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The Dempster-Shafer (DS) theory is attractive because the goal
resembles the Bayesian goal, while the model assumptions mimic the
weaker assumptions of sampling models. Following Dempster’s 1966
idea remarked in his first paper [1] on DS, we are concerned in this
article with DS inference for single parameter univariate distribu-
tions. It is shown that the DS posterior has a simple analytic form
in terms of commonality for a class of univariate distributions with
a single continuous parameters, which essentially includes exponen-
tial families as special cases. Asymptotic results of DS posteriors are
also obtained, and investigated in detail for the univariate normal
distribution N (M, 1) with unknown mean M to be estimated.

1. Introduction. The Dempster-Shafer (DS) theory, or the theory of
belief functions, has been known and attractive to many applied scientists
needing situation-specific assessments of uncertainty. Dempster’s original pa-
pers in 1960s [1, 2] were aimed at parametric statistical inference, and were
designed to bridge a gap that continues to exist between methods based
on sampling distributions and methods based on Bayesian posteriors. Soon
thereafter, Glenn Shafer’s 1976 book [7] clarified the mathematical basis for
wider readership. Arthur Dempster’s recent paper [4] provides an excellent
resource for understanding of DS methodology such as the new terms, op-
erations, and concepts introduced for DS analysis. For example, the theory
leads to computed inferences of the form (p, g, r), with p+ g +r = 1, where
p expresses probability for the truth of an assertion, g expresses probability
against the truth of the assertion, and r represents a residual probability
of the new category of “don’t know”. On the contrary, the Bayesian theory
does not allow for “don’t know” and therefore simply reduces DS output
(p,q,r) for an assertion to (p,q) with p+¢=1.

Statistical research on DS in the last 40 years has been somewhat slow
due to the fact that the computations required to carry out the meth-
ods have been recognized to demand more than frequentist and Bayesian
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2 CHUANHAI LIU

methods for widespread practical use. It can be expected that the required
computing power for DS becomes affordable by major and continuing ad-
vances that have been accompanied by growing knowledge and experience
among statistical researchers with Monte Carlo methods for approximate
high-dimensional numerical integration. Associated theoretical studies of
novel DS procedures can thus be expected to shed new light on unresolved
differences between “Bayesian” and “frequentist” approaches to inference,
including asymptotic properties.

It has long been believed that DS inference for continuous distributions,
for example, N (M, 1) with unknown mean M, would require computation-
ally intensive large-scale simulations. As an integral part of DS, Dempster’s
original idea was to approximate the state space of a continuous random
variable by a large number of tiny cells. That is, for a sample of size n from
a standard parametric population model, the observed data are in effect
multinomial, with n cells having one observation each and the remaining
large number of cells having zero observations each. Consequently, DS in-
ference for multinomial sampling is crucial and is the focus of Dempster’s
original paper [1]. Moreover, it was remarked at the conclusion of [1] that
as long as certain discrete sums from approximating a continuous sample
space converge to integrals in an expected way, the multinomial inferences
converge to a well-defined unique DS model (DSM) for the parameters.

This article presents analytic results in DS inference for continuous dis-
tributions. The results show that DSMs for a class of univariate parametric
models, including exponential families, have simple closed-form expressions
in terms of commonality. The results are illustrated with familiar parametric
models: the normal distribution N (M, 1) with unknown mean M, the Pois-
son distribution Poisson (L) with unknown rate L, the Gamma distribution
Gamma(a, B) with unknown rate B, and the negative binomial distribution
NB (ng, P) with unknown probability P. Asymptotic results of DS posteri-
ors are also obtained, and investigated in detail for the univariate normal
distribution N (M, 1) with unknown mean M to be estimated.

Section 2 provides a brief review of needed DS models and calculus for
carrying through above limiting posterior DSM inferences for univariate dis-
tributions with single parameters. An alternative to the DSM [1] for the
multinomial model is formulated in terms of first arrival times of Poisson
processes. Sections 3 and 4 establish DSMs for discrete and continuous dis-
tributions based on single observations. Section 5 discusses combined DSMs
given a sample. Section 6 characterizes the large sample behavior of DS
parametric inferences, where agreement in a sense with limiting Bayesian
inferences is shown and the degree of “don’t know” going away for large
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DS FOR UNIVARIATE DISTRIBUTIONS 3
sample size is investigated.

2. The Dempster-Shafer theory: relevant basics. Dempster [l]
proposed to use associated- (a-) random sets for making inference about
multinomial distribution. Suppose that X ~ Multinomial (P, ..., Py ), where

(2.1) PeS, = {(81, ...,Sk) :8120,...,8, >0 and Z?=1Sj = 1},

that is, Pr(X =j|P) = P; for j = 1,..k. The set S; is known as the
(k — 1)-simplex. Dempster [1] employed the barycentric system as a conve-
nient mathematical tool. Let V1 = (1, 0,0, ...,0), V2 = (0, 1,0, ...,0),..., Vi =
(0,0,0,...,1) be the k vertices of the simplex. Any point P € § can be writ-
ten as

P=PVi+PVo+...+ PV,

i.e., the coefficients (P, ..., Py) are barycentric coordinates of P with respect
to Vi,..., Vi. If we imagine masses equal to P4, ..., Py attached to the ver-
tices of the simplex, the center of the mass (the barycenter) is then P. We
refer to [1] for geometric explanation of the DS model for estimation of the
multinomial distribution.

The a-random variable in the DSM [1] is a random point U = (U, ..., Ug)
following the uniform distribution on the (k—1) simplex Sk, i.e., the Dirichlet
distribution Dirichlet (1, ...,1). Given P = (P4, ..., Pg), the (k — 1)-simplex
is partitioned into k£ simplex regions:

(2.2) UP)={U:UeS,and § < G forj#i}

Here we provide an alternative argument showing that Pr (U € U;(P)|P) =
P; for ¢ = 1,..,k. It is well known that the Dirichlety (1,...,1) random
variable U = (Uy, ..., Ug) can be represented by k iid standard exponential
random variables Fi, ..., Fy, as follows:

Ej

U= ——4
J Ei+...+ E

Note that the inequality %? < %} in (2.2) is equivalent to the inequality

Ei < 2 Therefore, for given P we have
P; PJ ]

. —E, [ —ZI|P+4>. . P
Pr(X=14) = Pr(%} < P}% forj#i) = / e P"[ R J]alz = B,
k2 J 0
that is, X |P ~ Multinomial (P, ..., Pg).
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4 CHUANHAI LU

The above argument suggests that the DS model corresponding to (2.2)
can be interpreted in terms of first arrival times of k& independent Poisson
processes with rates proportional to Py, ..., P,. In terms of iid a-random
exponential variables, the multinomial DS model (2.2) for inference about
unknown P has the following a-random region

(2.3) Rx={P:PeS,and £ < Ji for j # X}

where E; % Exp (1) for 4 = 1,...,k. Since U in DSM (1] is a many-to-one
function of F = (Enu, ..., Ex)’, we refer to this multinomial DS model as the
Augmented DS model (ADSM).

DS inference based on a sample or even a single observation relies on
Dempster’s rule of combination [1, 4, 7]. Here we consider the simple sit-
uation where the a-random set about a single parameter 7' € © C R in
an a-random interval [V, Viy] C ©. The a-random interval [Vr,, Vyy] can be
characterized by the joint distribution of (Vz,, Vi) or equivalently the com-
monality, the probability that the a-random interval [V7,, Viy] covers the fixed
interval [a, b}:

c([a,b]) =Pr(Vy <a,Vy > b) (a<be®)

Commonality provides a simple way of combining independent pieces of in-
formation because it multiplies under Dempster’s rule of combination. More
specifically, suppose that there are n independent DSMs about a common
single parameter T € © with commonalities ¢;([a,b]) for ¢ = 1,...,n. Then
the combined DSM has commonality

e((a,B) o [ eila,B)
i=1

In addition, if the a-joint distribution of a-random interval (Vr, Viy) is con-
tinuous, its pdf, m(a, b), can be obtained as follows:

0%c([a, b])
m(a, b) X _W
Furthermore, the a-pdf of V1, referred to as the lower a-pdf, is given by
9c([a, b])
24 h(0) x ——=
(24) ®) A
and the a-cdf of Vi, referred to as the upper a-cdf, is -
(2.5) h(B) ox — 9e((a,t) :
Ob  la=b=s
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Let H(6) and H(6) be the cdfs corresponding to h(#) and k(). We call H()
and H(6) the lower and upper a-cdfs, respectively. The DS output (p, g,7)
for the assertion {T' < Ty} about the parameter T is obtained as follows:

(2'6) p= F(TO)7 g=1 —E(TO), and r=1-p—gq= ﬂ(TO) - F(Tg),
where Tp is a known constant in O,

3. Discrete distributions. Suppose that a single observation X is to
be considered from a discrete distribution F(z|T") with unknown parameter
T € © C R!, where the sample space is X = {0,1,2,...}. We denote by
f(z|T) the probability density function. For a multinomial approximation
to F(z|T'), we consider the DS estimation of a truncated version of F'(z|T")
for £ < N from a single observation X < N:

Ex _ _B
FXIT) = fIT)

where Fy, ..., Ey are iid with the standard exponential distribution. DS es-
timation of F(X|T) is obtained by letting N go to infinity:

(y#XﬂU:O:l?)N)

FXIT) = fIT)
where Ey, F1, By, ..., are 1id with the standard exponential distribution. Here

we consider the class of discrete distributions satisfying the following condi-
tion.

(3.1)

(y#X)y=071a27---7)

ASSUMPTION 3.1. Asa function of T € © C R, {T|y,X) = ;(;;{17“1) is
increasing for all y > X and decreasing for all y < X.

We note that the case where £(T'|y, X) is decreasing for all y > X and in-
creasing for all y < X can be transformed to satisfy Assumption 3.1 via
simple reparameterization. This is illustrated below with the negative bi-
nomial distribution. It should be remarked that Assumption 3.1 is satisfied
by exponential families. DS inference about discrete distributions satisfying
Assumption 3.1 has a simple form, which is given in the following theorem.

THEOREM 3.1. Suppose that X ~ F(X|T) on the sample space X =
{0,1,2,...} with unknown parameter T € © C R! and that the parameter
space © C R is an interval. Then under Assumption 5.1, after ruling out
conflict cases
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(i) the a-random set for T is a random interval of the form
(3.2) | hn(a;{cTy, Zl;glg(lTy:l
where Ty = max{T : ¢T|y,X) < Ey/Ex,T € ©} fory > X and
T, = min{T : £(T)y,X) < E,/Ex,T € ©} fory < X with B, %
Ezp(1) fory=0,1,..., and
(ii) the DS posterior has commonality
F(X—1la) 1-F(Xb)71™*
_I_
f(Xla) F(X[p)

(3.3) c([a,b]|X) o« |14
where a < b (a,b € O).

PROOF. A realization of Ey, E1, ... is conflict iff maxy«x Ty > minys x Ty,
It is easy to see that (i) follows Assumption 3.1. The commonality is the
probability that the a-random interval (3.2) covers the given interval [a, b].
Thus, Assumption 3.1 leads to

([a,b]|X) o« Pr <€(a}y,X) < By for y < X ,0(bly, X) < Ey for y > X)
EX EX

s=Ex /°° [T el X0+ i X))
0

dz
-1
= [l + Z Laly, X) + Z E(bly,X)} ,
y<X y>X
which results in (i2) according to the definition ¢(Ty, X) = ?féﬂ{l% O

We conclude this section with two illustrative examples.

EXAMPLE 3.1. (The Poisson distribution) For the Poisson distribution,
the pdf is

=2t @ex=1{01,.)),

For a given single observation X from Poisson(L), the function
_ Y yx
(rly X) = %L
is increasing in L for y > X and decreasing for y < X. Thus, the common-
ality for inference about L is
1
(3.4) cx(la, b))

Prr<Xxla) , Pr(y>Xxip)
1+ ==+ —10m
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for 0 < a < b < 00, where Y|\ ~ Poisson(]).
We show that the lower a-cdf and upper a-cdf are

(3.5)

HOX) =

and

3.6) H(AX) = pG (22X +1) +

2X—1
pG (23, 2X) + Z— T X pr (v < X|A) £(X|N)
if X > 0;
1 if X =0,

22XT2(X 4 1)

Fax ey P> XA

for X € [0,00), where pG (., ) denotes the cdf of the Gamma distribution

with shape parameter « and Y|\ ~ Poisson(\). The result is obvious for
H(AX = 0). The lower a-pdf is

Ocx ([a, b]) af (XN OPr (Y < X|A)
b()\IX) X T b =Pr (Y < X|)\) )\ (X{)\)T
Note that
OPr (Y < X)) _ 0%%% e
o 5 = —f(X —1|A).
Hence,
H\X) o« Pr(Y < X\ f(X|\) - 2/0A F(X|w)dPr (Y < X|u)

2/0A F(X[w)F(X — 1ju)du + Pr (Y < X|) F(X]\)

o [* T g ey < XN F(XIN
/Olme u+Pr(Y <X|A) f(X|A)
r'(2X) 22X

TN LTy TE)¢ % TP (Y < X F(XI).

This completes the proof of (3.5). (3.6) can be proved similarly.

The a-cdfs for various values of X are displayed in Figure 3.1. For a
comparison, the a-cdfs based on the Poisson DSM (pDSM) [4] are also shown.
The simple test of significance provides an interesting case to compare the
two DSMs. Figure 3.2 shows the (p, ¢,7)s for the simple test of significance:
Hy: L=Lgvs. Hy: L > Lgy. It is interesting that the r-curve, the degree
of “don’t know”, of ADSM dominates the frequentist p-value, providing an
attractive solution to resolve the logical disjunction problem in the simple
test of significance [4, 5]. On the contrary, the advantage of using “don’t
know” is disappearing in pDSM [4] for large values of X (or equivalently L).
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X=3 X=10
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o o
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F1G 3.1. The solid lines are the a-cdfs obtained by ADSM. The dashed lines are the a-cdfs
obtained by pDSM [4].

ExXAMPLE 3.2. (The negative binomial distribution) Suppose that X is
a single observation from the negative binomial distribution NB (ng, P) with
known size ng (> 0) and unknown probability, P (€ [0,1]), of success in each
trial. That is, X represents the number of failures which occur in a sequence
of Bernoulli trials before the target number of successes (ng) is reached.
The negative binomial distribution NB (ng, P) has density

— |
(TLO 1+$)Pn0(1_P)z‘ (33:0,1,2,)

fro(2IP) = (no — 1)lz!

DSM about @ = 1 — P for given X can be obtained straightforwardly by
applying Theorem 3.1. Hence, the DS posterior of P has commonality

Fro(X —1b) 1 — Fpy(X|a)]™*
fno(X10) fro(X|a)

for 0 < a < b < 1. The lower and upper a-pdfs can be obtained from (2.4)

cp([a,b]|X) = Co([1—b,1—a]|X) o |1+
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BDSM: LO=10 pDSM: LO =10
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J ® e X o P ) *x °
L= e X L o p=P(L>LOX) © B o 7 *x ° p=P(L>LOX) ©
& *T+ o 9=P(L=LO)X) ® Fog B ox| © g=P(L=L0]) ®
8 . ot + r=P(*don’t know"{X) + 8 ox° r=P("don’'t know"|X) -+
= < _| +o X 2 p-valug X - < _| x p-value X
X © M X © o
=] + x =] ox
A - P A A 7 0pl %
] NS ] Q++r+4.9%
?ILI’ S ?wtt? 009°1 %00, ) : ﬁtfunr*u? i = 700“’7’ +"T¥¥u7uu?un7
Q
[ 5 10 15 20 25 30 0 5 10 15 20 25 30
X X
BDSM: LO =100 pDSM: LO =100
3 £
9 « 3 «
=] p=P(L>LOJX) © = p=P(LLOIX) ©
g q=P(L=L0}X) ® g G=P(L=L0)X) ®
8 r=P(*dor’t know*|X) + [ r=P("don't know'[X) +
PESER - p-vaiue X < = p-value X
X o X o
S S
A )
= o = o
& 3 T e
Q. Q.
80 90 100 110 120 130 140 150 80 90 100 110 120 130 140 150
X X

Fi1G 3.2. The DS (p,q,r)s for the simple test of significance: Ho: L = Lo vs. H, : L > L.
The pDSM results were computed based on the a-cdfs in [4].

and (2.5) as follows:

A(p|X) o [1 — Fpo(X|p)] 3fnoa(;f 2) _ ;g 2L Fg; (X|p)]
and
R

for p € [0,1]. The corresponding lower and upper a-cdfs are

E(01X) o foa (X1 + Fro(X1p)] —2 [ Fug(x1 2222000
and
H(p|X) o fnq(X|p)Fn0(X —1lp) — 2/01; Fo (X = 1[t) 8fn(b(jﬂt) dt
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for p € [0,1]. Let

z—1

1 and O = S E=Y)(n0 —1+y)! (2no)!(y + = — 1)!
Co=1 and Cm““ygo (’I’Lo—l)!y! (2n0+y+x)!

(z > 0)

Then H(p = 1|X) =1,

H(plX) = _I_XZ—I (X —y)no —1+y)! 2no)(y + X — 1)!

Cx (np — 1)!y! (2no +y + X)!

pB(p,2no + 1,y + X)
y=0

for p € [0,1), and
1 —
H(p|X) = z-p™(1 - p)* +H(p|X)
X

for p € [0,1], where pB(.,®, ) denotes the cdf of the Beta distribution
Beta(a, §). Numerical results for ng = 10 and X = 30 is shown in Figure
3.3.

1.0

CDF
0.4

0.2
J

0.0
]

0.0 0.2 0.4 0.6 0.8 1.0

F1G 3.3. The two a-cdfs for inference about P (solid curves) in NB(no = 10, P) for a given
single observation X = 30, the Bayesian posterior (dashed curve) with the non-informative
prior Beta(0.5,0.5), and the mazimum likelihood estimate of P (vertical line).
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4. Continuous distributions. Suppose that a single observation X
was taken from F(z|T), a univariate continuous distribution on the sample
space X = R with the parameter T € © C R. Following Dempster’s (1966)
suggestion, we partition the sample space X = R into a sequence of small
intervals R = U2 _ [z, Zit1). Let Z =4 if X € [z;,2;+1). Then

Pr(Z =i|T) = Flzip1|T) — F(zi|T) (i=...,—-1,0,1,...)

Thus, according to ADSM(2.3) DS inference about T based on Z = i is
obtained by

4.1 < J | £ 4
D Pl - F@m) = Faml) - Fom 97
where E; ud Exp (1) for j = 0,=+1,..., subject to the non-conflict constraint.

DS inference about T based on X itself is obtained by letting ;41 —=; go to
zero for all j. The following theorem provides a useful tool for DS inference
on a class of continuous distributions.

THEOREM 4.1. Suppose that F'(z|T') is a univariate continuous distri-
bution on X = R with density f(z|T) and parameter T € © C R, where
© is an interval. If f (m|T) as a functz’on of = is continuous for any T € ©
and the function £(T|y,z) = ) is increasing in T for any y > z and
decreasing for any y < z, then t)ze a-random sets of DS inference about T
for given X are intervals and the commonality is

_ -1
42 cjabX) [};(‘fl'j)) 2 f&‘fb‘)'b)] (a<b)

ProoFr. We note that a proof can be established by making use of Eqn.
(5.18) of Dempster (1966). Here we provide a proof using the a-random
variables in ADSM. First, we show that as a function of T

F(zj41|T) — F(z;]T)
F(zip1|T) — F(zi|T)

is increasing, where z; < z;11 < z; < zj41. From the assumptions we have
forTo >T, € ©

F(zj1|Ty) = Fz3\To) - (@51 —5) S —o f(z;
F(zi1|T2) — F(z;]T3) no00 (T — Ti) D g éf(m + k[zit1 — zi]/n|T2)
e @1 = 7)Y éf<m + klzj41 — 25]/n|T1)

) YR

(

(

1l

(4.3) L(T @i, Tit1, Tj» Tj+1) (T €o©)

 + Eleji1 — ,/niTy)

Y

n00 (Tig1 — i) Poplo F (@i + k[zig1 — 23] /n|Th)
F(zjn|T) - F xjiTz)
F(.’L’i+1|T1) - F .’L'ilTl) '
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Similarly, we can show that

F(z541|T) — F(z;|T)
F(z;11|T) — F(x:|T)

(4.4) L(T|:ri,a:i+1,ccj,wj+1) (T € @)

is decreasing in T where z; < zj41 < z; < z341. For any partition of X
described above, denote by dx the length of interval [z;, z;+1) containing X.
For given E;, according to (4.3) and (4.4) the random set (4.1) is

(=00, Tj(Ei, E5)|NO© (5 >4)

and
[TJ'(E'hEJ'),OO)n@ (J <49
where T} (E;, F;) is given by
E; _ E;
FX|T(E:, E))  f(25T5(E:, Ej))

Thus the a-random set is the interval
[Ig.lgz?{r—’}'(Ei,Ej% I;lggl@(Ei,Ej)],

subject to the non-conflict constraint max;«; T;(E;, E;) < minjs; Tj(E;, Ej).
For any interval [a,b], a < b € ©, the commonality is

c(fa, b)) o¢ limPr (maxT, (B, By) < o, min Ty, B5) 2 )
P(aj11]b) — F(z[b)
F@iiilb) = Flaifb)

| Flagnle) = Flajl) o,
@Zan> P B ori <)

= limp(EjZ E; for j > ¢ and

1-F(z;41(b)
Z=:Ei hm/ % 1+F(zz+?](a)|lz‘(mzla) F(Zi+1lb)j}’(mi|b):|dz
: F(Xla)  1-F(Xp]™"
= limdx [5}( + —I— ]
f(Xla) F(X1b)

F(X|a) L1- F(X|b)]_1

f(X]a) f(X1b)

_ [F(X|a) 1—F(X|b)]“1
f(X|a) f(X|p)

X lim [6X +

as Tx4+1 — 2 — 0 for all k = 0,+£1,.... Hence, Theorem 4.1 is proved. [
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Applications of Theorem 4.1 are illustrated with following two examples.

EXAMPLE 4.1. . (The normal distribution) Suppose that X ~ N(M,1)
with unknown M € (—o0,00). It is easy to verify that the density function

1 _@-m?

e 2 T e (—00,00
or ( )

satisfies the condition of Theorem 4.1. Thus the commonality of the DSM
for M for given X is

¢(z|M) =

<I>(X~a,)+1—<1>(X—b) -1
(X —a) (X —b)

where ®(.) stands for the cdf of the standard normal distribution. The lower
a-pdf and a-cdf are obtained as follows:

h(uX) = Vrg(u — X) [p(p — X) — (n — X)O(X — p)]

c([a, b]| X) o (00 < a<b< 00)

and
H(ulX) = ®(V2[u — X]) + vV7®(X — p)d(n — X)

for p € (—o0,00). Similarly, the upper a-pdf and a-cdf are given by

h(ulX) = Vrg(u — X) [p(u — X) + (u — X)@(k — X))

and
H(ulX) = 8(V2lu - X)) — Va®(u — X)(u — X).

Numerical results for given X = 0 are shown in Figure 4.1, where the
Bayesian posterior with the commonly used flat prior is also shown for a
comparison. As for the Poisson model in Section 3, ADSMfor N(M, 1) re-
solves nicely the logical disjunction in the simple test of significance such as
Hy: M = My vs. H, : M > My. Here we omit the details.

EXAMPLE 4.2. (The gamma distribution) Suppose that X ~ I'(a, B)
with known shape parameter o and unknown rate (1/scale) parameter B.
The density function of the Gamma distribution I'(e, B) is

o 01
B x —Bzx

f(z|B) = T ¢

(x> 0;B > 0)

Let S =1/B. Then

[1f

fylB=1/8) ==
2(Sly, x) moce 5
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o |
[o0]
@
[(o]
L o |
)
(& <
3
(a]
N
o _
© T T I T T
-4 -2 0 2 4
M

Fic 4.1. The a-cdfs of DSM for N(M,1) for given X = 0. The solid lines are the a-cdfs
obtained by ADSM. The dashed line is the fiducial or the Bayesian posterior corresponding
to the flat prior on M.

is increase in S for y > z and decreasing in S for y < z. Thus, Theorem 4.1
can be applied directly to making DS inference about S for given X. This
yields

F(X|b) 1= F(X)a)17t
f(X|b) f(Xla)
where F(.|8) = pG(.,a, ) denotes the cdf of the Gamma distribution

Gamma(a, §) with shape o and rate 8. Furthermore, the lower and upper
a-cdfs are

cg([a, ]} X) x cg([1/b,1/a]|X) x

I'(2e)

H(B|X) o [1 - F(X|B)f(X]8) + Pa1XT%(q)

pG (2X 5, 2a)

and

I'(2a)

H(BIX) o« —F(X|8)f(X|B8) + -1 XT2(q)

pG (2X,20),
where pG (., a) denotes the cdf of the Gamma distribution Gamma(e, 1).
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5. Estimation based on a sample. Consider a discrete univariate dis-
tribution satisfying the conditions in Theorem 3.1. Suppose that { X7, ..., X, }
is a sample of size n from a univariate discrete distribution F'(z|T'). Apply-
ing Dempster’s rule of combination leads to the DSM for T'. That is, the
DSM has commonality

n

61 ol bl|X, . Xn) o« [ [1 +
. i=1

F(X;—1la) 1-F(X;|p)1™
f(Xila) f(Xi[b)

where a < b. Let
n
i=1

be the likelihood function of T' = 6 given Xi, ..., X,;. Then, the two a-pdfs
are

(52)  h(IX1, . Xn)

o L(0|X1, ..., X) znj [F(Xi —1l6)

dln f(X;|9) OF(X; — 1[9)]
o0 - o0

and
(5.3) R0 X1,..., Xpn)

o L8] X1y Xn) S - —

i=1

- [P ED _ o LX)

06

For a univariate continuous distribution F'(z|T'), the results are similar to
(5.1), (5.2), and (5.3). More specifically, suppose that F(z|T) satisfies the
conditions of Proposition 2, we have

(Xila) | 1= FX[B)]
el B, - ")“H[ FXila) M) |-
o 28|11, .. Z[ (X:(6) aan;;fiI(’)_aFggilf?)]’

i=1

and
(55)  R(0|X1, ... Xn)
x 0IX1, . X Z[

i=1

X 16)) 91n f(X;|0)

- (- P =5
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where £(0| X1, ..., Xp) = [Ti; f(X;|6) denotes the be the likelihood function
of T' = 0 given the sample X1, ..., X,, from F(z|T"). This is illustrated by the
following example with the univariate normal distribution N(M, 1).

EXAMPLE 5.1. (The normal distribution) Suppose that a sample of n
observations, X1, ...., Xj, is considered from N (M, 1). Let £(u| X, ..., X,,) de-
note the likelihood, i.e.,

pl X1, -, Xn) = [T &(Xi — 1) (—00 < p < 00)

Then routine algebraic operations lead to that the combined DSM for infer-
ence about M from general case with n observations has

(i) commonality

(5.6)  c(la, b X1, ... n)‘XH[ _a) 1;(4;((55_1';)1’) _

for —co < a < b < o0, which for singletons a = b = y is proportional
to the likelihood #(u| X1, ..., Xy),
(ii) two marginal pdfs for the a-random lower and end variables

6.7 h(ulXy,... X5)

o Dt lXim )+ K m X —p] ey

and

(5.8)  R(u|X1,.., Xn)
o« TP p) (o XD X)) po oy

and
(iii) the two marginal cdfs for the a-random lower and end variables

H(uiXy, 0 Xe) = "Z[/ X = 80X — ug(vu — X))du

and

H(ulX1, o Xp) = 23 [ / " = Xa)®(u — Xi)p(v/m(u — X))du
| )

+ [ 0w - X99(vilu— X))
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where X denotes the sample mean X =nt * 1 Xi and C, is the
normalizing constant.

Here we take a look at the terms
(5.9) ¢(Xi—pw)+(Xi—w)@(X;—p) and  ¢(Xi—p)+(p—X:)@(p—X)

in (5.7) and (5.8). The lower data-adaptive “prior”

a(ulX1, . Xn) = [$(Xs — ) + (Xi — )®(X; — p)]

3=
.MS

i=1

is heavily skewed to the left and the upper “prior”

S|
.M:

(X1, Xn) = [B(Xi — ) + (1 — Xi)@(p — X)]

i=1

to the right. As a result, the two marginal a-cdfs are ertreme-value “skew-"
normal distributions. We note that

A " 6K —w) + (X; — w)®(X; — w)] du
Xi—p
= 00—+ (K- wPe— - [ wh(w)du

—0

goes to co as u — —oo and that

n
[ = w) + (u = X0 - X)) du
-0

goes to oo as g — oo. Incidentally, we also note that n(u|Xi,...,Xn) ==
w(pw| X1, ..., Xn) + T(| X1, ..., Xn) could be served as a data-adaptive prior
for Bayesian inference.

6. Asymptotic results. The main asymptotic results on DS posteriors
are (%) like Bayesian inference, DS inference is efficient in the sense that a-
cdfs are asymptotically normal and converge in the order of n=1/2, and (i)
the probability of “don’t know” about the assertion {T" < Tp} with fixed
Ty, € © converges to zero in the order of n~1/2 if the maximum likelihood
estimate of T is close to Ty and goes away exponentially otherwise.

To save space, here we consider the limiting case of (5.4). Corresponding
results can be obtained similarly for (5.2), and (5.3), and (5.5). We write
(5.4) as -

(6.1) B0 X1, oy Xn) o< L8] X1, ey X )T(0] X1, orry X)),
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where

n

62) WO, X =Y [F(Xi|9)

i=1

Oln f(X;|0) OF(X;|0)
o6 Y

In the analogy with the Bayes theory, the factor 7(6]Xy, ..., Xp) in (6.1)
plays the role of the prior distribution and h(f|Xj, ..., X,) the posterior.
Denote by

L(0| X1, ..., Xp) = In£(0| X1, ..., Xn) (0 €0©)
the log-likelihood function of T given X, ..., X,. Let

[F(m|9)8lngém|0) B BFB(:;W)] f(z|T)dz

63) (0T = / >

for T, 8 € ©. We require here the following assumption.

ASSUMPTION 6.1. For any fized T € ©, w(0|T) defined in (6.3) exists
(i.e., m(8]T) < 00) and is positive and continuous for all § € ©.

We prove that under mild “regularity” conditions for large values of n the
a-posterior distribution A(6]X1, ..., X,,) is approximately normal with
1 oL(T|X,,..,X 1
(X1, .., Xn) and  variance = ,

(T) oT nI(T)

(6.4) mean = T + Yy

where I(T") stands for the Fisher information
®© 9In f(:z:|T)]2 /oo 8%1n f(x|T)

)= [ | peime = - [T S peim)ds
First, we restate the well-known asymptotic result on Bayesian posterior
distributions in, for example, [6]:

THEOREM 6.1.  Let w*(t| X1, ..., Xy, ) be the posterior distribution of v/n(6—
6y) with the “prior” w(0|T) satisfying Assumption 6.1, where

1 OL(T|X1, . Xn)
nI(T) oT .

If the regularity conditions (B1)-(B3) of Lehkmann ([6], pp. 454-455) hold
for the likelihood function £(0|X1, ..., Xy), then

(6.6) /_o:o T (t1X1, 0y Xn) = /1T (t\/I(T)> ’ dt % 0.

(6.5) T,=T+
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We now extend Theorem 6.1 to the following corresponding result for DS
posteriors:

THEOREM 6.2. Suppose that Assumption 2 for w(6|T) defined in (6.3)
holds. If the regularity conditions (B1)-(B8) of Lehkmann ([6], pp. 454-455)
for the likelihood function £(6|X1, ..., Xn) hold, then

(6.7) /_ O; }h(eaxl, vy Xn) = \[nI(T)$ <\/nI(T)[6 - Tn]> ‘ PN
where T,, is given in (6.5).

PROOF. From the inequality

—00

= /_: |B(61X1, ..., Xn) = Var* (Valf = Tal| X1, .., Xn)| dO

+ /_ °:o \\/ﬁw*(\/ﬁ[e — Tal|X1, .y Xn) — /nI(T) (\/nI<T>[9 ~ Tnl)

/ - ’h(elxl, e Xn) = /nI(T)¢ (\/n[(T)[g _ Tn]> ‘ o

do

and that the last integral converges to zero in probability (Theorem 6.1), it
remains to show that

[o.0]
6.8) / IB(6]X1, oy Xn) — Vr* (V8 — Tall X1, s Xn)| d8 2 0
—00
where 7*(\/n[0 — T,]| X1, ..., Xp) is defined in Theorem 6.1. Now
(o]
/ IB(01X1, ..., Xn) — VAr* (VAlf — Tyl X1, .. Xn)| dB
—0o0

o0 (o]
< [ By e Xn)d+ [ i (ValD = Tal| X, e Xn)d = 2

—0Q

and )
(0| X1, .., Xn) 5 w(0|M).

Thus

o0

/ IB(81X1, .oy Xn) — v/Am* (VD — Ta]l X1, oy Xn)| 46 B0

)

and hence (6.8) is proved. O
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Compared to Bayesian inference, the extra component r for “don’t know”
about any assertion is of interest. Here we consider the assertion {T" < Ty} for
fixed Ty € ©. Under the assumptions of Theorem 6.2, the following result
based on (5.4) and (5.5) follows. Let T}, denote the maximum likelihood
estimate of T given X3, ..., X,. Then for large values of n, we have

To _
AT <T)) = [ [BOIX, e Xn) = FOIXs, oy X))

n [ 801Xy, .., Xn)(O1T)d0
UTo| X1, ooy Xn)
n [ 601X 1, .. Xn)w(@T)db"

Thus,

' e(Tn[Xh '-'7XTL)
< =
paxra({T <)) = 75 61Xy, . X n (O 0

ew(fn)
nl/2 [® ew®)n (T, + n=1/2t|T)dt’

where £, = v/n(T, — Tp,) and

w(t) = L(Tp+n"Y%X1,..,X,) — L(T) X1, ..., Xn)
1 8L(T|X1,...,Xn)r
2nI(T) oT

with
L8| Xy,...,Xn) =1In(0| X1, ..., Xn)

and T, defined in (6.5). According to Eqn. (14) of Lehmann ([], p. 456),
for large values of n we have

/ " O (T, + 0 V2HT)dt = 7(TIT) 27/ 1(T).

in probability and hence
 VI(T)ewlin)
maxr,({T < Tp}) = —Ft—e.
To€O© ({T < To}) 7(T|T)v2mn
From Lehmann ([6], pp.462-463), the function w(t) can be written as

1 OL(T)|X1,..., Xn)1?
VnI(T) aT

w(t) = —I(T)g - %Rn (Tn + n—l/zt) [t +
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where
1 _1/2 1 BL(TlX]_,...,Xn) 2 p
sup{‘ERn (Tn—}—n t)‘ [t-i— JRI(T) 5T =0
and 1 OL(T|X X
N (7] 811,", n) is bounded in probability.
Thus,

1 8L(T|X1,..., Xn)
(T)vn or

where /(T —T) ~ N(0,I71(T)). It is easy to see that the above derivation
applies to the general case with Ty € ©. Thus, r,(Tp) is ezpected to converge
in the order of 1/+/n for Ty near the unknown true value T' and exponentially
otherwise. Stronger results for N (M, 1) is obtained as follows.

fn:\/ﬁ(Tn-T)——I

THEOREM 6.3.  Suppose that X1, ..., Xn, are iid with N (M, 1). Let r,(Mo)
be the r— component of the DS output (p, q,7) about the assertion {M < My}
for fized My € (—o0,00). Then

(i) maxpg, rn(Mo) converges with probability one to zero in the order n=/2;

and
. 2
(1) /nrn(Mp) converges in distribution to L% for My = M and

V2
(Mg —M)?
vne 7z rp(My) = % with probability one, where x? is the chi-

square random variable with one degree of freedom.

PrOOF. We write

g = S3[[" - wer - wevalu - D)

i=1
+ [ o= X0Vt - )

and

S~

o) = E][ w X(u - X)plAl — X))
i=1 /TR
[ pu- Xl ~ D)l
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where C is the normalizing constant. Thus,
ro(Mo) = H (M) ~ Ha(Mo) =C | (X ~u)(/(u - X)du

(~uw)o(u)du = .

O \/ﬁ(Mo—X) O \/’l_l(MO—'X)
=/ / dé(u)
—o0

= Zy (Vo - X))
w16 (yA(My - X))
7 et [ ¢lu— Xi)d(vn(u — X))du + [ (u - Xi)®(u — Xi)¢(v/n(u — X))du]

Note that M denotes the (unknown) true mean. For the second integral in
the denominator, we have

/_ " (= X)®(u— X)o(VA(u— X))du
— ;1: /_  p(u— X)(v(u — X))du+ (X - Xi) /_ " ou - X)p(vlu - X))du

and thereby
n'¢ (vn(Mo — X))
13 [ (u— X)e(vnlu — X))du + (X — Xi) [ @(u — Xi)¢(v/n(u — X))du]

Simple algebraic operations lead to the following expression for the first
integral in the denominator of the above formula:

T‘n(Mo) =

o) . _ 1 _n(X;=%)?
/_ 9= X9V~ X)) = e -

For the second integral in the denominator, we have the following Taylor
expansion for ®(u — X;) at u = X:

B(u—X0) = B(X— X+ ¢(X - X)(u—X) 4 “EKWEZ XD (g0

where £ is between X and u. Note that |(§ — X;)¢(¢ — X;)| is bounded for
all £ € (—o0,00). It follows that

_ o0 _ My = (X - X)®(X - X3) "
(&%) [ ou-X)o(vr(u-X))du = 0,
Hence, we can write

ro(Mo) = n~1¢ (vVn(Mo — X))

n(X;—X)?

T T 2(n+D) -+ % + O(n_3/2)] *

15n

—_1l
n &i=1 |:\/27r(n+1)e
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Making use of the identity

i(X X)®(X — X;) Z(X - X)®(X; — X)

i=1
we have
%agcx/'r—wn(Mo) = /nra(X)
1

n(X;—X)2

1 n e —5#,1*1)—_}_12—7_! m (X — X)<I>(X X)

n

Let Z; = X; — M for i = 1,...,n. Note that 7“2} 0 and that the Taylor
expansion of ®(Z; — Z) for Z at 0:

8z~ Z) = 0(z) — $(z)7 + XD 72

where ¢ is between 0 and Z. Then

1& = =
EZ(Xi -X)eX;-X) = —Z ®(Z; - Z)
i=1
K2 1 "
= —ZZ@ (Z;—2Z) = nZZi@(Zi)
z——l i=1
and hence
69 13- X)X - %) v [ s =
' n = ¢ ‘ —o0 NG
n(X;—X%)? n(Z;—2)? _
The Taylor expansion of e Zn¥D) = e 20+1) for Z at 0 is given by

nz? nz?

e T2(n+1) + ___Z e T In+1 )Z -+
_.l.

n _n(Z;—) _
2n + 1) [n+1(§ Zi) - }e Iz

where ¢ is between 0 and Z. Since
nz2 1/2
E(e ) = ( ntl ) /
2n+1
'nZ.2

o e . »
and e 2(»+1) hag finite variance, we have

1 & _mx=%? 01 1
6.10 - A L
(6.10) - § € 5
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Combining (6.9) and (6.10) yield

%ax \/ﬁrn(MO) u")'_pi’l
o

Sl

Hence, () is proved. In general, we can write

— % n(X— 0 2
Vnr(Mp) =Yy, ¢(\/ﬁg¥; %) =Yne~ = i ) )
where Y, wpl % Thus,
2
\/ﬁrn(Mo) —‘1——> -1—6_ Xz

V2

for Mo = M, where x? stands for the chi-square random variable with one
degree of freedom, and

n(M—Mq)?
ViEra(Mo) = ——1\/.—2_5 =
for My # M. This completes the proof of (iz). a
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