6: Curves of F(x;|6) and F(x; + 6|6) as functions of 8. Note that the event
{60(U;, z;) < a} is equivalent to {U; > F(z;|a)} and that {#(U;, z; +6) > b} is equivalent

and a < b, we have:
Pr(H(Ui,xi) < a,9(U;,z;i +6) > b)
x  max{F(z; + §|b) — F(z;|a), 0}

Note that any non-empty intersection of all the individual a-random intervals is

still an interval. This yields the combined probability function for
n?.—_l [Q(UH xi)) Q(Ui, Zi+ 5)]a (4'2)

which is proportional to [} ; max{F(z; + é|b) — F(z;]|a),0}. Denote by m(z,y)
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the associated density function for the interval in (4.2), we have

([a, b]) / / m(z,y)dydz

It follows that the density of the lower end of the combined a-random interval is

ms(d) = —ac(([;zb]) ot
<3 OF ) [Tim (e + a16) — o)
j=1 i#j
BF(z;16)

a0

- [Z Fe; +010) Jw)]m“l”“’ Fllo)

Hence, for any 01,6, € M;0,, as § — 0, we have

8F(z4161)

Zn 9 n  OF(z;]01)
i=1 " 8F(z;|67) i=1 T

mg(61) — o5

ms(6a) OF (z;162)

s o n  OF(z;|0a)
i=1 3F(;Z-|92) i=1 z
T

That is, as § — 0, we obtain

OF( mZ]0 n
] lee (4.3)

i [ Lot | 11°

Similarly, the density of the upper end of the combined a-random interval
can be obtained and is the same as m(#) in equation (4.3). Thus, equation (4.3)
is the MB posterior density function for 6.

Remark 4.1. For location parameters, MB posteriors coincide with the Bayesian
posteriors obtained with the use of the flat prior. In other words, if the family
of the sampling distributions, indexed by the unknown parameter 8, can be
transformed to a location family, MB inference supports the likelihood principle
(see Lindley (1958) for an interesting discussion on the relationship between
fiducial and Bayesian arguments). It is seen from Theorem 1 and the following

examples that in general, MB inference does not support the likelihood principle
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for statistical inference. This implies that in general, Fisher’s sufficient statistics
are no longer “sufficient” for MB inference.
Remark 4.2. Although the DS calculus is used in the proof of Theorem 1, MB
posteriors are different from conventional DS posteriors, that is, those given by
the DS multinomial approximation (Dempster (1966)). The multinomial-based
and Poisson-based DS posteriors for univariate distributions with single param-
eters can also be obtained in closed form (Dempster (1969) and (Liu (2007b)).
It is worth noting that although multinomial approximation is used to introduce
“don’t know” in DS inference, conventional DS posteriors are CB based and thus
different from MB posteriors.
4.2. Discrete Distribution

MB posteriors for univariate discrete distributions can also be obtained in
closed form. Here we consider, as an example, the Poisson distribution. The
Poisson model is treated as an atomic model in DS calculus (2007). Here, we
adopt the MB approach to the Poisson model.
Example 4.1. Poisson distribution. Suppose X; = k(k = 0,1,---) if 0 <
Ui — F(X; —119) < F(X;|8) — F(X; — 1|8) = f(X;|0)(é = 1,--+ ,n) are i.i.d.
sample of size n from Poisson distribution with parameter §, where F(:) and f(:)
are the cumulative distribution function and probability mass function of the
Poisson distribution, respectively. The a-random interval for 6 is N, [0(U;, z; —
1),6(U;, x;)]. Using an approach similar to the one in the proof of Theorem 1,
we can obtain the joint posterior distribution for the a-random interval, which
is proportional to []}_; [F(x;|b) — F(x; — 1|a)]. This leads to the MB posterior

densities of lower and upper endpoints:

0k) [~ 30 (Tt o 31T st
= o f@ld) 15 Z 0(91':1 B
x dGamma(Z zi,n)
‘(Ti [ iaFé@i'e)}[ﬁ (@10)] ] £ @il
h(0lz) o |- flzi]0)| o< || flaslf
i=1 F=ilf) ] "5 i=1

x dGamma(l + Z zi,n),

=1
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where dGamma denotes the density of Gamma distribution. These marginal cdf
results are the same as those of Dempster (2007). However, the distribution
of the MB a-random intervals is different from that of the DS a-random inter-
vals. Furthermore, the DS posterior obtained via the DS approximation through
discretization is dramatically different from the MB posterior (see Liu (2007b)).
5. Multiparameter Cases

Fiducial inference for the multiparameter case has been a challenging prob-
lem. It would be a natural way to tackle the problem by taking the DS approach
to the single parameter case. For example, Dempster (1966,1972) considered the
sampling class of structures of the second kind and applying DS rule of com-
bination for the multinomial model. However, the a-random set is difficult to
compute in the multinomial case. The MB results appear attractive and easy
to calculate in many cases. We consider in this section two examples and in the
next section the multinomial model.
Example 5.1. Normal distribution with unknown variance. Suppose that X;
“ N (p,0?) for i = 1,--- ,n with unknown p and o2 to be estimated. There
is a unique feasible permutation. The a-random sets are necessarily singletons.
The distribution for (i, 0?) can then be obtained by the trick of considering the
conditionals via arguments made with the surrogate variables. By Theorem 1, it

is easy to obtain:

pl(zy, - - ,wn,a2) ~ N(E,az/n)

no Y (@i — #)2)

o?|(z1, -+, Tn, 1) ~ invGamma, (—2—, 5

The joint posterior distribution for (u,o?) does exist since the conditionals are
determined by the common surrogate variables. Of course, it can be shown
that the two conditionals are compatible based on the well-known theory (see,
Arnold et al. (2001)): the conditionals f(01|02) and f(62]01) are compatible iff
the following two conditional hold: (1) © = {(61,62) : f(01]62) > 0} = {(61,62) :
f(62]61) > 0}; and (2) there ezists function u1(61) and ug(0s) such that %%I% =
u1(61)ua(82) for all (61,62) € ©.

The joint MB posterior distribution can be obtained from these conditionals
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as follows (see, e.g., Gelman and Speed (1993,1999)):

f(,U«[CC]_, e ,xn,a?‘)f(azlxl, e axn’IU'O)
f(/.L0|.’L'1,"' ,mn,o'?‘)

x o e (= galln = s nia )

f(/%azlml)' v ,l‘n) &

where T and s? are the sample mean and sample variance, respectively, ug is
arbitrarily fixed value. It is interesting to see that the MB result agrees with the
commonly used Bayesian posterior (see, e.g., Gelman et al. (2004), p.74), which
is obtained by using the prior f(u,o?) oc 072 rather than the Jeffreys prior.

It is worth noting that the a posteriori surrogate variables in this case reduce
to two independent surrogate variables given the observed data {z;}? ;. More
specifically, we have the a-random point/variable T + %Z for p conditioning
on o2, and the a-random point/variable (n — 1)s?V for 02, where Z and V are
independent, Z is a standard normal random variable, V is an inverse-Gamma
random variable with degree-of-freedom (n — 1)/2 and rate 1/2.

Example 5.2. The Behrens-Fisher problem. The Behrens-Fisher problem is
about comparing the means of two normal distributions with unknown means
and variances. This problem has long been of interest in the theory of statistical
inference. Although many methods have been proposed, no definitive solutions
appear to exist. A comprehensive review of this problem can be found in Kim
and Cohen (1998). Here, we consider the simplest case, where we have two
observations for each population, namely, ny = ng = n = 2. For each popula-
tion, the a-random sets are singletons as in the case of N(u,0?) (see Example
5.4), because feasible permutations are unique. However, the permutation is
not unique between the two populations. The resulted a-random set in fact con-
sists of doubletons, corresponding to the unknown permutations between the two
populations. Denote the sample means and sample variances by Z; and s2, for

i =1,2. We then have the a-random sets for (u1|o?, 02, us|o2, o2):

(51 + 221, (n = Vsl 7+ Tt = 0

or

(51 + ;—%22, (n—1)s3Va, T + %Zl, (n— 1)3%‘/1),
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where “|” means conditioning. Note that (Z1,V1) and (Z2,Vs) as a-random
variables are no longer independent a posteriori. However, the two variables in
each pair are still independent.

The MB approach for inference about functions of (u1, o) with the vacuous
prior for the permutation is to consider the marginal a-random sets for (u1, p2),
that is,

_ s? ., _ s2 _ s? s
z1 + 301,3324- 302 or | Ty + —2—02,172+ —2—01

where C1, Cy (with a slightly abuse of notation) are understood as permutation
or order statistics of two independent Cauchy random variables.

The a-random interval for p; — po can then be obtained as:

o s3 s — 53 s
Ty — T2+ ( 5 Cy — _2~C(2)),fr1~x2+( —2~C(2)— -2—0(1))

by considering the projection along the line of u; — py. The framework of GMB
introduced in the end of Section 3 provides a justification for using this a-random
interval. The posterior density functions for the two endpoints can be calculated

analytically as follows:

1 b 9 s
h(uolz) = ?To—?ﬁ%@w[ 7 arctan ﬁfjbﬂ for a # b,
%mf(ﬂoﬁfs) fora="5

and
2 =)
Gosrars (L + 2arctan f257] for a # b,

1
h(uolz) =4 "
1 e T(uy> ) for a=b

where a = \/s3/2,b = +/53/2,8 = T1 — Ta, I(-) is the indicator function.
6. The multinomial Distribution

The multinomial distribution
Multinomia(Py, ..., Px), (Px>0fork=1,..,K and 3% P, =1)

over the sample space X = {1, ..., K} is a practically useful model for analyz-
ing categorical data as well as a theoretically interesting model for developing

inferential methods. In practice, the presence of zero and small counts in some
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categories is problematic. In this case, a fake small count, say 1/2, is often added
to each cell before analysis. Serious attempts in literature do not appear satis-
factory, especially when the number of categories with observed small counts is
large. In Bayesian analysis, when the Jeffreys or flat prior is used, undesirable
marginal posterior occurs when pooling is considered. The reference prior pro-
posed by Berger and Bernardo (1992) has not completely solved this problem.
Dempster (1966,1968,1972) studied the binomial and trinomial cases under the
Dempster-Shafer framework, however, the general multinomial distribution is an-
alytically intractable. The approach proposed by Walley (1996) using “imprecise
Dirichlet” priors is interesting. Since it involves “don’t know”, Walley’s method
is closer to DS than to Bayes.

Ps

Umax =(0.1,0.2,0.5)

Figure 6.7: The 3-dimensional simplex (the outer large triangle) representing the param-
eter space of (Py, P3, P3) in the trinomial distribution. The inner shaded triangle similar
to the outer triangle represents the a-random region with U,r(nla)x = 0.1, U,(,?Qx = 0.2, and

r(n?’a)Lx = 0.5, where it is assumed the observed counts V; > 0 for j = 1,2, and 3.
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Here, we consider the MB posterior for (P, ..., Px)'. Suppose that the data
is thought to have been generated according to the following mechanism: draw
U; % U(0,1) and set X; = kif 0 < Uy — Y 1P < By for i = 1,
k=1,---,K. Note that this is nothing but the sampling class of structures of
the first kind (see Dempster (1966)). Denote by Ny, the number of counts in the
k-th category for k = 1,---, K, it is evident that Ny = >.7 | I(X; = k) and
S K | N =n, where I(-) denotes the indicator function.

We consider V; = U; — Zf;{l P; (for ¢ = 1,--- ,n) instead of U;s, as the
surrogate variables. The restrictions or permutations for U;s thus disappear when
we consider Vjs. Thus, the permutations are irrelevant and V;s are i.i.d. uniform
random variables on [0, 1], subject to the feasibility constraints: V; < Py, for
1=1,...,n. Aggregating Vs, we obtain for k=1,--- ,K:

J

where {Vj(k) };\’:’“1 is the collection of the V;’s with the corresponding X; value
equal to k. Let Umax = (maxi<j<m, Vj(l), oy NAX1 << N Vj(K))’, the vector of
the lower bounds for the cell probabilities P, ..., Pxk.

Routine algebraic operation leads to that
d
Uma.X = (D17 7DK)

where (Dy, D1, ...,Dk)’ ~ Dirichletg41(1,N1,--- ,Ng). The “expanded” a-
random vector (Do, D1, ..., D), with Dgy corresponding to “don’t know”, lies
in the (K + 1)-dimensional simplex. Thus, the a-random set for (P, ..., Px) is a
shrunk version of the K-dimensional simplex, the space of (Py,---, Pg). Figure
6.7 displays such an a-random set in the case of K = 3.
Remark 6.1. The MB posterior, given in terms of the DS calculus, defines a DS-
Dirichlet process. The DS-Dirichlet allows for simple and credible solutions to a
class of non-parametric problems. For its frequentist and Bayesian counterpart,
see Ferguson (1973).
Remark 6.2. In the case of K = 2, the MB posterior is the same as the DS
posterior (see, for example, Dempster (1966) and Liu (2007a)).
7. Conclusion

In this article, we considered a new principle, called MB, for parametric
inference. MB is proposed in the framework of the DS theory. Thus, the MB
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principle can be viewed as a new way to build alternative DS models. The
intuitive idea of MB is that the weaker the belief, the higher the credibility. It
is typical that unlike the fiducial argument and DS theory, MB inference has
no a posteriori independence assumptions and therefore is different from the
existing inferential methods. It is shown that MB leads to simple and intuitively
attractive results for the multinomial model and it does shrinkage automatically
for the many-normal-mean problem. The MB principle also raises questions on
“sufficiency” of the likelihood principle, which is critical to frequentist, Bayesian,
and fiducial methods.

Like every new method, MB needs further intensive investigations, especially
for multiparameter cases for which we have only touched a few examples. While
the vacuous prior on the unknown permutation in MB allows for conservative
inferénce, specification of credible DS-distribution for the unknown permutation
for possible sharper inferential results without losing credibility deserves further
study. Limited experimental results on a variety of statistical problems, including
deconvolution, multiple testing, and variable selection, based on work with our
collaborators are encouraging. We expect that future research on MB will be
fruitful, leading us to a new era of the DS theory, especially for VHD statistical
problems.
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