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Abstract: Factor analysis model is often criticized for its lack of robustness. The
most popular factor analysis model assumes normal distribution for the error terms,
which makes fitted models sensitive to outliers. For robust estimation of factor anal-
ysis models, we replace the normal distribution by the multivariate t-distribution.
The t-distribution provides a useful extension of the normal for modeling data
sets involving errors with heavy tails. The extension of the Gaussian factor anal-
ysis model to the student-t factor analysis model is obtained in such a way that
the joint distribution of the response variable is a multivariate t-distribution. We
develop methods for both the maximum likelihood estimation and the Bayesian
estimation of the factor analysis model using the multivariate t-distribution. The
proposed methods include the ECME and PX-EM algorithms for maximum like-
lihood estimation and data augmentation in the Bayesian framework. Numerical
examples show that use of multivariate t-distribution improves significantly not

only the robustness but also the efficiency.

Key words and phrases: Bayesian Methods; Data Augmentation; EM-type Algo-
rithms; Maximum Likelihood.

1. Introduction

Factor analysis (FA) as a popular statistical method to analyze the underly-
ing relations among multivariate random variables has been extensively used in
many areas. The starting point is a linear model in which the observed variables
are expressed as linear functions of a vector of unobservable factors and the usual
random “errors”. The number of underlying factors is strictly less than the num-
ber of observed variables. The most commonly used FA model for continuous
response variables, namely the Gaussian FA (GFA) model, can be described as
follows (see, e.g., Liu and Rubin (1998)):

Yi=p+ 0z +e, i=1,..,n, (1.1)

where y; is the p-dimensional column vector representing the i** observation,
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i is a p-dimensional column vector playing the role of the location, 8 is the
p % g (¢ < p) factor loading matrix, z; is a g-dimensional vector of unobserved
factor scores, and z; ~ Ng(0, I;), where I, denotes the g x ¢ identity matrix. The
error term €; ~ Np(0,¥), and U = Diag(y?, ...,1/)5) is a diagonal matrix. The
parameters to be estimated are 8 = (u, 8, ¥).

Since the unobserved factor scores and errors in GFA are assumed to be
Gaussian, the usual maximum likelihood or Bayesian estimation is not robust to
outliers in the data. The classical technique can be summarized in two separate
steps: (a) computing the Sample covariance matrix or the sample correlation
matrix; (b) making inference based on the matrix obtained in the first step. This
approach is not robust to outliers since they have a large effect on the estimate
of the covariance matrix obtained in the first step. To reduce the effects of the
outliers, robust methods have been considered by researchers. There are two
main streams of robust estimation methods for FA models. One is the classical
approach, i.e., to get robust estimates of the covariance matrix, and the other is
to replace the normal distribution by longer-tailed distributions to accommodate
outliers.

The idea in the first stream of robust estimation is to compute highly re-
sistant matrices. Hayashi and Yuan (2003) combines the work of Press and
Shigemasu (1997) and Yuan (2000). Before applying the Bayesian inference,
they perform a robust transformation to get the M-estimator of (u,¥). This
procedure leads to a more accurate evaluation of the factor structure when data
have significant skewness and kurtosis. Pison and Rousseeuw (2003) proposed
another estimator for the covariance matrix named minimum covariance deter-
minant (MCD) estimator, followed by a principal factor analysis. Actually, both
of the estimators belong to the affine equivariant estimators with high breakdown
point introduced in Rousseeuw (1983).

The idea in the second stream is to modify the normality assumption on
the data. Lee and Press (1998) and Polasek (2000) considered the same idea of
using the so-called e—contamination model by assuming that the contaminations
follow a different normal distribution. That is, the model is a mixture factor
model f(Y) = (1 —¢€)p(Y|9) + (e)p(Y'|0o), where p(-) denotes the normal density
function.
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Lange et al. (1987) proposed an interesting method of dealing with the er-
rors with longer-than-normal-tails distribution. The general idea is to replace the
" normal distribution by the multivariate t-distribution. The use of the student-t
distribution for robust estimation dates back to Andrews and Mallows (1974)
and Zellner (1976). In the last decade, the multivariate t-distribution is popu-
lar and works very well in practice for the robust estimations in various fields
and applications. Liu (1996) studied the Bayesian robust multivariate linear re-
gression with incomplete data by using the multivariate t-distribution. Pinheiro,
Liu, and Wu (2001) worked on the robust estimation in the mixed-effects models
by replacing the normal assumption for both the random effects vector and the
within-subject errors with the t assumption. Liu (2002) extended the method
to a robit regression model and showed that the robit model is a useful robust
alternative to the probit and logistic models for analyzing binary response data.
However, the multivariate t-distribution to factor analysis has not been devel-
oped in the literature, although Yuan et al. (2002) mentioned that t-distribution
can be used for factor analysis.

We propose in this paper the student-t factor analysis (tFA) model that is
obtained by replacing the normal assumption with the t-distribution. We show
that not only robustness is gained but also the efficiency is improved. We study
the maximum likelihood estimation via the ECME algorithm (Liu and Rubin
(1994)), which is an extension of the EM algorithm (Dempster et al. (1977)) and
the ECM algorithm (Meng and Rubin (1993)). Liu and Rubin (1995) showed
that the ECME algorithm for the ML estimation of the t-distribution converges
substantially faster than the EM algorithm when the degrees of freedom are to
be estimated. Our numerical results agrees with the claim of Liu and Rubin
(1995). We also consider the Bayesian estimation via the data augmentation
(DA) algorithm (Tanner and Wong (1987)), which can be viewed as a stochastic
version of the EM algorithm.

In Section 2, for a motivating example, we describe the US bond indexes data
set in which the non-normality are clearly present. The tFA model is described in
Section 3. In Section 4 we derive the efficient EM-type algorithms for maximum
likelihood estimation of the tFA model. In Section 5, we consider the Bayesian

estimation of the tFA model. We compare the robustness and efficiency under
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the tFA to the GFA model in Section 6. Conclusions and a few remarks are given
in Section 7.
2. A Motivating Example: US bond indexes data

We consider monthly log-returns of US bond indexes with maturities in 30
years, 20 years, 10 years, b years, and 1 year. The data consist of 696 observations
from Jan. 1942 to Dec. 1999. It is well-known that financial data are serially
correlated. Tsay (2005) fitted the GFA model to the same data. He argued that
the original data may be used because the correlation matrix only changes a
little after fitting a multivariate ARMA model. To be comparable with Tsay’s
results, we adjust the data by dividing each component by its sample standard
deviation. Figure 2.1 shows the Q-Q normal plots of the five US bond indexes
in terms of log-return. Figure 2.3 is the smoothing density plot for log-return
of each bond index. Heavy tails are clearly present in all five variables. Also,
the p-value of the Shapiro-Wilk test is close to zero for each index. As a result,
the normal distribution is not be appropriate for this data set. Instead, we will
use the t-distribution in order to capture the pattern of heavy tails. Figure 2.2
shows the Q-Q student-t plots using the estimated degrees of freedom. Evidently,
the Q-Q student-t plots support the use of the t-distribution. In Section 6, we
compare both the maximum likelihood estimates and Bayesian estimates based
on the GFA and tFA models.
3. A Multivariate t Factor Analysis Model

The GFA model (1.1) can be written as:

MRS

The (y,2))" is the i sample with z; missing. For robust estimation of 6,

e+ B
g I

), i=1,--,n. (3.1)

we replace the multivariate normal distribution in (3.1) by the multivariate t-

distribution:

(2]l )

where v; represents the multivariate t-distribution degrees-of-freedom (d.f.) for
the i*" subject. We call model (3.2) the student-t factor analysis (tFA) model.

pE+¥ B
g

,'vi>, i=1,---,m, (3.2)
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The tFA model can also be expressed using the following hierarchical model

: 1| Be+Y B .

vi | 73 ~ Npiq H ,— , , t=1,---,n, (3.3)

Z; 0 T I} Iq

and

Vi Ug .
7; ~ Gamma (5, —2—> , 1=1,..,n. (3.4)

Or .
Ui | 2, T3 ~ N (/L-l— Bz, T—\I/) , (3.5)

1

Iq Vi Y4 .

zi|Ti~N (O, E) , s ~ Gamma, (——2—, —2~) , i=1,..,n, (3.6)

where Gamma(a, b) denotes the gamma distribution with shape and rate param-

eters a and b, defined by the probability density function
F(r) = b*7(¢ Vexp(—br) /T(a), 7> 0,a > 0,b >0, (3.7)

where I'(a) = [, t* texp(—t)dt denotes the gamma function.
It follows that the tFA model (3.2) can be written as

Y =pu+ Bzi+e, i=1,..,n, (3.8)
and
Zq ~ tq(O, Iq,’l)i), [orad tp(O, \If,'l)i). (39)
We assume v; = v for all 5. The marginal distribution of y; is
1
Yi |7~ N (M, ;(ﬂﬂ’ + ‘I’)) ) (3.10)
K2
and ‘
7; ~ Gamma, <g, g) ,i=1,..,n. (3.11)

A useful consequence is that the conditional distribution of 7; given y; is

v+p v+d(Yi,u,ﬂ5’+‘I’)>
9 2 ’

7i | ¥ ~ Gamma < (3.12)

where d(Y;, u, 88" + ) = (y; — w)/ (86 + V)~ (y; — 1) denotes the Mahanobis
distance between y; and its expectation u. In particular,

v+p

E(r | y:) = v+ d(Yi, pu, B0 + )

(3.13)
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4. Efficient ECME Algorithm For ML Estimation

In this section, we consider the maximum likelihood (ML) estimation of the
tFA model (3.3). Liu and Rubin (1998) used the ECME algorithm for maximum
likelihood estimation of the GFA model. ECME, sharing advantages with both
EM and Newton-Raphson algorithms, is an extension of ECM (Meng and Rubin
(1993)), which itself is an extension of the EM algorithm. The rate of convergence
of ECME, at least judged by the number of iterations, is substantially faster than
either EM or ECM, yet it retains stable monotone convergence of EM, and is
only modestly more difficult to implement.

The ECM (Expectation, Conditional Maximization) algorithm modifies the
EM algorithm by replacing its M step, which maximizes the current expected
complete-data log-likelihood over the entire vector parameter 8, by a sequence of
conditional maximization steps (indexed by s = 1,---,.5), each of which maxi-
mizes the expected complete-data log-likelihood but over a function of €, say 6,,
subject to the rest of 4, say 5, being fixed at their previously estimated values. If
the (01, - ,0s) span the parameter space of 8, the ECM algorithm will converge
in the same way as EM to an ML estimate. ECME (Expectation, Conditional
Maximization or Either) replaces each of one or more of ECM’s final CM steps
with a step that conditionally maximizes the actual log-likelihood function over
05 rather than the expected complete-data log-likelihood as with ECM.

4.1 The Identifiability Problem

The factor loading matrix § is not fully identifiable, because it is invari-
ant under transformation of the form £* = 8Q and z* = Q'z, where @ is any
orthogonal ¢ x ¢ matrix. There are many ways to imposing constraints on g
to deal with the indeterminacy. One way is to add the restrictions such that
[ = BU~14 is diagonal (see, e.g., Anderson (2003)). If the diagonal elements
of I' are ordered and different, § is uniquely determined. Anderson and Rubin
(1956) showed that the ML estimators are asymptotically normally distributed
under these parameter restrictions. An alternative way is to constrain § so that
it is a block lower triangular matrix, assumed to be full rank, with diagonal ele-
ments strictly positive (see, e.g., Lopes and West (2004)). We will use the latter
when using information matrix to estimate the standard errors of ML estimates.

However, when performing ECME, an unrestricted 8 is assumed, since in the
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situation without fully identifiable parameters, EM-type algorithms converge to
likelihood-equivalent points, which are subject to an orthogonal transformation.
4.2 MLE With Unknown Weights and v via ECME

Let Y = [y1,¥2, .-, Yn) be the n X p data matrix, and let Z = [z1,29, - , zp)’
be the missing data matrix. If Z and 7 = {1, 72, - , 7} were observed, the joint
log-likelihood function for the complete data in the tFA model with unknown
degrees-of-freedom v is:

Ly, 8,9, v |Y,Z,7) = Li(u, 3,9 | Y, Z,7) + La(v | T) + constant, (4.1)

where
Ll(u7ﬁ7\11 | Y7 Z’ T)
n 1 n n n
= —Elog|\Il| — itr(\If"l ;Tiyiyé) + ,u'\Il—l ; TiYi + tr(\I!"l,B ; T2y}
n 1 n 1 n
—w OB mm) - —2—tr(,3'\11_1ﬂ > mzdg) - 5#"1’_111 > 7
i=1 i=1 i=1
and

n n
wm, v v v v
Ly(v | 1) = —é—logg + 3 E logr; — 3 E TP — nlog[‘(ﬁ). (4.2)

The sufficient statistics for Li(u, 8,V | Y,7) are S, = >0 7, Sry =
Y1 T Srz = i1 Tik, Sryy = D1 TiVilYi, Srzy = Yioq Tiziyj, and
Srzz =Y iy Ti%iZ).

Given VU, u and 8, (y;, ) are iid (p+ ¢)-normal. Thus, given ¥, u and 3, the
conditional distribution of z; given y; is g-variate normal with mean §(y; — p) and
covariance A, where the regression coefficient § and residual covariance matrix
A are given by:

1

6 = (;ﬂ )= (¥ + 6601 =0T +p8), (4.3)
1 1

1,1 nN-1g- L

A= Ei-ipwess)ie=1a w4
ECME algorithm:

E step: Let 08 = (u®, 30 ¥® y®) be the current estimate of . Then
t+1 (®) / I\
z( +1) E(r; | 69,)Y) = v+p §E+D) = g0 ()4 g1 g1,

v +d(Y;,u®, 80 80 Lo ®)?
! 1\ _ (¢+1)
and A(t+1) AT, — T,(t1+ 580" (T 4 g0 g1") 10 — fgm)-

D
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These lead to the expectation of the sufficient statistics:

n
SH) = (S, |00, y) =3 7Y,

n
$GY = B(Sry 169,7) = 7y,
i=1
SWN = E(S,z]09,Y)
= Do rTUs (g, - p) = s (GED — 50D, 0,
i=1

n
&Y = E(Sryy | 69,7) =" 7y,

&Y = E(S,zv |09,Y)
n
= Z t+1)5(t+1) — u)y! _5(t+1)(5(t+;) u® S/(t“))
=1
and

847 = E(Srzz69,Y)
= DD gl o _ gD @) 4 g6+ 0,056

+ nAGTD,

M step: Rewriting the FA model by combining the mean vector and the

factor loading matrix, we get
1
yi=pt+Bzte =y = ( w B ) ; t+ei =y =oax;+e, (4.5)
: i

where a is a p x (¢ + 1) matrix, and z; is a (¢+ 1) x 1 column vector. Then the
log-likelihood becomes

n 1 = _
——2—log|‘I/| - §tr(; Tl (s — o) (s — oz;))

1 1
= —glogmll — 5'01‘(\1/*157)/}/) -+ tr(\I/—laSTxy) - itr(\If_laSTXXa’),

where

S S, Sy
TXX = anzx = ( S,,.Z T2 ) ) TXY = anz% - ( ) '

Srzz Srzy
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From the results in E-step and the standard regression arguments, the MLE of
i, B, and ¥ are updated as follows.
CM step 1: Fix ¥®) and update o by maximizing E[L;(u, 8,V | Y,7)]
(t+1)y _ ) —1(t) '
vec(a" ) = (T ® 57 1 xx) - vec(4)) (4.6)
where A = S w®™
column vectors of the matrix X. The notation ® stands for the Kronecker prod-

and vec(X) denotes the vector formed by stacking the

uct operator. The detailed algebraic derivation is shown in Appendix.
CM step 2: Fix pt+1, g+ and update 1)

1 n
gt - ;Ti(tﬂ) (g — a0z (y; — oDz,

1 & oy ~
= EDiag(Sf;r}f) - 2a(t+1)53)—;}1’) + a(t+1)g$§-)1()a(t+l)’)'

CM step 3: Update v(**1) by maximizing E[Ls(v | 7)|Y; 0] over v to
obtain

n
v = arg max {% [n log :‘21 + Z Ellog 7|y, %1 — 5’9] —nlog F(g)}, (4.7)
=1

where (1) = {o(t+D) WD) (")), Note that finding v+ only requires a one-
dimensional search and can be done, for example, using the Newton-Raphson
method or the Bisection Method. However, because E[log7ly,d®+Y] has no
closed-form expression, one can use ECME to ease calculation by maximizing
the constrained likelihood over v with §#+1) = {a(t+1) W+ 4 ®} being fixed.
Since y; ~ t,(uttD), AL gD 4 ¥t+D) ) independently for i = 1,--- ,n, we
have _
CML step 3: Update v{+1) as

n

(t+1) — vt Py it _vtp .
v —-argmgx{Z[logF( 5 ) logF(2)+210gv 5 log(v-i—dz)] ,

g=1

(4.8)
where d; = d(y;, ptD, gD D’ 4 WD) This step requires only a one-
dimensional search.

4.3 PX-ECME Algorithm
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Liu, Rubin and Wu (1998) proposed the method of Parameter Ezpansion
(PX) to accelerate EM-type algorithm and showed that the PX-EM algorithm
shares the simplicity and stability of ordinary EM, but has a faster rate of con-
vergence. Here, we will show how the PX-EM algorithm can be adopted in the
context of the tFA model by expanding the covariance matrix of factor score.
We call it PX-ECME. We expand the covariance matrix of z; from the identity
matrix to unrestricted covariance matrix (or positive definite matrix) . Then

the model becomes

: 1
Yi | Ziy Ty ™~ N </"’+ :82717 ;\I’> ) (49)
1
and
2 | 7 ~ N(O, %), Ty~ Gamma(g, g) Li=1,--,n. (4.10)

(3

PX-ECME algorithm:

PX-E step: This is unchanged from ECME.

PX-CM step: The computations for x#t1) and ¥+ stay the same as
those in ECME. For 8¢+ obtain ﬂ£t+1) in the same way as that in ECME,
let v = %S’i?zl), and reduce ﬁ,(fﬂ) to the original parameter by setting
BE+D = gD Chol(4(+1), where Chol(.) denotes the Cholesky decomposition.

The PX-ECME algorithm maintains the simplicity and stability properties of
ECME algorithm. But it dominates ECME by its fast convergence. A numerical
example for comparing PX-ECME and ECME will be given in section 6.2. We
will see that PX-ECME still works very well for the tFA model.

5. A Bayesian Approach

In this section, we study the Bayesian estimation of the tFA model via the
data augmentation (DA) algorithm (Tanner and Wong (1987)). We will first
discuss proper prior distributions for the parameters, and then calculate the
conditional posterior distributions. Furthermore, we use data augmentation al-
gorithm to obtain the distributions of the parameters. DA, which can be viewed
as a stochastic version of the EM algorithm, iterates between two steps as follows.
DA algorithm:

I step: Impute the missing values drawing from the predictive model given
the observed data and the current estimated parameters.

P step: Draw the parameters from their posterior distributions given the

current filled-in complete data.
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First we assume that the prior distribution for the parameters has the form
of

Pr(0) = Pr(u,B3,%,v)
= Pr(u)Pr(B,¥)Pr(v)
= Pr(u)Pr(B|¥)Pr(¥)Pr(v).
The joint density function for the complete data is decomposed as follows:
Pr(Y, Z,7|0) = Pr(Y|Z,, u, B, V) Pr(Z|r)Pr(r|v).

5.1 Priors and Posteriors of Parameters
We obtain the conditional posterior distributions of the parameters one by

one. For the mean vector y, which is a p x 1 vector, we use the flat prior
Pr(u) o constant. (5.1)
This yields
Pr(plY,Z,7) « Pr(Y,Z,r|6)Pr(9)
x Pr(Y|Z, T, u B3, ¥)Pr(u)
n
x |\Il|‘%exp{—%tr111"1[z 7i(yi — o — Bzi)(yi — u — Bz)').
i=1

The conditional posterior distribution of y is distributed as multivariate normal

with mean and covariance

Z?:l Ti(yi - ﬂzl) _ Sry — /BSTZ v

p= = = —, 2
H S 3. and V 5 (5.2)
For the factor loading matrix 8 = [81, 52, - - , Bglpxq, We let
vy
ﬂil\IfNN<ﬁ0,—>,'L=1,'-- » 4y (53)
ni
where n; is a constant. Let vec(B) = [, 8y, -, 8;]', then we have
— v
vec(B)¥ ~ N (BorTong 8- ). (54)

where By = [85, Bb, -+, B4]’. And the density is

Pr(vec(8)|¥) o [¥{Fexp{~ (vec(8) - Bo) Upeq ® =) (vec() = Bo)}. (59
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The posterior distribution of 8 conditional on the observations is of the form

Pr(8|Y,Z,7) « Pr(Y,Z,1|0)Pr(6)
« Pr(Y|Z,1,u,8,¥)Pr(B]Y).

The following result provides details for updating 8. The proof of the result is
given in Appendix.

Theorem 1 The conditional posterior distribution of vec(B), givenY, Z, 7 and ¥
is normal with mean (D1 +Dy) ™ (Dyvec(B)+Daf,), and covariance (Dy+Ds)™t,
where B = (i (i — 1) %) (Srz22) ™ = (Syzy —4Sy2)(Srz2) ™!, D1 = 8}4,®
T~ gnd Dy = Nilgxg ® g1,

For the prior distribution of ¥, we use the inverse Wishart distribution
m 1
Pr(¥) o |\I/l‘_2ilexp{—§tr(\ll_1A)}, (5.6)

where m is a scalar and A is a (p X p) non-negative definite matrix. If m = p
and A = 0, then it is the noninformative prior or Jeffrey’s prior. If m = —1 and
A = 0, then it is the flat prior. The posterior distribution of ¥ conditional on
the observations is of the form

Pr(¥|Y,Z,7) «x Pr(Y,Zr|0)Pr(6)
o« Pr(Y|Z,, 6, ¥)Pr(6]%)Pr(¥)

e exp{—--;—tr(\ll“l(A +B+O)),

where B = Y " | 7i(yi—p—Bz)(yi—p—Bz), and C = ny 3.7 1 (8;—Bo)(Bi—Bo)’-
Let H = A + B + C with the diagonal elements (h?,.-- ,hf,), and let d =
m+n-+g—p—1, then

Y2~ X =1, p). (5.7)

For the degrees of freedom wv, it is either fixed or unknown. A brief discussion
on drawing v is given in Liu (1995). In order to obtain a proper posterior of v,
the basic rule is that the prior distribution of v should satisfy the condition that
Pr(v) = o(v™!) as v — +oo. There are several suggestions (Anscombe (1967),
Relles and Rogers (1977), Gewek (1993), and Box and Tiao (1973)) about the
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prior of v such as Pr(’u) (v + 1)‘é (v > 1), the flat prior distribution for
v71, d.e. Pr(v) o v™2, (v > 1), and the exponential distribution Pr(v) = Xe™*.
And the application of Jeffrey’s rule leads to the following noninformative prior
distribution of the degree of freedom v of the form

v v v 1/2
Pr(v) o |¢/(3) - 9/ tpy__ 2 tptd) )] , (5.8)

2 v(v+p)(v+p+2

where ¢/(z) = -‘iz—ln( I'(z)) is the Trigamma function.
The fact that 7;|v ~ Gamma(%, %) leads to the conditional posterior of v:

Pr(v|Y,Z,7) « Pr(Y,Z,7|0)Pr(0)
o« exp{log(Pr(v)) + nlog]f‘(m) - nlogF(g) + %log(v)

~Z plong+d)}

5.2 The DA Algorithm

This section presents the DA algorithm for taking draws of the parameters of
the tFA model from their posterior distribution. For the sake of clarity, we present
DA step by step with known and unknown weights and know and unknown
degrees of freedom.

When the weights 7 = {71, 72, -+ , 7} are known, DA is straightforward:

I-step Impute Z® with a draw from Pr(Z\Y, O(t),r), where
ZO160,7 ~ Ny, A7)

P-step Draw u(+t1) ~ Pr(u|Y,Z® 1), g1 ~ Pr(g]Y,Z®,7) and
draw U+ ~ Pr(0|Y, Z®), 7).

If the weights 7 are unknown, the missing data is (Z,7). From Section 2,
we know 71|V, 00 ~ Gamma(®2, ¥52) where d is the Mahanobis distance

between y; and its expectation.
I-step Impute 7® from Pr(r|Y,0®). Impute Z® from Pr(Z|Y,0®, 1)
where Z®|9® ) ~ N(tizly, T(t))

P-step Draw u*) ~ Pr(u|y, 20, 7®), 41 ~ Pr(gly,z®,7()
and draw WD) ~ Pr(¥\Y, Z(t),q-(t)).
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When the weights 7 are known but v is unknown, each iteration consists of

two steps:

I-step Impute Z) the same as with known weights and known degree

freedom.

P-step Draw p(t+D, gt+1 and W+ jn the same way as that in the
case with known weights and known degree freedom, and draw
) ~ Pr(v|Y, Z®, 7).

When both the weights and the degree freedom are unknown, the missing
data is (Z, ), the parameters are u, 3, ¥ and v. Comparing with the case with

unknown weights and known v, we need an additional step to take a draw of v.

I-step Impute 7(Y and Z® in the same way as the case with unknown

weights and known v.

P-step Draw p(*t1), g0+ and ¥+ in the same way as with un-
known weights and known degree freedom. In addition, take a
draw v+ ~ Pr(v|Y, Z®), +®),

6. Application to analyzing US bond indexes data

In this section, we apply our method for robust factor analysis of the US bond
indexes data set, which is described in Section 2. To illustrate our methodology,
consider two multivariate exploratory factor analysis models:

e Model N5, the errors are assumed to follow the Gaussian distribution;

e Model t5, the errors are assumed to follow the multivariate t-distribution.

To choose appropriate number of factors, we consider the results in Table
6.1. Likelihood ratio test can be used to help select the number of factors. The
null hypothesis is the current factor analysis model. It is tested against the alter-
native in which no factor analysis model is considered, that is, the likelihood is
calculated based on the marginal distribution of the observable variable. Under
some regularity conditions, the likelihood ratio test statistic has the chi-squared
distribution asymptotically with degree-of-freedom [(p — ¢)? — (p + ¢)]/2. Usu-
ally, one starts with a small number of factors, say ¢ = 1, testing goodness-of-fit
until a nonsignificant result occurs. We refer to Jéreskog (1967) and Anderson

(2003) for more details about this procedure. However, this procedure is criti-
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Model | number of factors 2 3
max log-likelihood -2213.66 -2209.66
Ng Likelihood Ratio | 8.02 (d.f.=1) 0.04
AIC 4465.32 4463.33
BIC 4551.68 4563.32
max log-likelihood -1605.97 -1601.64
ts Likelihood Ratio | 8.72 (d.f.=1) 0.06
AIC 3249.94 3247.28
BIC 3336.28 3347.28

Table 6.1: Test results of model Ny and t5 with different number of factors.

cized by Krzanowski and Marriott (1995) because no adjustment is made to the
significance level to allow for its sequential nature. AIC and BIC are in general
considered to be better by taking into account the trade-off between goodness-
of-fit and number of parameters. While BIC is thought to be better than AIC
because the penalty imposed being related to the sample size. In the above
output, the Likelihood ratio and AIC prefer 3 factors under both normal and t
assumptions, while BIC prefers 2 factors in both cases. Considering the model
parsimony, we choose to focus on 2 factor models. Tasy (2005) also fitted the 2
factor GFA model.
6.1 Comparing the Gaussian and the Multivariate t MLEs

To run ECME, we choose the following initial values: 19 is the sample mean
of observed data, 8% is a p x ¢ matrix with all the components being 1, 1(® is
the p x p identity matrix Ip, and v{® = 20. The convergence criterion is that
the difference of the log-likelihood between two iterations is less than 10™%. For
identifiability of the factor loading 3, the estimate of 3 is rotated in such a way
that the upper-right triangle is 0 and the diagonal elements are positive. This
rotation makes the comparison meaningful.

The ML estimates of two different FA models are shown in Tables 6.2-6.4.
In addition, the estimation of the degree of freedom of the model 5 is 2.3005
with standard deviation 0.1682. The associated variance-variance matrix was
computed via numerical differentiation. Alternative methods (see, e.g., He and
Liu (2007)) can be used. The mean vector shifts to left in the model ¢5 because
the data has heavier tails on the right than on the left. Table 6.3 shows dramatic




18 JIA LI, CHUANHAI LIU, AND JIANCHUN ZHANG

Ns 0.1719  0.1865 0.2273 0.3301 0.8298

S.d. | 3.808e-2 3.808e-2 3.808e-2 3.809e-2 3.807e-2
173 0.1135 0.1269 0.1500 0.2234 0.5706

S.d. | 2490e-2 2.439e-2 2.464e-2 2.353e-2 2.761e-2

Table 6.2: Estimation of mean and their standard deviation.

N5 S.d. is S.d.
0.9979 0 2.742e-2 0 0.5839 0 2.456e-2 0
0.9893 0.0291 | 2.764e-2 3.072e-2 | 0.5731 0.0107 | 2.387e-2 2.365¢-2
0.9285 0.2034 | 1.064e-2 2.101e-2 | 0.5432 0.1165 | 0.570e-2 1.524e-2
0.8636 0.5158 | 2.915e-2 3.435e-2 | 0.4645 0.2992 | 2.414e-2 2.572e-2
0.6434 0.5244 | 1.552e-2 2.960e-2 | 0.3083 0.3308 | 1.046e-2 2.385e-2

Table 6.3: Estimation of the factor loading matrix and their standard deviation.

difference between ML estimates of the factor loading matrix under the two
different models. Although the estimated factor loading matrices are significantly
different in two models, the components in the estimated matrices have a very
similar pattern. The factor loadings for the first factor are roughly proportional
to the time to bond maturity, whereas the factor loadings of the second factor
are inversely proportional to the time to bond maturity.

To make the MLEs comparable, we consider the variance of the error term
that is given by var(y) = [v/(v — 2)]o?. We see that, except for the last three
components of 9, the corresponding approximate standard errors of all the com-
ponents of p, all the components of 5 and the first two components of 1 in model
t5 are consistently smaller than the estimated standard errors in the model Ns.
It indicates that the estimation is more accurate under the model 5.

Lange et al. (1989) considered diagnostics to check model assumption. For

Ns 0.0135 0.0299 0.1066 0.0006 0.3192
S.d. | 4.478e-3 4.229¢-3 6.152e-3 1.541e-2 2.215e-2
is 0.0074 0.0044 0.0303 0.0002 0.1463
S.d. | 3.963e-3 3.422e-3 7.059e-3 1.709e-2 3.413e-2

Table 6.4: Estimation of the covariance matrix of the error terms and their standard
deviation.
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the GFA model, a natural measure is the Mahalanobis-like distance 51-2 = (y; —
ﬂi)/(ﬁﬁ' + ¥)~1(y; — /3;) which has the asymptotic chi-squared distribution with
degree of freedom p. The normality assumption can be checked by transform-
ing each 62-2 to an asymptotically standard normal deviate using the well-known
cube-root of Wilson and Hilferty or fourth-root transformation. Here, we use
the fourth-root transformation (Hawkins and Wixley (1986)), because it per-
forms well when the degree-of-freedom is small. For the tFA model, d?/p has
the asymptotic F-distribution with degree-of-freedoms p and v, where d? =
(vi — i)' (BB + ¥)~(y; — fi;). The normality approximation is available by
first transforming the numerator and denominator chi-squared deviates in the
F-statistic using fourth-root transformation into normal-like deviates, then ap-
plying Geary’s (1930) approximation to the ratio of normal deviates. The explicit
formula is given by Little (1990). Figure 6.4 shows the normal quantile-quantile
plots of the two distances under normal and t distributions, respectively. The left
panel suggests that the GFA model is inadequate. The plot for the tFA model,
with most of the points lying close to the reference line, is much better than that
for the normal model. The improvement is apparent. These results support the
use of the tFA model.

(a) GFA (b) tFA

5,
05
|

Sample Quantles
2
|
Sample Quanties
00

-0

T T T T T T T T T T T T T T
-3 —1 1 2 3 -3 —1 1 2 3

Theoretical Quantiles Theoretical Quantiles

Figure 6.4: Normal Quantile-Quantile (QQ) plots for the GFA model (left), and the tFA
model (right). The Sample Quantiles are those of d;’s in the fourth-root scale.

6.2 Comparison of PX-ECME and ECME
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Figure 6.5: Convergence of PX-ECME (solid line) and ECME (dotted line).

As we mentioned in Section 4.3, PX-ECME can accelerate ECME without
changing its original advantages. We implemented of PX-ECME with the same
initial values and convergence criterion as ECME. PX-ECME converged in 1700
iterations while ECME converged in 2300 iterations, improved 35 percent of the
efficiency. Figure 6.5 shows us that, PX-ECME (solid line) dominates the ECME
(dotted line) in terms of likelihood values.

6.3 Comparing the Results Obtained from Data Augmentation

In Section 4.1, we discussed the identifiability problem in the FA models.
Here we note that Bayesian methods with the incorporation of proper prior in-
formation can also eliminate the problem of indeterminacies. For example, in
equation (5.5), the unimodality and the symmetry of the prior make the poste-
rior distribution of 8 unimode. To compare the results we obtained by ECME,
we use the same way to obtain the identifiable pattern by converting the factor
loading into the lower block triangle matrix in each iteration.

We chose the hyperparameters §p = 0, ny = 1, m = pand A = 0. We
also placed the exponential distribution with A = 1 as the prior for the degree
of freedom v. We run DA in the case where both weights and the degree of
freedom are unknown for 30000 iterations. The sample means from the last
10000 iterations are given in Table 6.5-6.7, which are consistent with the results
of MLEs. The estimation of the degree of freedom of the model ¢5 is 2.3760 with
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Ns 0.1742 0.1889 0.2298 0.3326 0.8319
S.d. | 3.738e-2 3.756e-2 3.819e-2 3.88le-2 3.946e-2
ts 0.1010 0.1152 0.1385 0.2134 0.5647
S.d. | 1.984e-2 1.937e-2 1.974e-2 1.940e-2 2.554e-2

Table 6.5: Estimation of mean and their standard deviation.

Ns S.d. ts S.d.
0.9317 0 2.370e-2 0 0.5369 0 1.983e-2 0
0.9294 0.0172 | 2.373e-2 1.068e-2 | 0.5242 0.0156 | 1.916e-2 0.562¢-2
0.8689 0.1739 | 2.580e-2 8.55%-2 | 0.4951 0.1209 | 1.963e-2 1.492e-2
0.8050 0.4007 | 2.809e-2 1.786e-1 | 0.4176 0.2746 | 1.961e-2 2.693e-2
0.5963 0.4831 | 3.329e¢-2 2.222¢-1 | 0.2692 0.3511 | 2.260e-2 3.743e-2

Table 6.6: Estimation of the factor loading matrix and their standard deviation.

standard deviation 0.1767. The corresponding approximate standard errors of
all the components of u, § and v in the model ts are strictly smaller than the
estimated standard errors in the model Ns.

The estimated posterior density functions of the parameters yielded from
the model N5 (dotted lines) are plotted against the estimates obtained from the
model t5 (solid lines) in Figures 6.6-6.9. Apparently, the posterior distributions
under the model t5 have smaller tail probabilities than those under the model
Ns. This implies that assuming the data follow the t-distribution may lead to
more accurate and efficient estimation.

7. Conclusion

We proposed in this article a robust method for factor analysis. The method
is obtained from the usual Gaussian factor analysis model by replacing the Gaus-
sian distribution with the multivariate t-distribution. Both EM-type and DA

Ny | 0.02281 0.02673 0.11519 0.09452  0.35437
S.d. | 2.767e-3 2.820e-3 3.355e-2 1.519e-1 2.375e-1
ts 0.00762 0.00673 0.03077 0.01569 0.13418
S.d. | 2.448e-3 2.08le-3 1.325e-2 4.472e-2 8.439e-2

Table 6.7: Estimation of the covariance matrix of the error terms and their standard
deviation.
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algorithms are developed ﬁo deal with the situation when the weights 7 and
degree of freedom are unknown. The closed form expressions for both the E-
and M- steps in ECME, and as well as the proportional posterior distribution
in Bayesian method are obtained. This robust approach is demonstrated by its
application to analyzing the US bond return data. The identifiability problem
of the loading matrix is conquered by converting it into the block lower triangle
matrix with 0 on the up-right corner, or using the QR decomposition, which
makes the comparison meaningful. Smaller standard deviations of the parame-
ters under the t-distribution assumption show both the robustness and efficiency
of our approach. We also considered implementation of PX-ECME algorithm for
the factor analysis model with the multivariate t-distribution, which converges
even faster than ECME.
8. Appendix
8.1 Calculation of CM-Step 1

The log-likelihood of L; only has two terms involving «.

tr(aS,xy ¥t - %a’\rlasfxx)
= tr(da) — %tr(S’TXXa'\II"la)
= (vec(a')) vec(A) ~ %(vec(a'))'vec(STXXa'\If_l)
= (vec(a')) vec(A) — %(vec(a/))’[‘l’“1 ® Srxx|vec(a'),
where A = S;xy¥~!. Taking derivative with respect to vec(c’), we get
vec(o!) = (T ® Srx x| tvec(A) = [¥ ® (Syxx) ' vec(A), (8.1)

and

vec(a) = (B - vec(A))' where B =V ® (S, xx) " (8.2)

8.2 Proof of Theorem 1
The conditional posterior distribution of 8 can be split into two parts. We
rewrite Pr(Y|Z, T, u, 3, ¥) into the form:

_n 1
Pr(Y|Z,7, 1, 8,%) o< [¥|” 2exp{—5tr¥ " > 7y — = Bz (yi — n— Bz)'}-

i=1
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Let
R=Y mi(yi—n—Bu)(y: — p— Pz), (8.3)
=1
and let
S= milyi— n—Bz)(yi — u—Bz). (84)
i=1
Then
R=8+ ZTi(,@Zi — Bzz)(ﬁzz - Bzz)l
i=1
tro ! Z 7:(Bz — ,Bzi)(ﬂzi - Bzi)/
i=1
= 19 HB — $)Srz2(8 - B)
= vec(B - B)(Sy22 ® U )vec(B — B).
Thus

Pr8lY,Z,7) « Pr(Y,Z,7|0)Pr(0)
o Pr(Y|Z,7,m8,)Pr(gv)
x exp{—3vec(§ ~ B (S22 ® U wee(B - 3)}
exp{—5(vec(B) ~ Bo) (mIoxg ® U)(vee(8) — Bo)}.

Let Dy = S, ® U1 and Dy = nylyxg ® U~1. Then the mean of vec(8) is
(D1 + D2)~(Dyvec(B) + D2B,) and the covariance is (D1 + D)L
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