Non-Parametric Modeling of Partially Ranked Data
by
G. Lebanon and Y. Mao
Purdue University

Technical Report #07-09

Department of Statistics
Purdue University

October 2007




Non-Parametric Modeling of Partially Ranked Data

Guy Lebanon
Department of Statistics, and
School of Elec. and Computer Engineering
Purdue University - West Lafayette, IN
lebanon@stat.purdue.edu

Yi Mao
School of Elec. and Computer Engineering
Purdue University - West Lafayette, IN
ymao@ecn.purdue.edu

Abstract

Statistical models on full and partial rankings of n items are often of limited practical use for large n
due to computational consideration. We explore the use of non-parametric models for partially ranked
data and derive computationally efficient procedures for their use for large n. The derivations are largely
possible through combinatorial and algebraic manipulations based on the lattice of partial rankings. A
bias-variance analysis and an experimental study demonstrate the applicability of the proposed method.
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1 Introduction

Rankers such as people, search engines, and classifiers, output full or partial rankings representing preference
relations over n items or alternatives. For example, in the case of n = 3 such data might consists of

3<1<2, 3<2<1, 3<1=<2 1=<{2,3}, 3<{1,2}, {2,3} <1 (1)

The first three expressions in (1) corresponds to full rankings while the last three expressions correspond to
partial rankings (the numbers correspond to items and the < symbol correspond to a preference relation).
While it is likely that some rankings will contradict others, it is natural to assume that the data in (1) was
sampled iid from some distribution p over rankings. It is the goal of this paper to study non-parametric
methods for the estimation of p based on datasets such as (1) in the case that n is large.

Often, ranked data is not inherently associated with numeric score information. In other cases, numeric
scores are available but are un-calibrated and cannot be compared to each other. For example, the assignment
of numeric scores by people to items or alternatives are un-calibrated as each person has his or her own notion
of what constitutes a certain numeric score. On the other hand, a preference of one item or alternative over
another reflects a binary choice that is directly comparable across rankers. Thus, even in cases where numeric
scores exist, modeling the scoreless preferences may achieve higher modeling accuracy.

Despite this motivating observation, modeling ranked data is less popular than modeling the existing
numeric scores, or even made-up numeric scores in case the true scores are unavailable (such is the case with
the frequently used Borda count). The main reason for this is that rankings over a large number of items n
reside in an extremely large discrete space whose modeling often requires intractable computation.



Previous attempts at modeling ranked data have been mostly parametric and often designed to work
with fully ranked data. Most are unsuitable for modeling partial rankings for medium and large n due to the
computational difficulties of handling a probability space of size n!. The few possible exceptions (Critchlow,
1985; Marden, 1996) are usually more ad-hoc and do not correspond to an underlying permutation model
making them ill suited to handle partial rankings of different types. In fact, most of the ranked data analyzed
in the statistics literature are limited to n < 10 and usually even n < 5 such as the popular APA election
dataset.

On the other hand, there has been a recent increase in datasets containing partial or full rankings
for large n. Examples include (i) web-search data such as TREC (http://trec.nist.gov/) where n
may be thought of as corresponding to the number of web-pages or approaching +oco, (ii) movie review
datasets such as the Netflix dataset (http://www.netflixprize.com/) where n ~ 18000 and MovieLens
(http://www.grouplens.org/node/12/) where n = 1682, and (iii) multi-label text document datasets such
as OHSUMED (http://trec.nist.gov/data/t9 filtering/) where n = 4904 and Reuters RCV1 (http:
//trec.nist.gov/data/reuters/reuters.html/) where n = 103 (more details on how these datasets cor-
respond to partial rankings may be found in Section 2).

These datasets and others lead to a growing number of somewhat ad-hoc but computationally efficient
rank aggregation techniques. The techniques, developed primarily within the computer science community,
are often non-probabilistic and output a single ranking summarizing the data. Unfortunately, such a summary
ranking, while being useful, does not provide the data analysis capabilities offered by a full probabilistic
model.

The main contribution of this paper is in proposing and studying a non-parametric estimator based on
kernel smoothing for the estimation of the population distribution p. Non-trivial properties of the estimator
are listed below. We are not aware of any other non-trivial estimator of p that satisfy these requirements,
in particular for the case of large n.

(1) Estimate p based on partial rankings, as well as full rankings.

(2) The resulting estimate p should assign probabilities to full and partial rankings in a coherent and
contradiction-free manner (described in Section 4).

(3) Estimate p based on partial rankings of different types (defined in Section 2).

(4) Statistical consistency p — p as both the number of samples m and the number of items n grow to
infinity.

(5) Statistical accuracy of p can be slow for fully ranked data but should be accelerated when restricted to
simpler partial rankings.

(6) Obtaining the estimate p and using it to compute probabilities p(A) of partial rankings should be
computationally feasible, even for large n.

All 6 properties above are crucial in the large n situation: It is often impossible for rankers to specify full
rankings over a very large number of items making the use of partial rankings a necessity. Different rankers
may choose to output partial rankings of different types e.g., one ranker can output 3 < {1,2} (3 is preferred
to both 1 and 2) and another ranker can output {1,3} < 2 (both 1 and 3 are preferred to 2). By considering
the asymptotics n — oo in addition to m — oo (m is the number of samples) we provide a more realistic
analysis for a large (and potentially growing) number of items. Computational feasibility is a major concern
since most ranking models are incapable of modeling the datasets mentioned above due to their large n.

We continue next by reviewing basic concepts concerning partially ranked data and the Mallows model,
and then proceed to define our non-parametric estimator. We conclude by demonstrating computational
efficiency, statistical properties, and some experiments.
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Figure 1: A partial ranking corresponds to a coset or a set or permutations

2 Permutations and Cosets

We begin by reviewing some basic concepts concerning permutations, with some of the notation and defini-
tions borrowed from Critchlow (1985).

A permutation 7 is a bijective function 7 : {1,...,n} — {1,...,n} associating with each item i €
{1,...,n} a rank 7(i) € {1,...,n}. In other words, 7(i) denotes the rank given to item i and 7~ !(i)
denotes the item assigned to rank i. We denote a permutation 7 using the following vertical bar notation
7= 1)|7m=1(2)|- - |7~ (n). For example, the permutation 7(1) = 2,7(2) = 3,7(3) = 1 would be denoted as
3|1]2. In this notation the numbers correspond to items and the locations of the items in their corresponding
compartments correspond to their ranks. The collection of all permutations of n items forms the non-Abelian
symmetric group of order n, denoted by &,,, using function composition as the group operation 7o = woo.
We denote the identity permutation by e. The concept of inversions and the result below will be of great
use later on.

Definition 1. The inversion set of a permutation w is the set of pairs
U(r) = {(i,5) : i <j, (i) >7w()}  {1,...,n} x{1,...,n}
whose cardinality is denoted by i(m) = |U(x)|.
For example, i(e) = |@] = 0, and i(3|2]1]4) = [{(1,2),(1,3),(2,3)}| = 3.
Proposition 1 (e.g., Stanley, 2000). The map w +— U(w) is a bijection.

When n is large, the enormous number of permutations raises difficulties in using the symmetric group
for modeling rankings. A reasonable solution is achieved by considering partial rankings which correspond
to cosets of the symmetric group. For example, the subgroup of &,, consisting of all permutations that
fix the top k positions is denoted &1, 1,k = {7 € &, : 7(§) =4, i = 1,...,k}. The right coset
G1,. an—km={0om : 0 € &1, 1k} is the set of permutations consistent with the ordering of 7 on the k
top-ranked items. It may thus be interpreted as a partial ranking of the top k items, that does not contain
any information concerning the relative ranking of the bottom n — k items. The set of all such partial
rankings forms the quotient space &,,/&1,. 1 n—k. As an example, Figure 1 displays the set of permutations
corresponding to a certain partial ranking of the top 2 out of 4 items. We generalize this to arbitrary partial
rankings through the following definition of a composition.



Definition 2. A composition of n is a sequence v = (y1,...,7r) of positive integers whose sum is n.

Note that in contrast to a partition, in a composition the order of the integers matters. A composition
v = (71,-..,7r) corresponds to a partial ranking with ~; items in the first position, v, items in the second
position and so on. For such a partial ranking it is known that the first set of v; items are to be ranked
before the second set of v, items etc., but no further information is conveyed about the orderings within each
set. The partial ranking introduced earlier &1, 1 ,—r7 of the top k items is a special case corresponding
toy =(1,...,1,n — k). More formally, let Ny = {1,....n},No={m+1,....m1 + %} N ={m +
-4+ 7.—1+1,...,n}. Then the subgroup &, is defined as the set of all permutations = € &,, for which the
set equality m(N;) = N; holds for each ¢; that is, all permutations that only permute within each N;. The
subgroup &, is isomorphic to the product of subgroups &,, x --- x &, and is sometime described by that
product for notational purposes. A partial ranking of type v is equivalent to a coset S m = {om : 0 € &}
and the set of such partial rankings forms the quotient space 6,,/6,.

The vertical bar notation described above for permutations is particularly convenient for denoting partial
rankings. We list items 1,...,n separated by vertical bars, indicating that items on the left side of each
vertical bar are preferred to (ranked higher than) items on the right side of the bar. On the other hand,
there is no knowledge concerning the preference of items that are not separated by one or more vertical bars.
For example, the partial ranking displayed in Figure 1 is denoted by 3|1]|2,4. The ordering of items not
separated by a vertical line is meaningless, and for consistency we use the conventional ordering e.g., 1|2, 3|4
rather than the equivalent 1|3, 2|4.

The set of all partial rankings

W, = {S,7:7€ G, YV} (2)

which includes the set of full rankings &, is a subset of all possible partial orders on {1,...,n}. While the
formalism of partial rankings in 20,, cannot realize all partial orderings, it is sufficiently powerful to include
many useful naturally occurring orderings as special cases. Furthermore, as demonstrated in later sections,
it enables simplification of the otherwise overwhelming computational difficulty. Special cases of particular
interest are the following partial rankings

e 7 € &,, corresponds to a permutation or a full ordering e.g. 3|2|4|1.

o Sy 17 e.g. 3|1,2,4, corresponds to selection of the top alternative. An example for such a ranking
is a classification of x by a response variable y € ¥ = {1,...,n}.

o &1 1k eg 1|3]2,4, corresponds to full ordering of the top k items. An example for such a ranking
is a ranked list of the top k webpages output by search engines in response to a query.

o &j npmeg. 1,2,4|3,5, corresponds to a more preferred and a less preferred dichotomy. Alternatively
the dichotomy can be interpreted as right and wrong or relevant and irrelevant. An example for such
a ranking is classification of alternatives into desirable and undesirable.

Traditionally, data from each one of the special cases above was modeled using different tools and was
considered fundamentally different. That problem was aggravated as different special cases were usually
handled by different communities (statistics, computer science, information retrieval). As a first step towards
presenting a unified framework for modeling partially ranked data, Lebanon and Lafferty (2003) demonstrated
equivalence between several popular conditional models. We continue along this line and present in this paper
a non-parametric framework capable of efficiently modeling a large variety of partially ranked data.

In constructing a statistical model on permutations or cosets, it is essential to relate one permutation to
another. We do this using a distance function on permutations d : &,, X &,, — R that satisfies the usual
metric function properties, and in addition is invariant under item relabeling or right action of the symmetric
group (Critchlow, 1985) d(w,0) = d(n1,07) V 7,0,7 € &,. There have been many propositions for such



right-invariant distance functions, the most popular of them being Kendall’s tau (Kendall, 1938)

d(m, o) = z_: Z I(ro~ (i) — mo (1)) (3)

i=1 >3

where I(z) =1 for > 0 and I(x) = 0 otherwise. Kendall’s tau d(m, o) can be interpreted as the number of
pairs of items for which 7 and ¢ have opposing orderings (also called disconcordant pairs) or the minimum
number of adjacent transpositions needed to bring 7=! to o~! (adjacent transposition flips a pair of items
having adjacent ranks). By right invariance, d(r, o) = d(mo !, e) which, for Kendall’s tau equals the number
of inversions i(wo~1). This is an important observation that will allow us to simplify many expressions
concerning Kendall’s tau using combinatorial properties of permutation inversions.

3 The Mallows Model and its Extension to Partial Rankings

The Mallows model (Mallows, 1957) is a location-scale model on permutations based on Kendall’s tau
distance

pi(m) = exp (—cd(m, k) —log(c)) k€GB, ceRy. (4)

The normalization term ¢(c) = > s exp(—cd(m,k)) does not depend on the location parameter x and
has the closed form

¥(c)

Z e ¢ d(m,K)

TeS,
_ (1 +e—c)<1 +e ¢+ 6—20) . (1 fe g4 e—(n—l)c)

as shown by the fact that d(r, x) = i(7x 1) and the following proposition.
Proposition 2 (e.g., Stanley, 2000). Forg¢ >0, > ¢i™ = H;l:_ll {czo qr.
Proof. Due to the bijection between permutations and sets of inversions expressed in Proposition 1

T€ES, a1=0a2=0 a,=0 a1=0 a2=0 a,=0

=(1+g+-+¢") - A+q+e)1+a)l.
0

The Mallows model has been motivated on axiomatic grounds by Mallows and has been a major focus of
statistical modeling on permutations. Various extensions of the Mallows model may be found in Fligner and
Verducci (1986, 1988, 1993). One particular extension to partial rankings is to consider a partial ranking
as censored data equivalent to the set of permutations in its related coset. In other words, we define the
probability the model assigns to the partial ranking &7 by

Y. (M) =97Ne) Y exp(—ed(r,r)). (6)

TEG,T TEG T

Fligner and Verducci (1986) showed that in the case of v = (1,...,1,n — k) the summation in (6) has a
simple closed form. However, the apparent absence of a closed form formula for more general partial rankings



prevented the widespread use of Equation 6 for large n and encouraged more ad-hoc and heuristic models
(Critchlow, 1985; Marden, 1996). Section 7 describes an efficient computational procedure for computing
(6) for more general partial ranking types 7.

4 The Ranking Lattice

Partial rankings &7 relate to each other in a natural way by expressing more general, more specific or
inconsistent ordering. We define below the concepts of partially ordered sets and lattices and then relate
them to partial rankings by considering the set of partial rankings 20,, as a lattice. Some of the definitions
below are taken from Stanley (2000), where a thorough introduction to posets can be found.

Definition 3. A partially ordered set or poset (Q, <), is a set Q endowed with a binary relation < satisfying

Va,y,z € Q (i) reflexibility: © < x, (ii) anti-symmetry: x <y andy Xz = x =y, and (i) transitivity:
r=yandy X z=>2x =<z

We write x < y when z < y and = # y. We say that y covers z when x < y and there is no z € @ such
that z < z < y. A finite poset is completely described by its covering relation. The planar Hasse diagram
of (@, =) is the graph connecting the elements of @ as nodes using edges that correspond to the covering
relation. An additional requirement is that if y covers x then y is drawn higher than x. Two elements x,y
are comparable if x < y or y < x and otherwise are incomparable. The set of partial rankings 20,, defined in
(2) is naturally endowed with the partial order of ranking refinement i.e. m < o if 7 refines o or alternatively
if we can get from 7 to o by dropping vertical lines (Lebanon and Lafferty, 2003). Figure 2 shows the Hasse
diagram of 203 and a partial Hasse diagram of 204. An interesting visualization of Kendall’s tau distance
d(m,0), 7,0 € &, in terms of the Hasse diagram is that it is the minimum number of up and down moves
needed to get from 7 to o on the Hasse diagram. For example, in Figure 2 (top) we have d(1|2|3,3|2|1) = 3
realized by the three up-down moves along the shortest path

123 (7 1,213\, 2[13) (' 2/1,3 \, 23]1) (7 2,3/1 \, 3[2]1).

A lower bound z of two elements in a poset x,y satisfies z < z and z < y. The greatest lower bound
of z,y or infimum is a lower bound of z,y that is greater than or equal to any other lower bound of x,y.
Infimum, and the analogous concept of supremum are denoted by z Ay and =V y or A{z1,...,2x} and
VA{x1,...,zx} respectively. Two elements z,y € 20,, are said to be consistent if there exists a lower bound
in 20,,. Note that consistency is a weaker relation than comparability. For example, 1|2, 3|4 and 1,2|3,4 are
consistent but incomparable while 1|2,3|4 and 2|1, 3|4 are both inconsistent and incomparable. Using the
vertical bar notation, two elements are inconsistent iff there exist two items 4,j that appear on opposing
sides of a vertical bar in « and y i.e. x =---i|j--- while y =---j|i---. A poset for which A and V always
exist is called a lattice. Lattices satisfy many useful combinatorial properties - one of which is that they are
completely described by the A and V operations. In fact lattices are often defined by the supremum and
infimum relation, rather than by the partial order. While the ranking poset is not a lattice, it may be turned
into one by augmenting it with a minimum element 0.

Proposition 3. The union 20, <90, U {6} of the ranking poset and a minimum element is a lattice.

Proof. Since 20, is finite, it is enough to show existence of A,V for pairs of elements (Stanley, 2000). We
begin by showing existence of x A y. If x,y are inconsistent, there is no lower bound in 20, and therefore
the unique lower bound 0 is also the infimum z A y. If z,y are consistent, their infimum may be obtained
as follows. Since z and y are consistent, we do not have a pair of items 4,j appearing as i|j in x and j|i
in y. As a result we can form a lower bound z to x,y by starting with a list of numbers and adding the
vertical bars that are in either z or y, for example for = = 3|1,2,5|4 and y = 3|2|1,4, 5 we have z = 3|2|1,5/4.
The resulting z € 20,,, is smaller than x and y since by construction it contains all preferences (encoded by
vertical bars) in z and y. It remains to show that for every other lower bound 2’ of x and y we have 2’ < z.
If 2/ is comparable to z, z/ < z since removing any vertical bar from z results in an element that is not a
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Figure 2: The Hasse diagram of 205 (top) and a partial Hasse diagram of 20,4 (bottom). Some of the lines
are dotted for 3D visualization purposes (think 3D).



lower bound. If 2’ is not comparable to z, then both z,2’ contain the vertical bars in x and vertical bars in
y possibly with some additional ones. By construction z contains only the essential vertical bars to make it
a lower bound and hence z’ < z, contradicting the assumption that z, z’ are non-comparable.

By Proposition 3.3.1 of Stanley (2000) a poset for which an infimum is always defined and that has a
supremum element is necessarily a lattice. Since we just proved that A always exists for 20,, and 1,...,n=
\/ 2,,, the proof is complete. O

5 Probabilistic Models on the Ranking Lattice

The ranking lattice is a convenient framework to define and study probabilistic models on partial rankings.
Given a probability model p on &,,, we define the functions h, g : 20,, — [0, 1]

_Jpla) a€6,
ha) = {0 aed,\ 6, @)

gl)=" > Q). 8)

BEW,:B=ax

Interpreting partial rankings &7 € 99, as the disjoint union of the events defined by the coset & m we
have that

9(&ym) = > p(7) 9)

TEG,\{T(

may be interpreted as the probability under p of the disjoint union &.,7 of permutations. We refer to
the function g as the partial ranking or lattice version of p. The motivation for defining g through h and
not directly through p is that Equation (8) may be described and computed by the mechanism of Mébius
inversion on lattices. More specifically, the M&bius inversion on lattices states that for two arbitrary real-
valued functions on a lattice h, g : 20,, — [0, 1] we have

g(r)= > _ h(r) iff h(r)= > g(r)u(r',7) T,7EW, (10)

T/ LT T/ T

where p : Q~Hn X QNILL — R is the Mobius function of the lattice Qﬁn In a certain sense this relationship
between p and g generalizes the relationship between a probability mass function and the corresponding cdf.
More details on Mobius functions and Mdébius inversion on lattices and their computation may be found in
Stanley (2000).

The function g is defined on the entire lattice, but when restricted to partial rankings of the same type
G={6,1r:1m€e6,} C 20,,, constitutes a normalized probability distribution on G. Estimating and
examining a restriction of g to a subset H C 20, (note that in general H may include more than one coset
space () rather than the function p is particulary convenient in cases of large n since H is often much
smaller than the unwieldy &,,. In such cases it is tempting to specify the function g directly on H without
referring to an underlying permutation model. However, doing so may lead to probabilistic contradictions
such as g(6,m) < g(&x0) for S0 C &,m. To avoid these and other probabilistic contradictions, g needs to
satisfy a set of linear constraints equivalent to the existence of an underlying permutation model. Figure 3
illustrates this problem for partial rankings with the same (left) and different (right) number of vertical bars.
A simple way to avoid such contradictions and satisfy the constraints is to define ¢ indirectly in terms of a
permutation model p as in (9). Applied to the context of statistical estimation, we define the estimator § in
terms of an estimator p of the underlying permutation model p.

In addition to this construction which logically occurs after obtaining the estimator p, we also need to
consider how to use partially ranked data in the process of obtaining the estimator p. Fully ranked data



Figure 3: Two partial rankings with the same (left) and different (right) number of vertical bars in the Hasse
diagram of 90,,. The big triangles are schematic illustration of the Hasse diagram of 20,, as displayed in
Figure 2 (top) with permutations occupying the bottom level illustrated by the jagged line. The shaded
regions correspond to order-intervals i.e. all elements smaller or equal to the top vertices which correspond
to partial rankings. To avoid probabilistic contradictions, the values of g at two non-disjoint partial rankings
6,m, G o cannot be specified in an independent manner.

is often not available for large n since it is difficult for rankers (both human and others) to express with
confidence full orderings over many items. Instead, the available partially ranked data such as

D={6,m:i=1,...,m} (11)

needs to be used to estimate p.

A general way of using D in (11) to estimate p both parametrically and non-parametrically is to consider
partially ranked data as censored or missing data. In other words, in the process of estimating p, the data
6,7 is considered as a single unknown permutation ¢ € &,m that is lost through a censoring process.
Assuming uniformly random censoring in a parametric setting, we obtain the following observed likelihood
with respect to the partially ranked dataset D

L0|D) = Zlog |6; Z po(o) = Zlog Z po(o) + const. (12)

c€S,, m; €S, m;

While the above likelihood function can be efficiently computed using tools developed in Section 7, its
maximization is extremely difficult due to the discrete nature of the parametric space. In the next section
we explore in detail a non-parametric kernel smoothing alternative to estimating p and g based on partially
ranked data.

6 Non-Parametric Kernel Smoothing on Partial Rankings

The Mallows model, which at first glance appears as a simple and effective analogue of the Gaussian distri-
bution, suffers from several drawbacks. Its unimodal assumption is often too restrictive for high n as well as
for low n (see experiments in Section 9). Another major drawback is that the location parameter space &,,
is discrete, making the maximum likelihood procedure an impossibly large discrete search problem.

The unimodality and symmetry of the Mallows model make it a good choice for use as a kernel in non-
parametric smoothing. Since the normalization term 1 does not depend on the location parameter (5), the



kernel smoothing estimator is

1 m
H(m) = exp(—cd ; ,m €6 13
p(m) m(c) ; xp( (m,m)) mm n (13)
assuming the data consists of complete rankings 71, ..., T, ~ p. Note that the kernel parameter ¢ acts as an

inverse scale parameter whose role is similar but inversely related to the traditional bandwidth parameter h
in kernel smoothing.

In case the available data is partially ranked D = {&,,m; : i = 1,...,m} and obtained by uniform
censoring as described in the previous section the kernel smoothing estimator becomes

1« 1
p(m) = exp(—cd(m, 1)) e, (14)
@ 218 2
where we used the fact that |S.,7;| = |64,e| = |&,,|. The lattice or partial ranking version § corresponding

to pin (14) is

§(Gym) = ! Z ! Z Z exp(—cd(k,T)) S, 7 e W,. (15)

mw(c) i ‘6% NGGMTTGGWm

In the next section we derive efficient calculations and in some cases closed forms for expressions (14)-
(15). These calculations are efficient even for large n as their complexities depend on the complexity of
the compositions A and 71, ..., 7y, rather than on n! or even n. We then move on to explore the bias and
variance of p in Section 8 and describe practical applications of p, § and some experiments.

7 Efficient Computation and Inversion Combinatorics

In order to apply the estimators p, § in practice, it is crucial that the inner summations in Equations (14)-
(15) be computed efficiently. We can achieve efficient computation of these summations by considering how
the pairs constituting inversions i(7) decompose with respect to certain cosets.

Proposition 4. The following decomposition of i(T) with respect to a composition v holds
i(r) =Y al(m+> Y bh(r) Vres, (16)
k=1 k=1l=k+1

where

k—1
al(t) = |{ (s,t) - s<t,Z’yj<T_1(t)<T_1(s)§Z'yj ‘
j=1 j=1
k—1 -1 l
def — —
BT =S (s,) ts<t, >y <T HHSDY p<Y <t )<Y '
j=1 j=1 j=1 j=1

Proof. First note that by the right invariance of Kendall’s tau d(7,0) = i(t0 1), we have i(7) = i(7~1) and
we may decompose i(7 ') instead of i(7). The set appearing in the definition of a}(7) contains all label
pairs (s,t) that are inversions of 7=! and that appear in the k-compartment of the composition v. The set
appearing in the definition of b),(7) contains label pairs (s,¢) that are inversions of 771 and for which s and
t appear in the [ and k compartments of v respectively. Since any inversion pair appears in either one or
two compartments, the decomposition holds. O

10



Equation (16) actually represents a family of decompositions as it holds for all possible compositions .
For example, i(7) = 4 for 7 = 4[1|3|2 € G4_o7 = 1,4|2, 3, with inversions (4,1), (4,3),(4,2),(3,2) for 7~ 1.
The first compartment 1,4 contains the inversion (4,1) and so a](7) = 1. The second compartment 2,3

contains the inversion (3,2) and so aj(7) = 1. The cross compartment inversions are (4,3), (4,2) making

by (1) = 2.

The significance of (16) is that as we sum over all representatives of the coset 7 € &,m the cross
compartmental inversions b}, (7) remain constant while the within-compartmental inversions a} (1) vary over
all possible combinations. As a result we obtain the following generalization of Proposition 2.

Proposition 5. Form € &,, ¢ > 0, and a composition v we have

Z qi("') — qZ Rt 2 i O () f[ ﬁ/ﬁl ZJ: qk_ (17)
TEG T s=1 j=1 k=0

Proof.

S M= 3 T O N B )
TEG,T TEG,T

— qz k=1 Zl’:kJrl bzz(ﬂ') Z qz =1 a;c{(T)

TEGT

= q22:1 Z;:k+1 bZz(ﬂ') H Z qz(‘r)

s=1 TES,,

r Ys—1 j

— qZZzl ZZT:A-,-H bZL(ﬂ') H H qu

s=1 j=1 k=0

Above, we used two ideas: (i) disconcordant pairs between two different compartments of the coset & m
are invariant under change of the coset representative, and (ii) the number of disconcordant pairs within a
compartment varies over all possible choices enabling the replacement of the summation by a sum over a
lower order symmetric group. O

An important feature of (17) is that only the first and relatively simple term q=k=12i=k41%0() depends
on 7. The remaining terms depend only on the type v of partial ranking and thus may be pre-computed
and tabulated for efficient computation.

Corollary 1.

r Ys—1 j

Z ql(TN) - qZk 1 2 kg by (7R) H H Z Kk € 6, (18)
s=1 j=1 k=0

TEG,T
Proof. Using group theory, it can be shown that the set equality (& m)kx = &, (wk) holds. As a result,
Dores,n g™ = dores. (nr) ¢™). Proposition 5 completes the proof. O
Corollary 2. The partial ranking version g corresponding to the Mallows kernel p,; is

HT Ys—1 e ke .
Pe(Gym) = sl k=07 e N N b ()

—kc
H 0 €
e*CZkzl Yimkt1 by (ms™ D)
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AN\ (IL,n—1) (1,---,I,n—1t) (t,n—1t)

dn-1) o) o) o)
(1, Ln—k  O(k) Ok +1) Ok +1)
(k,n — k) O(k) Ok +1) Ok +1)

Table 1: Computational complexity for computing Equation (15) for each training example. Notice the
independence of the complexity terms from n enables the practical use of the estimators (14),(15) in k£ < n
situations.

Proof. Using Corollary 1 we have

_  Yres,qexp(—cd(r, K))
9(&,m) = T;@:wpn(ﬂ Y, exp(—cd(r,K))
 Srconop(—ciltn ) oo, lexp(=0) )

n—1 g _ke - n—1 7 —ke
Hj:l k=0 € Hj:l k=0¢€

r ¥s—1 J —kec
- _ _ - _0€
6—022:1 Z;":Hl bZz (7K 1) Hsfl ijl k=0

n—1 7 —ke
Hj:l k=0 €

O

Despite its daunting appearance, the expression in Corollary 2 can be computed relatively easily. The
fraction does not depend on 7 or k and in fact may be considered as a normalization constant that may be
easily pre-computed and tabulated. The remaining term is relatively simple and depends on the location pa-
rameter k and the coset representative . Corollary 2 and Proposition 6 below, provide efficient computation
for the estimators (14), (15).

Proposition 6.

Z Z efcd(o’,T): Z H H Q*Cbéz(T) 1j[1

occB T TES T2 'r€7r17r2716.y k=1Il=k+1

A—1 j
e k). (19)
j=1 k=0

Proof. Using (&,m)7 = &,(77), Corollary 1, and the fact that 7 € &, iff 77! € &, we have

Z Z e—cd(U,T) _ Z Z e—cd(zﬂrl,'r‘n'z) _ Z Z e—cd(aﬂ'ﬂrgl‘r*l,e)

oc€EG T TEG T2 cEG )\ TEG, 0EG ) TEG,

Z Z 6707;(0'71'171'2_17'_1): Z Z efci(o(frurz_l)?')

T€ES, 0€G T€S6, 0€G

J
= E 6—022:1 Z;:k+1 béz(ﬂlﬂgl"') H E e*kc.

T€EG, s=1 j=1 k=0

O

The complexity of computing (19), (14), (15) for some popular partial ranking types appears in Table 1.
The independence of these complexity terms from n enables the practical use of estimators (14),(15) in large
n situations. Some of the details concerning this complexity analysis and algorithmic implementation may
be found in Appendix A.
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8 Statistical Properties of the Estimator

After studying the computational feasibility of the non-parametric estimator p in the previous section, we now
turn to examine its statistical properties. In particular we examine its bias and variance, show consistency
for large n, and examine the statistical effect of using partially ranked or censored data in the estimation
process. Due to the discreteness of the probability space we replace traditional Taylor series expansion with
a bound based on the Lipschitz continuity of p. The Lipschitz continuity assumption is crucial since without
such an assumption on the regularity of p, kernel based smoothing or other neighborhood operations make
little sense.

Proposition 7. Let 7y,...,mn € &, be sampled i.i.d. from a Lipschitz continuous p i.e. |p(m) — p(7)] <
Md(w,7), Vo, 7. The following bounds with respect to p in (13) hold.
Y'(c)

|b135(ﬁ(7f))| < -M QZ}(C)
v

Var (p(r)) < p(m)

(20)

(21)

Proof. Key properties in the following manipulations are the closed form expression of 1(c) in (5) and its
independence from the location parameter of the Mallows kernel.

bias (5())| = [E pryy (@7 (Do) ) — ()|
<y7Me) D Ip(mr) = plr)lee )

TES,
<y e Z Md(m,m )e~cdmm) — —MQZI(%).
mTES,

’1/12 (C) m Var (ﬁ(’ﬂ')) Varp(ﬂ_l)e—c d(m,m1) <E p(ﬂ_l)e—Zc d(m,m1)

Z p(m)e*% d(m,m1)

T1EG,

S (p(r) + Md(m, my))e 2090 m)
TES,

= p(m)(2c) — MY/ (20).

IN

O

The upper bounds in Proposition 7 are illustrated as functions of ¢ in Figure 4. These expressions
may be written in a closed form using the formulas for (2c)/v¥?(c) and v’(c)/1(c) derived in the proof of
Proposition 8 below.

Proposition 8. Under the same conditions as Proposition 7 and assuming the asymptotics
¢,m,n — 00, n=o(exp(c)), n=o(vm) (22)
the estimator p in (13) is pointwise consistent.

Proof. We first derive closed form expressions for ¢’(c) /v (c) and 1(2¢)/1?(c) and then proceed to demon-
strate the convergence to 0 of the bias and variance bounds obtained in Proposition 7.

13



= bias square ||
+ variance
= = MSE

Figure 4: Upper bounds on squared bias, variance and MSE as functions of ¢: M = 0.05, p(7) = 0.2, n =4,
m = 20.

Using the result 9(c) = [[}_, % shown in (5), we have

¥(0) & e e
= (log¥(e) =Y 7 —— - +——. (23)
P(c) j:ll_e je  1—ec
¥(2c) ﬁ l—e ¢ (1—e)? ﬁ l+e 1 —e7¢ (1 —e )2
P2(c) e 1—e2¢ (1 —ed¢)2 e I1+e ¢ 1—e¢ (1—e9¢)2
Ll4eic 1 —e ¢
=l 1= (24)

The term —v¢’(c)/v(c) is the expected distance under the Mallows model

—(e) /() = Y d(m0)y~" (¢)exp(—cd(m,0))

ce6,

and therefore is bounded by max, , d(m, o) < n?. The term 1(2¢)/%?(c) is bounded since it may be written
as a product H?:1 R;(c), with R;(c) = %fz::: ifz:i <1 for all ¢ € Ry and j > 1 since the function %
increases with € > 0.

Based on Proposition 7 and Equations (23)-(24)

bias (5] < M MY L < (25)
Var (3 < P 920 M w/(20) p(20) o

- om Ye) m o (2c) ¥3(e)

The bias converges to 0 as nexp(—c) — 0 or alternatively, ¢ — oco,n = o(exp(c)). Since 1(2c)/1?(c) is
bounded and —¢’(2¢)/1(2¢c) < n? the variance converges to 0 as well if m — co and n?/m — 0. O

Intuitively, the inverse scale parameter ¢ has to go to oo in order for the bias to converge to 0 (similar to

14



the requirement h — 0 for the bandwidth parameter h in kernel smoothing). The number of samples m has
to go to oo in order for the variance to go to 0. Allowing n — oo enables us to study the behavior of p in
situations containing a large number of items. The proposition above (with a slightly modified proof) also
holds for fixed n.

For large n, it is often the case that partial, rather than full, rankings are available for estimating
p. Partially ranked data is easier for rankers to express than a lengthy list corresponding to a precise
permutation. Furthermore, in many cases, rankers can make some partial ranking assertions with certainty
but do not have a clear opinion on other preferences. Using the censored data interpretation of partially
ranked data enables efficient use of partially ranked data of multiple types in the estimation process (14).

Statistically, expressing partially ranked data as censored data has the effect of increased smoothing and
therefore it reduces the variance while increasing the bias. The following proposition quantifies this effect in
terms of the bias and variance of p. A consequence of this proposition which is also illustrated in Section 9
experimentally is that even if the fully ranked data is somehow available, estimating p based on the partial
rankings obtained by censoring it tends to increase the estimation accuracy.

Proposition 9. Assuming the same conditions as in Proposition 7, the bias and variance of the censored

data or partial ranking estimator (14) for y1 = ... = ym = 7 satisfy
o Y'(c) sp(S5)
|bias (p(r))| < =M +M (27)
¥(c) 1S,|
A pm) 1 M sp(Gy)
Var (p(r)) < — (28)
m (&, m [6,[?
where sp(U) = maxgey > yev d(z,y).
The choice of using v; = ... = v, = 7y above was made for simplicity. Similar results apply for more

heterogenous partially ranked data.

Proof.

[bias (5(m))| = [ ()&, Epiryy D e U™ = p(m)

TEG T

<Y IS, Y DD Ipm) — (e

T ES, TES T

SMYTHOIS, T Y Y dmm)e i

T ES, 76677{1

<MY e)&, 7 Y D (d(m, ) +d(r,m))e 4T

€6, TES T

_ Yo M i
MWC) RO . D dnm) :

m €S, TEG, T

The inner summation depends on 7 only through the coset &, it resides in. To simplify the expression,
we separate the single outer summation to summations of 7; over the distinct cosets Cj. Since the number
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of distinct &, cosets in &, is the index [&,, : 6,] = |6,]/|6,|, we have

1ﬁ/(c) [64:6,] e
w(c) |6| Yood | D drm) e ;

j=1 71e€C; \m€Cj

[bias (p(7))| < —

¥'(e) | Msp(S e—cd(m)
<MY+ e 2 Zc:
W@ s(S,)
=M M

using the fact that the spread is the same for all cosets of the same type sp(&,7m) = sp(&,).

1p2(c) |6’Y‘2 Var (ﬁ(ﬂ-» — Varp(ﬂ_l) Z e—cd(Tr,T) < Ep(7r1) Z e—Cd(ﬂ',T)

TEG, ™ TEG, ™
2
<Z )+ Md(m,m)) e—cdm)
TEG T
[671,:67]
= Z e~cdlmT) |67|+M2dﬂ'0‘
7j=1 TGC ey

< p(m)|&,[¢*(c) + Msp(S,,)

In the last inequality we used the Cauchy-Schwartz inequality (u,v) < ||ull2]|v]l2 < |lull1]|v]]1 to obtain

(6n:6,] 2 (6n:6,] 2
Z Z e—cd(rr,T) < Z Z —cd(m,T) — ¢2(C)~
j=1 T€C; j=1 T1€eC;

O

Contrasting the expressions in Proposition 9 with those in Proposition 7 indicates that reverting to partial
rankings tends to increase the bias but reduce the variance. Intuitively, the bias increases since we no longer
have enough data, in general, to precisely estimate the permutation model p. The variance (28), on the
other hand, experiences a substantial reduction as compared to the fully ranked case. Figure 5 displays the

behavior of the quantities SIT(GG T) and SFG(G‘Z) The first quantity |é ‘), which bounds the bias, increases as
v v
the composition v represents a lower degree of specificity. On the other hand, the second quantity | @(56\712‘)
S

which bounds the variance decreases as the composition v represents less specificity.

The precise changes in the bias and variance that occur due to using partial rankings depend on
v,n,m,c, M. However, generally speaking, the variance reduction becomes more pronounced as n and
|6, | grow. Indeed, in the common case described earlier where the number of items n is large, switching
to partially ranked data can dramatically improve the estimation accuracy. This observation, which is il-
lustrated in Section 9 using experiments on real world data, becomes increasingly important as n increases.
It is remarkable that this statistical motivation to use partial rather than full rankings is aligned with the
data availability and ease of use as well as with the computational efficiency demonstrated in the previous
section.
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(1,n-1)  (1,1,n-2) (1,1,1,n-3) (1...1,0-4) (1...1,n-5) (1...1,n-6) (2n-2)  (3n-3) (4n-4) (5n-5) (6n-6) (7,n-7)

(1n-1)  (1.1,n-2) (1,1,1.0-3) (1...1,n-4) (1...1.n-5) (1...1,0-6) (2n-2)  (3n-3) (4n-4) (5n-5) (6n-6) (7.n-7)

Figure 5: Values of %(top row), and log Slpg(?l’g) (bottom row) for n = 15 and various partial ranking
sp(S4) 5p(6r)

types. Note that i
S
for the variance) increases for decreasing |S,|.

(which serves as a bound for the bias) decreases and CHE (which serves as a bound
Y

9 Applications and Experiments

The estimator p defined in (13), (14) and its lattice version § defined in (15) can be used in a number of data
analysis tasks. We briefly outline some of these tasks below and then proceed to describe some experimental
results.

Visual or computational exploration of the model probabilities {p(7) : m € &,,} can be a useful exploratory
data analysis tool. Such exploration can be done by visualizing the values {p(7) : # € &,,} for small n using
the techniques developed in Thompson (1993). For medium and large n similar visualization techniques can
be used to explore the values of the lattice version § restricted to certain subset H C 20, of the ranking lattice.
Since the number of distinct y-cosets |&,,|/|&,| may be much smaller than |&,|, visualizing {§(A) : A € H}
can be more effective than visualizing {p(w) : # € &,}. Other explorations such as identifying the local
modes of p and § may be automated and computed without human intervention.

In some cases, the main object of inference is a conditional version of p such as p(m € Alnr € B),
A, B C 6,. A popular example is collaborative filtering which is the task of recommending items to a user
based on partial preference information that is output by that user (Resnick et al., 1994). In this case, p is
estimated based on a large dataset of partial preferences provided by many users. Given a particular partial
ranking &, output by a certain user we can predict its most likely refinement argmaxg, , p(Gr0|&, 7).
This task is central to many recommendation systems and has recently gained popularity in the machine
learning research community due to its commercial applications.

Statistics such as expectations and variances can be useful as summaries in situations where the entire
distribution is not necessary. For example, summaries such as the expectation and variance of an item’s
rank E 5(m(k)), Var 3(m(k)) or probabilities such as p(n (i) > 7(j)) may be useful in some cases. On the other
hand, in situations where p is a complex multimodal distribution, the summaries need to be complemented
with a careful examination of p.

17



We experimented with three different datasets. The first is the APA dataset (Diaconis, 1989) which
contains several thousand rankings of 5 APA presidential candidates. The second is the Jester dataset
containing rankings of 100 jokes by 73,496 users. The third dataset is the EachMovie dataset containing
rankings of 1628 movies by 72,916 users. In our experiments, we trained models based on a randomly
sampled training set and evaluated the log-likelihood on a separate held-out testing set. We repeated this
procedure 10 times and report the average log-likelihood in order to reduce sampling noise.

Figure 6 displays the test set log-likelihood for the parametric Mallows model (fitted by maximum
likelihood) and the non-parametric estimator. The log-likelihood, computed as a function of the train set
size, is displayed for several values of ¢ for the non-parametric estimator. In the case of the Mallows model
we only display the optimal c¢. Due to the computational difficulty associated with maximum likelihood for
the Mallows model for large n we experimented with rankings over a small number of items. The three
panels of the figure display the log-likelihood with respect to the APA data with n = 5 (top), the Jester
data restricted to the n = 5 most frequently rated jokes (middle), and the EachMovie data restricted to
the n = 4 most frequently rated movies. In all three cases, the non-parametric estimator performed better
than the parametric Mallows model given sufficient training examples. As ¢ increases, the non-parametric
model tends to perform better for large datasets and worse for small datasets, reflecting the non-parametric
consistency as m, ¢ — 00.

The increased flexibility of the non-parametric model illustrated in Figure 6 can be visualized further
by comparing the probabilities assigned by the Mallows model and the non-parametric model. We display
these probabilities in the case of n =4 (movies no. 357, 1356, 440, 25 from the EachMovie data) by scaling
appropriately the vertices of the permutation polytope. The vertices of the permutation polytope, displayed
in Figure 7, correspond to &4 and its edges correspond to pairs of permutations with Kendall’s tau distance
1. In fact, Kendall’s tau distance d(m, o) corresponds to the length of the shortest path connecting the
two vertices representing m and o. As a result, the 3D embedding of the permutation polytope effectively
visualizes the discrete metric space (S4,d). In the figure, the radiuses of the vertices were scaled propor-
tionally to (p(7))%/7 where p(r) are the probabilities estimated by maximum likelihood Mallows model (left)
and the non-parametric model (right). The scaling exponent of 5/7 was chosen in agreement with Steven’s
law (Cleveland, 1985) for effective visualization. Figure 7 shows that the probabilities assigned by the Mal-
lows model form a diffuse unimodal function centered at 2|1|3|]4. The non-parametric estimator, on the
other hand, discovers the true global mode 2|3|1]4 and an additional local mode at 4|1]|2|3 both of which
were undiscovered by the Mallows model due to its unimodaility property.

Figure 8 demonstrates non-parametric modeling of partial rankings for n = 100 (the Mallows model
maximum likelihood estimator cannot be computed for such n). We used 10043 rankings from the Jester
dataset which contain users ranking all n = 100 jokes. As before, the figures display the test-set log-likelihood
as a function of the train set size. Due to the large n, we measured the test set log-likelihood with respect
to the lattice version §(&.,7) of the non-parametric estimator p for partial ranking v = (5,n — 5) (top) and
v=1(1,1,1,n — 3) (bottom).

The different lines in Figure 8 correspond to the performance of p obtained by censoring the training
data in different ways. We compared p for the following censored data: full ranking (no censoring), v =
(1,...,1,n — k) for k = 1,2,3,5 and v = (k,n — k). The value of k in the censoring corresponding to
~v = (k,n—k) was chosen based on thresholding the scores output by the users. In particular, (k(s),n—k(s))
corresponds to k being the number of jokes receiving a score of s or higher (the users provided scores in the
range [—10,10]). The figure illustrates the statistical benefit of estimating p based on partial rather than
full rankings. The variance reduction by (k,n — k) partial rankings clearly outweighs the bias increase.

10 Discussion
As the number of items n increases, the space &,, grows exponentially making discrete search methods such
as maximum likelihood for the Mallows model difficult to compute. Similarly, it is typically the case for

large n that both the data available for estimating p and the use of p will be restricted to partial rankings
or cosets of the symmetric group.
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Figure 6: Average test log-likelihood as a function of the train set size: the maximum likelihood Mallows
model vs. the non-parametric estimator for (a) APA data n = 5, (b) n = 5 most frequently rated Jester
jokes, (¢) n =4 most frequently rated movies from EachMovie data. In general, the non-parametric model
provides a better fit than the Mallows model. The non-parametric consistency is illustrated in the case of

¢, m — o0.
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Figure 7: Visualizing estimated probabilities for EachMovie data by permutation polytopes: Mallows model
(left) and non-parametric model for ¢ = 2 (right). The Mallows model locates a single mode at 2|1|3|4 while
the non-parametric estimator locates the global mode at 2|3|1|4 and a second local mode at 4|1|2|3.

Attempts to define a probabilistic model directly on multiple types of partial rankings H C 20, face
a challenging problem of preventing probabilistic contradictions. A simple solution is to define the partial
ranking model g in terms of a permutation model p through the mechanism of Mobius inverions and censored
data interpretation. However, doing so raises computational concerns that often severely limit the practical
use of such models for large n.

In this paper, we present a non-parametric kernel smoothing technique that uses the Mallows model as a
smoothing kernel on permutations. Using combinatorial properties of inversions and of the symmetric group
we simplify the computational difficulties and exhibit its practical use independently of the number of items
n. Theoretical and experimental examinations demonstrate the role of the inverse scale parameter ¢ in the
bias-variance tradeoff. We also examine the effect of using partial, rather than full, rankings on the bias and
variance of the estimator. This effect plays a similar role to increased kernel smoothing and often leads to
increased estimation accuracy.
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A Complexity Issues

Table 1 lists the computational complexity results for computing (15) for some popular partial ranking types
~v and A. The arguments or proofs for these expressions are rather involved and contain some details. We
include in this appendix the details corresponding to the case of A = (k,n — k) and v = (¢,n —t). The other

cases in Table 1 follow similarly, but with some differences.

To prove the complexity result for the case A = (k,n — k) and v = (¢t,n — t) we derive a closed form

expression for the quantity

of b(’“’ k)
Q(k,n) = E q

€S,
where b],(7) is defined in Proposition 4.
Proposition 10.
k?' n—k+1 n—k+2 n
Q(k,n) (1+k)k Z Z q Z qak
a1=1 as=ai+1 ar=ar—1+1
ajp— 1 a2,1
ap=Fk agp_1=k—1 a;=1
Proof. We sort {m(1),n(2),---,m(k)} in ascending order and denote them by a1 < az < --- < ai.

note that

bb(ﬁ):(a1*1)+(02*2)+~'+(ak*k):Z(afi)-

Due to this observation and since there are k!(n—k)! different permutations for each sequence (ay, asg, - - -

we have
n—k+1 n—k+2 n
Y e _] - —
E gbi=(™) =k(n—k E E § : glart-Far—l k)
€S, a1=1 az=a1+1 ag=ar_1+1
' n—k+1 n—k—+2 n
ar
<1+k>k § : E : q* § : q--
ar=1 az=a1+1 ap=ar_1+1

Similar proof applies to Equation (31).
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Proposition 11.

n

n k
1 , . 1 .
pras) o Jla-¢ Z):W IIa-¢) vn>k (32)

j=k+1 i=1 i=n—k
Proof. We prove by mathematical induction on n.

(a) Base Case: Carefully substituting n = k 4 1 in both the left hand side and the right hand side yields
equality.

(b) Inductive step:

n+1 k n k n
1 j j—i 1 j j—i n i
A S ella-r =g [ S Tl I a-a)
j=k+1 i=1 j=k+1 i=1 i=n—k+1
1 - i n— - i
S1o g H(1—9)+q ¥ H (1-4¢")
i=n—k i=n—k-+1
n n+1 1
L—q" % i Hi=+n—k,+1(1 —q")
(1—q’“+1+q _ IT a-a= 1 —gk+1
1=n—k+1
where in the second equality we used the induction hypothesis.
O
Proposition 12.
n ,
o 1—4q"
Q(k,n) = k!(n — k)!H“"’k“( ¢) Vn > k. (33)

k .
[Tiei (1 =¢)
Proof. We prove by mathematical induction on k.

(a) Base case: Considering (29) for the case k = 0 we see that bﬁ%’”) (7) = 0 and therefore Q(k,n) = n! for
n > k. A similar result follows from substituting k¥ = 0 in the right hand side of (33).

(b) Inductive step: Assuming (33) holds Vn > k for some k, we have for k + 1

n ag+1—1 as—1

Q(k—Fl,TL) a 1 41 a ai
i+ Din—k—1) O PORE S DI DY

ap+1=k+1 ar=k a;=1

1 n 1 apy1—1 as—1
gtk Z e ( S Z q Z q‘“)
q 2 ap=k

ap+1=k+1 a;=1

[l

n ak+1—1 i

1 o Hi:asﬂ,k(l —qY)
Ttk E - :

1 apt1=k+1 Hi:l(l - q’)

H?:n—k(]' B ql)
[T (- )

IIe

where equality a follows from Proposition 10, equality b follows from the induction hypothesis, and
equality ¢ follows from Proposition 11.

O
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Proposition 13. The complexity for computing

OIS DI D

oG T TEG T2
for\=(k,n—k) and v = (t,n —t) is O(k +1).
Proof. We use the following definitions in our proof
A= {17 U ak} N {TF17T2_1(1)’ U 77T1772_1(t)}
A={1,--- k}\ A
B={k+1,--- ,n}n{mny (1), - ,mmy ' (t)}
bxy (1) = H(u,v) ru€ X,veY, 7 N u)> 77 (v)}.

We have

3 H et = 3 emeth(n)
k=11

r
remmy ' 6., k=11=k+1 remimy 'G,
_ Z e~ baB(T)+bap(T)+bap(T)+bas(T))
Temm, 'S,
_ Z e—C(bAB(T)+O+|AHB|+I’AE(7—))
7'67T17F2_16w
— —clAllB] Z e—cbap(T)+bap (7))

-1
7'671‘171'2 G»y

— e cMIIBI 37 b3 () 37 pmeiE)

TEG, TEGHL ¢t
where 1 = (|A|,t — |A]) and 2 = (JA|,n —t — | A]). The last equality comes from the fact that

AUB = {7717r2_1(1),~~~ ,71'17r2_1(t)}
AUB={1,--- n}\ {mny ' (1), - ,mmy *(t)}
ANB=10

ANB =10

and the choice of representatives 71, ma of the cosets &1, &.,m does not change |A|,|Al,|B| or |B|.
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By Proposition 6 and Equation (33), we have

‘6 | 1 Z Z —cd(a‘r

occB T TES T2
—clA||B| —cb](7) —eb72(7) ko 1_e—de 1n—k 1_c—ic
(6 ZTEGte 12 ZTEGW,_te 2 Hj:l T_e—¢ Hj:l [P
n l—e—Jc | A\
(==
A=A T 4 (—e )\ (JAN == AN ) g, (-
A -
/2, (1—e=ie)

eI _clA k e
1AL (1—e—ie) >6 Al [T (1—e77)
( t) H] =n—k+1 (1 - e—jC)

e a0 = e T (= e T,

j=n—t—|A|+1 (1_6]0)>
HlA‘ (1 — ee) HlA‘ (1= e ) [T gy (1 —e77¢)

Note |A| < min(k,t), |A] < k and |B| < t, therefore the above expression takes O(k + t) to evaluate
Assuming 77 and 75! i i

are given, it takes O(k) to get a representative 71 for the coset Gym;. In addition
it requires O(t) to get the set {mymy '(1),--- ,mm; ' (t)}, which completes the proof.

B |A\'\A|'<t— |Al)le=cl41IB] (

! H] =n—t— |AH—1‘7

O
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