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Abstract

When the true mixing distribution is known to be continuous, the nonparametric maximum
likelihood estimate of the mixing distribution cannot provide a satisfying answer due to its de-
generacy. The estimation of mixing densities is an ill-posed indirect problem. In this article, we
propose to estimate the mixing density by maximizing a penalized likelihood and call the re-
sulting estimate the nonparametric maximum penalized likelihood estimate (NPMPLE). Using
theory and methods from the calculus of variations and differential equations, a new functional
EM algorithm is derived for computing the NPMPLE of the density. In the algorithm, maximiz-
ers in M-steps are found by solving an ordinary differential equation with boundary conditions
numerically. Simulation studies show the algorithm outperforms other existing methods such as
the popular EMS algorithm and the kernel method. Some theoretical properties of the NPMPLE
and the algorithm are also given in the article.

Key words: Mixture model; Mixing density; Nonparametric maximum penalized likelihood
estimate; Functional EM algorithm; Ordinary differential equation with boundary conditions.

1 Introduction \

Suppose Y1,Ys,...,Y, are independent and identically distributed with a mixture de\nsity

h(y|G) = / f(ylz) dG(z) (L1)

where f(y|z) is a known component density function indexed by z and G(z) is a mixing distribution.
Laird (1978) showed that, under some mild conditions on f, the nonparametric maximum likelihood
estimate (NPMLE) of G, denoted by G, is a step function with at most n jumps. Laird (1978) also
proposed an EM algorithm to find G. Lindsay (1983a,b) proved the existence and uniqueness of G
and obtained other important properties of G. When the true distribution G is known to have a
continuous density g(x), which is referred to as a mixing density, and g is the target of statistical

inference, the NPMLE of G becomes improper because of its degeneracy. In this article, we propose




a new nonparametric method that uses penalized maximum likelihood to estimate g. When the

density g exists, the model (1.1) can be rewritten as

h(ylg) = /X fylz)g(x) dz, (1.2)

where X is the support of g(z). The support X is assumed to be a known compact interval
throughout this article. In what follows, we first give a brief review of existing methods for esti-
mating mixing densities, then discuss the ideas behind the new algorithm we develop in this article.
The layout of the article is given at the end of this section.

1.1 Existing methods for estimating mixing densities

The existing methods for estimating mixing densities in the literature can be roughly divided into
three categories: EM-based algorithms, kernel methods and methods based on orthogonal series
expansion.

As mentioned earlier, an EM algorithm was originally proposed by Laird to compute G, the
NPMLE of G. Observing that the EM algorithm produces smooth estimates before it converges
to G, Vardi et al. (1985) recommended to start the EM algorithm from uniform distribution and
let it run for a limited number of iterations. The resulting estimate is then used as a continuous
estimate of g, whose likelihood can be fairly close to the maximum when the number of iterations
is properly specified. The smoothing-by-roughening method proposed by Laird and Louis (1991)
uses a similar strategy of stopping the EM algorithm early, with the suggested number of iterations
proportional to logn where n is the sample size. A common drawback of the above two methods
is that both lack a formal stopping rule to terminate the EM algorithm. Silverman et al. (1990)
proposed the Smoothed EM (EMS) algorithm, which adds a smoothing step to each Expectation-
Maximization iteration. Empirically, this algorithm was found to converge quickly to an estimate
close to the true mixing density. There are two drawbacks of the EMS algorithm. First, it does not
preserve the monotonicity property of the original EM algorithm due to added smoothing steps.
Second, the estimate obtained by the EMS algorithm is hard to interpret because there does not
exist an apparent objective function it optimizes. In order to overcome the second drawback, Eg-
germont and LaRiccia (1995, 1997) incorporated a smoothing operator into the likelihood function
and proposed the Nonlinearly Smoothed EM (NEMS) algorithm. They showed that the NEMS
algorithm performs similarly to the EMS algorithm; in addition, the estimate given by the NEMS
is the maximizer of the smoothed likelihood function. Other EM-based algorithms include an EM
algorithm with stepwise knot deletion and model selection (Koo and Park, 1996), the One Step
Late (OSL) procedure (Green, 1990), and the Doubly Smoothed EM (EMDS) algorithm (Szkutnik,
2003). The last algorithm was specifically designed and optimized to deal with grouped data.

When the component density function f(y|z) can be written as ¢(y — z) where z is a location
parameter, estimating the mixing density function g(z) is referred to as deconvolution in literature.
Using the Fourier transform, a kernel-type estimate can be derived for g; see Stefanski and Carroll




(1990), Zhang (1990), and Fan (1991). Fan (1991) showed that this kernel estimate can achieve
the optimal convergence rate in a certain sense. Unfortunately, this approach is limited to the
deconvolution problem only. Goutis (1997) proposed a general kernel-type procedure for estimating
g without assuming that z is a location parameter of f(y|z). The resulting estimate looks similarly
to a kernel estimate having the form of L 37 | $ K (25%) where K (-) is a kernel function and & > 0
is the bandwidth. The method of Mixture-of-Gaussians proposed by Magder and Zeger (1996) can
essentially be classified as a kernel-type method; similar ideas were discussed in Lindsay (1995) as
well.

The third group of existing methods includes those based on orthogonal series expansion. Let
K be an integral operator: g — Kg = [ f(y|z)g(z)dz. Johnstone and Silverman (1990) and
Jones and Silverman (1989) proposed to expand and estimate g using the orthogonal basis in the
singular value decomposition (SVD) of the operator K. Smoothing is enforced through cutting off
the infinite expansion of g(z) or, more generally, through tapering it using a sequence of weights w,
satisfying w, — 0 as v — o0; see Silverman (1986) and Izenman (1991) for more details. Koo and
Chung (1998) proposed to approximate and estimate log g(x) using a finite linear combination of
the singular functions of K; the corresponding estimate is called the Maximum Indirect Likelihood
Estimator (MILE). For the deconvolution problem with f(y|z) = ¢(y — ), estimators based on
wavelet expansion and coefficients’ thresholding have been proposed; their convergence behavior
has been studied; see Pensky and Vidakovic (1999) and Fan and Koo (2002).

1.2 Maximum penalized likelihood method

Another well-known way to generate continuous density estimates is to penalize the roughness of a
density function. One of the most popular is the maximum penalized likelihood method. Consider
direct density estimation first whereby the density is estimated based on observations directly
sampled from it. The penalized log-likelihood functional for an arbitrary density f, denoted by
lp(f), has the form

() =1(f) = AJI(F) (1.3)

where [(f) is the usual log-likelihood function, J{f) is a roughness penalty term and A is a smoothing
parameter. The maximum penalized likelihood estimate (MPLE) is defined as the maximizer of
Ip(f) over a collection of density functions.

The penalized likelihood method for direct density estimation was pioneered by Good and Gask-
ins (1971). De Montricher et al. (1975) and Klonias (1982) proved the existence and consistency of
the MPLE defined by Good and Gaskins (1971). For a comprehensive introduction to this method,
see Tapia and Thompson (1978); for a more recent account, see Eggermont and LaRiccia (2001).
In order to better accommodate positivity and unity constraints of a density function, Leonard
(1978) and Silverman (1982) proposed to estimate the log-density function n = log f using the
penalized likelihood method. Gu and Qiu (1993) and Gu (1993) further studied this problem using




smoothing splines, and developed an algorithm that can be used to estimate multivariate density
functions.

The application of MPLE to estimate mixing densities is a natural idea. Silverman et al. (1990)
and Green (1990) discussed the possibility of using this approach for indirect density estimation
or, equivalently, mixing density estimation. Both considered this approach reasonable, but the
computational difficulties in M-steps kept them from implementing the MPLE for mixing density
estimation directly. Instead, Silverman et al. (1990) proposed the EMS algorithm by adding a
smoothing step after each EM iteration, and Green (1990) proposed an One Step Late (OSL)
procedure, a pseudo-EM algorithm, to circumvent the computational difficulties. Both methods
were discussed in the previous section.

In this article, we aim at fully implementing the maximum penalized likelihood method for
mixing densities estimation. A functional EM algorithm is proposed to compute the maximum
penalized likelihood estimate of a mixing density over a function space. During each M-step of
this EM algorithm, maximization is conducted over the same function space and the maximizer
is characterized by a nonlinear ordinary differential equation with boundary conditions, which is
solved by a numeric procedure called the collocation method.

1.3 Organization of the paper

The rest of the article is organized as follows. Section 2 defines the nonparametric maximum
penalized likelihood estimate (NPMPLE). We derive the new functional EM algorithm in Section
3. Some theoretical results supporting the definition of the new estimator and the new algorithm
are included in these two sections as well. Section 4 discusses the numeric solution to the nonlinear
ordinary differential equations generated in M-steps of the algorithm. Section 5 focuses on the
selection of smoothing parameter A. Section 6 compares the new algorithm with several existing
methods through simulation. Section 7 reports an application of the algorithm to a real problem.
Some concluding remarks are given in the last section. The proofs of the propositions, theorems
and corollaries are collected in the appendix.

2 Nonparametric Maximum Penalized Likelihood Estimate

Let go be the true mixing density in model (1.2). Assume that the support of gg is a finite interval
X = [a,b], and go is bounded above and below away from 0. In other words, there exist positive
constants Mp and M; such that My < go(z) < M; for all z € [a,b]. These assumptions are
collectively labelled as Assumption (A0) and are assumed to hold throughout this article.

Any density g with support [a,b] can be represented as

where 7n(z) = log g(z) + const, (2.1)




and the mixture density of h(y|G) becomes

b n(z) 4
h(yln) = Ja f(fjlx)e 3 (2.2)
i) . en(@) dg
Given a random sample y1,¥2, ... ,Yn from the above density (2.2), the log-likelihood functional of
7 is

1 n b b
i) =~ log / £ (wilz)e™™®) dz — log / @ dz. (2.3)

i=1 a a

As discussed in the introduction section, we want to penalize the roughness of n using a penalty
term. In this article, we choose the penalty

b
J(n) = / ()] da, (2.4)

which was originally proposed by Leonard (1978) for (direct) density estimation. Combining I(7)
and J(n) gives a penalized likelihood functional

p(n) = U(n) — AJ(n)

n b b b
- %Zlog / F(yilz)e"™dz — log / @ dg — ) / [7"(2)]? da, (2.5)
z=1 a a a

where A > 0 is a smoothing parameter.

To obtain a proper estimate of 1 by maximizing l,(n), we need to specify a proper function
space, denoted by H, as the “parameter” space. Given the penalty that we use, a natural choice
is to assume that n(z) € H = W?2[a,b] where W?22[a,b] is the 2nd order Sobolev space based
on Lo-norm; see, e.g., Adams (1975) for formal definitions. It is known that for any n € H,
both the function itself and its first derivative are absolutely continuous (Wahba, 1990). Hence,
the functions in H are smooth enough for our purpose. The nonparametric maximum penalized
likelihood estimates (NPMPLEs) of 19 and go are defined, respectively, as

@

fi=argmax lp(n) and §=

e 2.6
neH [P en® gt 26)

Note that if 7 is a maximizer of [,(n), then clearly 77+ C is also a maximizer, where C is an arbitrary
constant. Both 7 and 7 + C, however, give the same §. Therefore the difference between % and
# + C will not cause confusion for our purpose and we consider 7} well-defined up to a constant
shift.

Let Ny ={neH:Jn) =0} ={cz+d:cd € R}, which is the null space of the penalty
functional J(n) = f:[n" (z)]?dz. Let Y = Ugex{y : f(y|z) > 0}. In addition to Assumption




(A0) about gg stated at the beginning of this section, two more assumptions need to be imposed
to ensure the existence of the NPMLE #(z), which are: (Al) For any given y € ), f(y|z) is
a continuous function of z in [a,b]; and (A2) There exists a positive number M > 0 such that
0< [ : f(ylz)dz < M for any given y € Y. Assumption (Al) is a regularity condition imposed
on f(y|z) as a function of z for any given y; Assumption (A2) is equivalent to requiring that the
true mixture density h(y|go) has an upper bound provided that Assumption (AO) holds. Both
Assumptions (A1) and (A2) are commonly satisfied for popular component densities such as the
normal density function N(y — z,0?). Together with Assumption (A0), Assumptions (A1) and
(A2) are assumed to hold throughout this article, and they are not restated in the theorems and

propositions below. The following two results establish the existence of #.

Theorem 1. If there exists an n*(z) = c*z + d* € Ny such that

U >max{ Zlogfyzla Zlogfyzlb)} 2.7)

then there exists ) € H such that I,(7) > I,(n) for alln € H.

Corollary 1. If the uniform distribution U(a,b) has a higher likelihood than the point mass dis-
tribution on a or on b, that is,

n b n n
2 los (52 [ flwin)do) > max {-}; > log o), - og f(ynb)} . eY)

then there exists j € H such that I,(}) > l,(n) for alln € H.

Theorem 1 indicates that, if there exists a density ¢*(z) = exp{c*z + d*} that gives a better
explanation to the sample {y;} in terms of likelihood than the one-point mass distributions at a
and b, then the maximizer of [,(n) over H exists. Intuitively, this condition should be satisfied
except in some extremely rare situations where the sample is concentrated around a or b as if it
was drawn from the density f(y|a) or f(y|b). Corollary 1 gives a convenient sufficient condition for

the existence of 7}, which is easy to verify and should always be checked first.

Finding the maximizer of a functional over a function space is a typical problem in the calculus
of variations. Usual techniques used to deal with finite-dimensional parameters, such as those used
to solve a system of likelihood score equations, are not directly applicable to finding the maximizer
7} of Ip(n). In this article, we resort to concepts and techniques from the calculus of variations
and differential equations instead. In the next section, we first present some properties of 7j, then
propose and develop a functional EM algorithm for computing the NPMLE 4.




3 Functional EM Algorithm for Computing 7

Because the likelihood part of [,(n) involves logarithms of mixture densities h(y;|n) that are condi-
tional on 7 inside an integral, its direct maximization is usually difficult even in the situation where
71 depends on a finite-dimensional parameter and no penalty exists. One popular way to circumvent
this difficulty is to use the EM algorithm. We adopt this approach to develop a Functional EM
algorithm (FEM) to compute the NPMPLE 7. This algorithm is effectively nonparametric since it
attempts to find optimal n €H.

3.1 Derivation of FEM and the E-step

It is well-known that the random sample {y;}1<i<pn from the mixture density h(y|no) can be gen-
erated using the following two-step procedure: first a random sample denoted {z;}1<i<n is drawn
from the mixing density go(z), then y; is randomly drawn from the component density f(y|z;).
Because z;'s are not observable, they are referred to as missing or latent values. {(vi,%:)}1<i<n
forms a random sample from the joint density f(y|z)go(z) and is referred to as the complete data.
Given this complete data, a complete penalized log-likelihood functional of 1 can be defined as

n b b
lo(n) = = > l0g fike) + (e} ~og [ @z —x [ '@ ez (3)
i=1 e e

If n were a function depending on a finite dimensional parameter, with or without the penalty
term, the classical EM algorithm (Dempster et al., 1977) would have started with an expectation
step (E-step) involving the complete likelihood Iz (n), then proceed on to the maximization step
(M-step) to calculate 7, and then repeat the two steps iteratively, beginning with some initial value
of n. Here we attempt to develop a similar iterative process in the functional space H. The details
are described below.

In the E-step, we compute the expectation of l.p(n) given the current estimate of 7 and the
data. Let ¥ = (y1,¥2,.-- ,Yn) be the (observable) data , 7., denote the current estimate of 7
and Q(M|Necur) = E [lep(M)|¥, Meur). Because y;’s are independent, the expectation of the complete
likelihood can be simplified to

Q(ﬂ'ncur) - E [lcp(n)l?ja ncur]

1 n b b b 5
=— log f(yilzs) + n(2:) }o(ilYis Neur) dzi — lo e"@dz — X "(z)]” dx (3:2)
n;/ﬁ{ g f(y (i) }o (@i |Yis Tour) d g/a /a [n"(z)]

where

f(yi|x)e’7°ur($)
ff Flys|t)ener® gt

P(|Ysr Newr) = (3.3)

is the conditional density of z; given data y; and the current estimate 7., of 7. Effectively,




@(z|Yi, Meur) can be seen as a posterior density and its computation process can be viewed as a
Bayesian updating scheme.

In the M-step, we compute the maximizer of Q(7|7c.:), which is denoted by 7, and used as
the current estimate for the next iteration. The E-step and M-step are thus iterated until the
estimate 7 converges. Although the algorithm defined above is not a classical EM algorithm (I, (n)
is a penalized likelihood functional over the function space ), it still retains the monotonicity
property of a classical EM algorithm as stated in the next proposition.

Proposition 1. After each iteration of the E-step and M-step above, lp(Mnew) = lp(Meur)-

Proposition 1 implies that the FEM algorithm converges to a maximum of /,(n). However, this
maximum may not be global, because I,(n) is not necessarily concave in 7 and may have many
local maxima. Although the FEM algorithm may be trapped in a local maximum, our simulation
study shows that the problem is not severe. The E-steps of FEM are straightforward; the M-steps
involve maximizing a new functional of 77 (i.e. Q(7|7cur)) and thus are not trivial. Though Q(7]7cu)
is simpler than l,(n), it is not straightforward to compute its maximizer directly. This is also where
Silverman et al. (1990) and Green (1990) stopped implementing the EM algorithm fully.

3.2 M-step: Maximization of Q(n|7cu,)

For convenience, (3.2) can be rewritten as
1 n
QUlewe) = — > Ellog f(yslz:) [, Mewr]
=1

b b b
4 / (@) (], Tewr) d — log / &1 — A / ()] de (3.4)

where
L 1
'l/)($|y, ncur) - E Z(P(xlyiancur)' (35)
i

Removing the term that does not depend on 7 and using a similar method by Silverman (1982),
we define a new functional

b b b
O nlnens) = / (@) (2l Towr ) — / @)z — \ / ()] d. (3.6)

@ can be used as a surrogate of Q because both functionals share the same maximizer. This
property is summarized in the following proposition.

Proposition 2. Mazimizing Q(n|N..) is equivalent to mazimizing Q(M|Newr). If the mazimizer of
Q exists, which is denoted as 7, it must satisfy [ : exp(f(z)) dz = 1.




The following theorems state that the maximizer of Q(n]ncur) exists, is unique and satisfies an

ordinary differential equation with some boundary conditions.
Theorem 2. The mazimizer of Q(n|n...) in H ezists and is unique.

Theorem 3. If the mazimizer of Q(N|ne.,) exists and is in C*[a,b], it must satisfy the ordinary
differential equation (ODE)

P(|F, Neur) — €7 — 227* (z) = 0 (3.7)
with boundary conditions

n"(a) =n"(a) =0, n"(b) =n"(b) = 0. (3.8)

The next theorem (Theorem 4) concludes that if a solution of the ODE (3.7) with boundary
conditions (3.8) exists, such a solution must be the maximizer of Q.

Theorem 4. If n.(x) € H is the solution of the ODE (3.7) with boundary conditions (3.8), then
Qs |Mewr) = Q(N|Newr) for any n € H. Furthormore, the solution of the ODE (8.7) with boundary
conditions (3.8) is unique, provided it exists.

Theorem 2 asserts the existence of the maximizer 7,, of Q(n]neu,) in H, which only guarantees
that 7,.. and 7}, are absolutely continuous on [a,b] and 1., € Lz2(a,b). But this is not enough
to derive equations (3.7) and (3.8), which include a 4th order differential equation with boundary
conditions. In order to use the above equations, 7,., needs to be smoother, for example, Mo €
C*[a,b]. The smoothness property of M., is referred to as the regularity of the maximizer in the
calculus of variations. In fact, the regularity of 7,., (i.e. the existence of up-to fourth derivatives)
can be established applying the results developed in Clarke and Vinter (1990). The smoothness of
Thew depends on the smoothness of ¥(-|7, ). If 7w i smooth enough, then v is smooth enough to
guarantee that the maximizer of Q(7)|ne.:) has the required smoothness of (3.7) and (3.8). In theory,
if we start the algorithm with a smooth function 1 such as the uniform distribution, then (3.7) and
(3.8) can be used to compute 7)., in all the subsequent M-steps of the FEM algorithm. Readers are
referred to Liu (2005) for more technical details. The numerical solution to the nonlinear ordinary
differential equation (3.7) with the boundary conditions (3.8) will be discussed in detail in Section
4.

3.3 The FEM algorithm

Based on the results above, the steps of the FEM algorithm are summarized as follows.
Algorithm 1

(a) Specify A.

(b) Set k = 0, and select an initial guess of . Usually we use no(z) = log b—ia for z € [a,b].

9




(c) Compute ¥(z|¥,n5). Numerically solve the ODE (3.7) with boundary conditions (3.8),
and denote the solution as 7xy1. Normalize the solution before proceeding to the next step

85 Mi+1(2) — Mk41(2) — log [, exp{mk1(2)} da.

(d) k — k+ 1. Run step (c) till nx converges.

Because of Assumption (A2), the penalized likelihood of the uniform distribution is finite. The
uniform density usually serves as a good initial guess of the true mixing density. When there is
a concern that the FEM algorithm may get trapped by local maxima, other initializations should
also be tried. In each M-step, we need to use numerical methods to solve the ordinary differential
equation (3.7) with boundary conditions (3.8), which will be the subject of the next section. Notice
that we have added a normalization step in (b). This step is necessary because in theory the solution
i, of the ODE (3.7) already satisfles [ e™ = 1 (see Proposition 2), but the numerical solution we
actually obtain is only an approximation. The normalization in step (b) not only makes e a
density so that the computed marginal density in next iteration will be legitimate, but also ensures
that I,(modified 7g) > lp(m); see the proof of Proposition 2 in the appendix for details.

4 Numerical Solution for M-steps

Recall that in each M-step of the FEM algorithm, the maximizer is a function satisfying the ordinary
differential equation (3.7) with boundary conditions (3.8). When implementing FEM, we need to
choose a numerical method to solve (3.7)-(3.8). The collocation method is an efficient and stable
method for numerical solution of ordinary differential equations with boundary conditions. In the
following, we describe how to apply the collocation method to solving (3.7)-(3.8); more information
about this method can be found in Ascher et al. (1988).

For convenience, we restate the equations (3.7)-(3.8) as L[n] = 0 and B[] = 0 where

Lin)(z) = ¢(z) — €7@ — 2™ () (4.1)
and

Bn] = (n"(a),n" (a),n" (b),n" (b)). (4.2)

Here L and B can be viewed as linear operators on H and ¢ (z) is an abbreviation of ¥(z|7, ).

10




4.1 Collocation Method

The collocation method approximates the exact solution of (3.7)-(3.8) with a linear combination
of basis functions {¢4(z)}2_;:

D
w(z) =Y aapa(z) (4.3)
d=1

where {¢g4(z)} satisfy (3.7)-(3.8) at a number of interior points of [a,b]. In this article, B-spline
functions are used as the basis functions.
Recall that (3.7) is an ODE of order m = 4. Let N and k be two positive integers and

T o=Tp<T1<--<an_1<xNn =0

be an equally spaced partition of [a,b]. We use {a1,a2,... ,044m}U{c; : 1 <i<N-1,1<j5<
k} U {b1,ba,... ,bgrm} as the knot vector to construct B-spline functions. Here a; < ag < -+ <
Otm <0, b < by <by <+ < bgym, and ¢; = 23,1 < <N —1,1 < j < k. These functions form
a basis {¢a(z)}2, with D = (N — 1)k + 2(k + m) — (k +m) = Nk +m, which is the length of the
knot vector minus the order of basis functions. These functions are the nonuniform B-spline basis
functions of order k + m. By the standard property of nonuniform B-splines, u(z) € C (m—l)[a, b],
and in each subinterval (z;_1,z;) u(z) is a polynomial function of degree k +m — 1.

Next, we need to determine the interior points of [a,b] where u(z) satisfies L[u|(z) = 0. The
number of interior points required by the collocation method is D —m = Nk. The set of points we
choose are

7T={mij=$i_1+pj($i—-$i_1):1§i§N,lSj§k},

where 0 < p1 < p2 < --- < pg < 1 are the abscissas or canonical points for Gaussian quadrature of
order k over [0,1].

The collocation method requires that w(z) should satisfy the following system of D equations
with D unknown coefficients

Liul(z;) = 0,i=1,2,...,N,i=1,2,...,k

Blu] = 0. (4.4)

In the system above, the coefficients are oy, 1 < d < D. Because the ODE (3.7) is nonlinear, the
system (4.4) is also nonlinear. In the next section, we describe a quasilinearization method for
solving the system (4.4).

11




4.2 Quasilinearization

Suppose u = )_, oipq(z) is an initial guess of the solution of (4.4). Using Géteaux derivative, we

derive the following approximations

{ Llu + 2)(z) =~ L{u)(z) — e*® z(z) — 2229 (z), for z €, (4.5)

Blu + 2] ~ Blu] + (2"(a), 2" (a), 2"(b), 2" (b)).

Based on the approximation (4.5), we use the following iterative procedure to solve the system
(4.4):

(a) Solve the linear system with respect to z with u given,

{ L[u)(z) — e¥®@2(z) — 22z#(z) = 0, for z € m,
Blu] + (2"(a), 2" (a), 2" (b), 2" (b)) = 0,

where it is assumed that z = 3 ; 05¢4(z); in terms of o (that are unknown), the system is

ZdD=0 (e“(x)cpd(w) + 2’\¢¢(i4) (:v)) af = L[u)(z), for z €,
(220 ¢h(a)og oo 8 (@)arh, Tilo #h(b)a Sio 8 (b)) = ~Blul.

(b) Update u(z) by
u(z) — u(z) + 2(z) = Z(ad + ag)da(z).
(c) Repeat steps (a) and (b) till sup |z| is below some pre-specified threshold.

5 Data-Driven Selection of )\

It is well-known that the choice of smoothing parameter is one of the most important steps of
the penalized likelihood method in direct density estimation. We expect it to be the same for
indirect density estimation. In this section, we begin with briefly reviewing the cross validation
(CV) method as used for selecting A in direct density estimation. Then, we extend it to select the

smoothing parameter A when estimating the mixing density.

5.1 CV for direct density estimation

Suppose a sample z1,%Z2,...,L, is randomly drawn from a density go(z). The nonparametric

maximum penalized likelihood estimate of go is defined as the maximizer of

Ip(9) Zlog(g z:)) — M (9),
|Vl eV

12




where g is a density, V = {1,2,... ,n} is the index set of the sample, and |V| is the cardinality
of V. The K-fold CV is a popular method for selecting A. The data {z;}1<i<n is divided into
K disjoint subsets of approximately the same size. Let Vi be the index set of the kth subset,
k =1,...,K, g(z) be the density estimate based on the entire data set, and gy _i(z) be the
density estimate based on all data points except those in the kth subset. Two popular CV-type
scores, the least-squares CV score LS()) and the likelihood CV score KL(}), are routmely used in
practice (see Izenman, 1991). They are defined as

K
LSO) = [ (@ do = > 51 3 k(X0

K
KL(}) = Z Z log(ga,~k(Xi
K=Vl

respectively. The smoothing parameter is then chosen as the minimizer of either LS(A) or KL(A).

5.2 CV for indirect density estimation

In indirect density estimation, the observed data {y;} are drawn from the mixture density h(y|go)
instead of the mixing density go. Hence, the CV scores LS(A) and KL{)) cannot be computed
directly. Recall that {y;} can be considered to have been generated from the two-step procedure
discussed at the beginning of Section 3.1 whereof a direct sample {z;} from the targeted mixing
density is postulated. Although the sample {z;} is latent and thus not available, we can consider
the conditional density of z; given y; and go @(z|yi, 90) = f(¥ilz)go(z)/ [ : f(ys|t)go(t)dt. Based on
©(z|yi, go), we propose the following two pseudo-CV scores:

LS(A = [ § m2a:—— o(x|ys, 5.1

PLS(g) = [ n(@)?d lVlzesz/gM 5, 90) 1)
K

PKL(Algo) = 27 Z/log(g,\ ~k(%))e(zlyi, 9o0) d (5.2)
k= 'LGVk

which correspond to LS()) and KL()\) above, respectively. The following proposition justifies using
pLS(Algo) and pKL(A|go) as the cross validation scores for selecting A in indirect density estimation.

Proposition 3. If gy is the true mizing density, then
E[pLS(A|go)] = E[LS(})] and E[pKL(A|g)] = E[KL(A)].

Proposition 3 indicates that the expectation of pLS(A|go) (or pKL(A|go)) is exactly the same
as that of LS(A) (or KL(A)) based on a sample drawn directly from the true density go. Thus,
these pseudo-CV scores are analogous to the true CV scores based on observations from the mixing

density go. However, another difficulty arises when trying to use these scores directly. Note that
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the true density go is in fact not known and the scores are not computable. Next, we propose an
implementable procedure to determine the smoothing parameter A, treating pLS(A|g) and pKL()|g)
as two score functions for any given density g.

Let A be a collection of A values to be considered. For each A € A, a NPMPLE estimate
can be computed by the FEM algorithm and is denoted by §y. Our goal is to select the best
smoothing parameter from A, or equivalently, the best density estimate from {gx, A € A}. Instead
of minimizing pLS(\|ge) (or pKL(A|go)), which is infeasible as pointed out previously, we take a
different approach following the self-voting principle proposed by Gu (1992). For any pair of values
A1 and Ao from A, define

pCV(A2]A1) = pLS(A2|dy,) or = pKL(A2|gn, ),

depending on which pseudo-CV score is used. pCV(A2]A1) can be viewed as the voting score from
A2 to A1. Gu's self-voting principle in our setting states that the optimal smoothing parameter
must satisfy

pCV(A*|A\*) < pCV(A|N*) for any A € A. (5.3)

In other words, the optimal A\* or the corresponding density estimate gy~ must vote for itself. In
general, the smoothing parameter satisfying the self-voting principle is not unique. In particular,
the principle tends to be satisfied by small A values. Hence, the self-voting principle is not enough
for determining the optimal smoothing parameter uniquely. We suggest using a version of this
principle supplemented by the maximum smoothing principle to choose the optimal A. Since the
larger X is, the smoother the density estimate §) is, our maximum smoothing principle states that
the largest \ satisfying (5.3) should be selected. Jones et al. (1996) commented that the largest
local minimizer of CV(h) in kernel density estimation setting usually gives better estimate than
the global minimizer of CV(h). This is analogous to our maximum smoothing principle. Hall and
Marron (1991) observed that spurious local minima of the cross-validation function CV (k) are more
likely to occur when the bandwidth values used are very small rather than very large. We combine
the self-voting principle and the maximum smoothing principle in the following algorithm to obtain
the optimal density estimate.

Algorithm 2
(a) Specify A and divide data randomly into K subsets of approximately the same size.
(b) For each A € A, use Algorithm 1 to compute gy, and gy ¢ for 1 <k < K.
(c) Find w(\) = arg miny, ep pCV(A1|A) for each A € A.

(d) Find X* = argmax{XA : A = w(A)}; then output gx».
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6 Simulations

We have conducted various simulation studies to compare the performances of the FEM algorithm
and the EMS algorithm proposed by Silverman et al. (1990). The EMS algorithm has been shown
to be an effective algorithm for estimating mixing densities, and it usually outperforms the kernel
method proposed by Stefanski and Carroll (1990) and Fan (1991) in case of deconvolution; see
Eggermont and LaRiccia (1997). In this section, we report simulation results for two deconvolution
problems and one general mixture problem. The effectiveness of our smoothing parameter selection

procedure is also demonstrated by a simulation example.

6.1 FEM vs. EMS in deconvolution

In this simulation study, we compare FEM and EMS in deconvolution only, in which random
samples generated from

1
h(y) = /0 by — ) g() do (6.1)

are used to estimate the mixing density g(z). Six different mixing densities denoted by {g;}$_; and
two different component densities denoted by {qu] j=1 are considered, which are

gi(z) oc 1+ B(2;2,4), z € [0,1];

g2(z) o 30(%512) + (%51 2 € 0,1];
m=01) | 4 5(2=05) | 3 (2085} 4 ¢ [0, 1];

g4(z) x exp(—5z), z € [0,1];

g3(z) o< 7 ¢(

gs5(z) o exp(z? — 1.22), z € [0, 1];
g6(z) o exp(z* — 1.22) — 0.5, = € [0,1],
é1(z) = ¢(2/0.05) and ¢o(x) = 10v/2 exp(—20v2|z|)

where ¢ is the density of the standard normal distribution N(0,1), ((z;2,4) is the density of
the beta distribution Beta(2,4), and ¢1(z) and ¢2(z) are the densities of normal distribution and
double exponential distribution with mean 0 and standard deviation 0.05, respectively. All of the
densities considered (i.e. g to g¢) have [0,1] as their support. Following (6.1), each combination
of g; (1 <4 < 6)and ¢; (j = 1,2) generates a mixture density, denoted by h;;. In total, twelve
mixture densities are used in the simulation study.

Three different distance measures are used to calculate the distance between the density es-
timate § and the true density g. They are the integrated squared error distance ISE(g,§) =
N b [9(z) — §(z))* dz, the integrated absolute error distance IAE(g, §) = f lg(z) — §(z)| dz, and the
Kullback-Leibler distance KLD(g, §) = f log (g(z)/4(x)) g(z) dz. In order to compare FEM and
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EMS directly and eliminate the impact of smoothing parameter selection on their performances,
we adopt the strategy of comparing the estimates based on oracle choices of smoothing parame-
ters. For both FEM and EMS, the oracle choice of smoothing parameter is the one that minimizes
the average distance between the true density and the corresponding density estimate. For FEM,
the best smoothing parameter ) is chosen from Sy = {1078 x 2%/2}40 ' while for EMS, the best
smoothing parameter J is chosen from Sy = {4 x [ + 1}?21. In the simulation study, the EMS
algorithm is based on a grid of size 150.

The basic simulation scheme is given below, where L denotes the distance measure that can be
either ISE, IAE or KLD as defined above.

(a) For fixed 7 and j, generate N independent samples, each of size n, from the mixture density
hij. Denote the kth sample {yx}7r, (1 <k < N).

(b) For each sample {yx}}*.;, each smoothing parameter A € Sy, and each smoothing parameter
J € S, use the FEM algorithm (Algorithm 1) and the EMS algorithm, separately, to compute
the density estimates, which are denoted by g3%" and gﬁ},gS, respectively.

(c) For a given distance measure L(g, ), find

~FEM ~EMS

N N
.1 = 1
A = arg ,I\Ié}s'li I ;L(g’g/\’k , and J = arg }Ielgi N ; L{g, g7%)-

(d) Compare {L(g, §§1M)}£’=1 and {L(g, Q?“Zs)},y:l, using summary statistics such as mean, stan-

dard deviation, first quartile (Q1), median and third quartile (Q3).

In Step (c) of the above scheme, % lecv=1 L(g,95%") = E[L(g,35%")] is the average distance
between a density estimate using the smoothing parameter A and the true density; thus A is the
optimal smoothing parameter in that it minimizes this average distance. The same interpretation
applies to J. The scheme has been applied to every hij (1 <4<6;1<j<2) with two different
sample sizes (n = 400 and n = 1600) , 100 replications (N = 100), and all the three distance
measures (L = ISE, IAE or KLD). Therefore, there are in total 72 different scenarios. The results
under these scenarios are reported in Tables 6.1 and 6.2 including means and standard deviations
output from Step (d) of the above scheme. Clearly, the FEM algorithm outperforms the EMS
algorithm uniformly across all the scenarios. In some cases, the improvements of FEM over EMS
are fairly dramatic.

We have also plotted the density estimates generated by the FEM algorithm, the EMS algo-
rithm as well as the kernel estimates, and compare them visually. Figures 6.1 and 6.2 are two sets
of these plots, where solid lines represent the true densities, long-dashed lines represent the FEM
estimates, dashed lines the EMS estimates and dotted lines the kernel estimates. The smoothing
parameters in the kernel method are also the oracle ones. The overall impression is that the FEM
estimates recover the true density much better than the other estimates and demonstrate particu-

larly good behavior at the boundary points. The EMS estimates preserve more local properties of
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Table 6.1: Deconvolution example 1: ¢ = ¢1 (normal noise).

n =400 n = 1600

Algorithm 1 EMS Algorithm 1 EMS

g | Dist. | Mean St. Dev. | Mean St. Dev. | Mean St. Dev. | Mean St. Dev.
ISE | 0.0113 0.0065 } 0.0177 0.0091 | 0.0049 0.0026 | 0.0070  0.0033
g1 | IAE | 0.0783 0.0249 | 0.1022 0.0264 | 0.0500 0.0146 | 0.0602  0.0158
KLD | 0.0061 0.0032 | 0.0093 0.0043 | 0.0026 0.0013 | 0.0037  0.0016
ISE | 0.0240 0.0125 | 0.0273  0.0157 | 0.0083 0.0038 | 0.0081 0.0041
g2 | IAE | 0.1151 0.0299 | 0.1235 0.0336 | 0.0678 0.0154 | 0.0689 0.0164
KLD | 0.0127 0.0059 | 0.0150 0.0071 | 0.0044 0.0019 | 0.0049  0.0020
ISE | 0.0264 0.0113 | 0.0268 0.0108 | 0.0096 0.0045 | 0.0114 0.0048
gs | IAE | 0.1277 0.0293 | 0.1298 0.0293 | 0.0775 0.0178 | 0.0844 0.0187
KLD | 0.0135 0.0056 | 0.0140 0.0055 | 0.0051  0.0022 | 0.0061  0.0025
ISE | 0.0044 0.0060 | 0.0262 0.0163 | 0.0010 0.0015 | 0.0121  0.0069
gs | TAE | 0.0327 0.0264 | 0.0947 0.0264 | 0.0160 0.0123 | 0.0594 0.0139
KLD | 0.0015 0.0021 | 0.0108 0.0057 | 0.0003 0.0005 | 0.0038  0.0015
ISE | 0.0049 0.0049 | 0.0165 0.0089 | 0.0014 0.0013 | 0.0040 0.0021
gs | TAE | 0.0510 0.0267 | 0.1013 0.0269 | 0.0273 0.0135 | 0.0494  0.0136
KLD | 0.0024 0.0025 | 0.0083 0.0045 | 0.0007 0.0006 | 0.0020 0.0010
ISE | 0.0147 0.0114 | 0.0215 0.0107 | 0.0042 0.0026 | 0.0083  0.0041
ge | TAE | 0.0833 0.0272 | 0.1056 0.0267 | 0.0469 0.0143 | 0.0619 0.0139
KLD | 0.0062 0.0039 | 0.0104 0.0046 | 0.0020 0.0011 | 0.0037  0.0017

the likelihood function, and appear to be less smooth than the FEM estimates, especially around
the boundary points. The kernel estimates are much bumpier, which is an indication of their
susceptibility to noise.

6.2 FEM vs. EMS in non-deconvolution

We draw i.i.d. sample Y1,Ys,...,Y, from the density

b
hy) = / (y;25,2/25)g(x) dz (6.2)

where ~y(y;25,2/25) is the density of the Gamma distribution with a shape parameter oo = 25
and a scale parameter § = z/25. Given z > 0, the standard deviation of the distribution with
density ~(y; 25, %/25) is 1/25(x/25)2 = z/5. The same simulation scheme as stated in the previous
subsection was used to compare the performances of FEM and EMS in this example. The numerical
results are summarized in Table 6.3 and the estimates generated by the algorithms were plotted in
Figure 6.3. Both the numerical and visual comparisons show that the FEM algorithm outperforms
the EMS algorithm.
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Table 6.2: Deconvolution example 2: ¢ = ¢ (double exponential noise).

n = 400 n = 1600

Algorithm 1 EMS Algorithm 1 EMS

g | Dist. | Mean St. Dev. | Mean St. Dev. | Mean St. Dev. | Mean St. Dev.
ISE | 0.0111 0.0064 | 0.0180 0.0089 1} 0.0047 0.0025 | 0.0069 0.0032
g1 | IAE | 0.0777 0.0247 | 0.1034 0.0257 | 0.0497 0.0148 | 0.0605  0.0157
KLD | 0.0060 0.0032 | 0.0095 0.0043 | 0.0026 0.0013 | 0.0037 0.0016
ISE | 0.0233 0.0119 | 0.0276 0.0150 | 0.0076 0.0036 | 0.0085 0.0041
g2 | IAE | 0.1137 0.0294 | 0.1247 0.0328 | 0.0653 0.0152 | 0.0700  0.0159
KLD | 0.0125 0.0058 | 0.0154 0.0069 | 0.0043 0.0019 | 0.0052  0.0020
ISE | 0.0249 0.0106 | 0.0263 0.0103 | 0.0091 0.0043 | 0.0110  0.0047
g3 | IAE | 0.1246 0.0282 | 0.1290 0.0275 | 0.0753 0.0177 | 0.0825  0.0183
KLD | 0.0129 0.0053 | 0.0137 0.0052 | 0.0048 0.0022 | 0.0058 0.0024
ISE | 0.0043 0.0061 | 0.0259 0.0165 | 0.0010 0.0015 | 0.0115 0.0067
ga | TAE | 0.0328 0.0263 | 0.0944 0.0268 | 0.0161 0.0123 | 0.0589  0.0136
KLD | 0.0015 0.0021 | 0.0109 0.0056 | 0.0003 0.0005 | 0.0037 0.0014
ISE | 0.0049 0.0049 | 0.0169 0.0089 | 0.0014 0.0013 | 0.0041  0.0021
gs | IAE | 0.0511 0.0266 | 0.1025 0.0261 | 0.0272 0.0134 | 0.0502 0.0130
KLD | 0.0024 0.0025 | 0.0085 0.0044 | 0.0007 0.0006 | 0.0020 0.0010
ISE | 0.0147 0.0115 | 0.0215 0.0107 | 0.0043 0.0027 | 0.0083  0.0041
ge | IAE | 0.0831 0.0273 | 0.1056 0.0264 | 0.0471 0.0141 | 0.0619 0.0138
KLD | 0.0062 0.0039 | 0.0103 0.0046 | 0.0020 0.0011 | 0.0037 0.0016

3.0

- —-— Ai-FEM
--- EMS
-« Kemel
—— True density

25

20

density
15

1.0

0.5

Figure 6.1: Solid line: true mixing density (gs); long-dashed line: estimate by Algorithm 1; dashed
line: estimate by the EMS algorithm; dotted line: estimate by the kernel method. All smoothing
parameters are oracle ones.
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Figure 6.2: Solid line: true mixing density (gs); long-dashed line: estimate by Algorithm 1; dashed
line: estimate by the EMS algorithm; dotted line: estimate by the kernel method. All smoothing
parameters are oracle ones.

Table 6.3: Non-deconvolution example: A gamma density as the component density.

n = 400 n = 1600

Algorithm 1 EMS Algorithm 1 EMS

g | Dist. | Mean St. Dev. | Mean St. Dev. | Mean St. Dev. | Mean St. Dev.
ISE | 0.0110 0.0070 | 0.0168 0.0083 | 0.0044 0.0026 | 0.0056  0.0032
g1 | TAE | 0.0792 0.0262 | 0.1007 0.0262 | 0.0499 0.0156 | 0.0566 0.0173
KLD | 0.0059 0.0033 | 0.0087 0.0044 | 0.0025 0.0014 | 0.0029 0.0016
ISE | 0.0457 0.0304 | 0.0567 0.0365 | 0.0191 0.0094 | 0.0230 0.0171
g2 | IAE | 0.1565 0.0516 | 0.1787 0.0580 | 0.1028 0.0258 | 0.1114  0.0405
KLD | 0.0234 0.0140 | 0.0317 0.0173 | 0.0102 0.0046 | 0.0130  0.0078
ISE | 0.0790 0.0462 | 0.0690 0.0239 | 0.0337 0.0227 | 0.0411  0.0151
gs | IAE | 0.2112 0.0616 | 0.2096 0.0402 | 0.1362 0.0434 | 0.1576  0.0293
KLD | 0.0388 0.0210 | 0.0342 0.0111 | 0.0172 0.0115 | 0.0210 0.0074
ISE | 0.0050 0.0071 | 0.0221 0.0157 } 0.0010 0.0014 | 0.0096 0.0050
g4 | TAE | 0.0349 0.0281 | 0.0897 0.0302 | 0.0161 0.0127 | 0.0540 0.0144
KLD | 0.0017 0.0024 | 0.0102 0.0066 | 0.0004 0.0005 | 0.0034 0.0015
ISE {0.0056 0.0053 | 0.0194 0.0109 | 0.0016 0.0015 | 0.0042 0.0024
gs | TAE | 0.0553 0.0270 | 0.1095 0.0322 | 0.0288 0.0142 | 0.0510 0.0146
KLD | 0.0027 0.0026 | 0.0097 0.0054 | 0.0008 0.0008 | 0.0021 0.0012
ISE | 0.0209 0.0151 | 0.0308 0.0152 | 0.0064 0.0044 | 0.0154 0.0057
gs | IAE | 0.0997 0.0345 | 0.1231 0.0295 | 0.0565 0.0164 | 0.0825 0.0172
KLD | 0.0095 0.0073 | 0.0159 0.0089 | 0.0031 0.0020 | 0.0077  0.0032
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Figure 6.3: Solid line: true mixing density (g;); long-dashed line: estimate by Algorithm 1; dashed
line: estimate by the EMS algorithm. Smoothing parameters are oracle ones.

6.3 Effectiveness of smoothing parameter selection

Recall that the self-voting principle and the maximum smoothing principle are used to select A.
In this subsection, we show the effectiveness of this approach by comparing miny ISE(§,, ¢g) with
ISE(gyus, g) and miny KLD(§y, g) with KLD(gyxv, g), where X% and Af* are the values selected by
the pLS CV score and the pKL CV score, respectively. The deconvolution examples from Section
6.1 are used in the comparison. Recall that g € {g;}$_;, ¢ € {¢1,¢2} and Sy = {1073 x 2F/2}40
Let n =400, N = 100, and K = 10. We randomly partition {1,2,... ,n} into ten folds of roughly
the same size, which are denoted as V1, V5, ..., Vk. The basic comparison procedure is given below.
Note that the pseudo CV score in the procedure can be pLS or pKL.

(a) Generate N samples of size n. Denote the jth sample as {y;;}7; where j =1,2,...,N.

(b) For any 1 < j < N and X € S, use Algorithm 1 to compute the density estimate based on
{vi;}, and denote the resulting estimate as gy ;; for any 1 < k < K, compute the estimate

based on {y;;}igv, and denote the resulting estimate as g[gj’“l, k=1,2,...,K.

(c) Compute the pseudo CV score pCV;(X'|A) for any A, X' € S5, where the subscript j indicates
that the pseudo CV score is based on the jth sample.

(d) Apply the self-voting and maximum smoothing principles to select A, that is, to find the
largest A € Sy that satisfies pCV;(A|A) = maxyes, pCV;(X|A). Denote the result by A5 or
/\;‘L depending on whether pLS or pLS is used as the pCV score.

(e) Generate the scatter plots of ISE(gA;,s’j,g) versus minyeg, ISE(g) ;,9) and KLD(Q}%{LJ,Q)
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Figure 6.4: The left plot: ISE(gys,g) vs. minyISE(gy,g); the right plot: KLD(gykv,g) vs.
miny KLD(gy, g). AX® and AX" are data-driven selected smoothing parameters based on pLS and
pKL, respectively. The comparisons are based on go.

versus minyeg, KLD(§) ;,9), separately, where 1 < j < N,

In essence, the above procedure is to compare the density estimates based on A selected by oracle and
by Algorithm 2 in various deconvolution problems. A representative pair of plots generated from
the procedure are shown in Figures 6.4. In the left plot, the vertical axis represents ISE(QA;,S i 9)
whereas the horizontal axis represents minyeg, ISE(§y ;,9). Notice that the majority of the points
are close to the straight line y = z. This indicates the performances of the oracle estimate and the
estimate based on the A selected by Algorithm 2 are similar to each other. The right plot is for
KLD(Q)‘?LJ, g) and minyecg, KLD(gy ;,9), and it demonstrates the same pattern as the left plot.
Both plots suggest that Algorithm 2 is an acceptable smoothing parameter selection procedure.

7 An Application in Stereology

We apply the FEM algorithm to solve the well-known “corpuscle problem” first discussed in Wicksell
(1925). Suppose there is a three-dimensional specimen consisting of many small spheres embedded
in a medium and we are interested in finding the distribution density of the radii of these spheres.

However, we cannot measure the radii directly; instead, a very thin slice is taken through the
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specimen in a random direction. Examining the thin slice, we can observe a number of circles and
measure their radii. The statistical problem here is to estimate the distribution density of radii
of the three-dimensional spheres from observations generated by the density of the radii of their
two-dimensional projections. Let r represent the radius of a sphere and y be the radius of a circle
observed in the slice. Due to practical considerations, we usually set € < r,y < R where ¢ > 0 and
R are known. The relationship between the density h(y) of y and the density g(r) of r is

1 R y 1 R y
hyz—/ ————grdrz—/l r)————=g(r)dr, e <y <R, 7.1
( ) e Jy \/’p—:—y—2 () Lie /. (y,R)( )mg() Y ( )
where pe = [ ER V12 — €2 g(r)dr and 1(, g)(r) is an indicator function. Given an iid. random
sample y1,¥2,... ,Yn from Ay), we aim to estimate g(r), the density of the radii. For a more
detailed account of this problem, see Nychka et al. (1984), Wilson (1989), Silverman et al. (1990)
and references therein.

In order to apply the FEM algorithm, we rewrite (7.1) as

h(y)=/R( vl ®) > (”T2“62g(’")> dr, e<y<R.

VT = /12— 42 Lhe
Let
* . Yy 1(e,r) (y) * _ re— €2 g(T’)
P = e — o) = e

Then it can be verified that f*(y|r) for any given e < 7 < R and g*(r) are probability densities on
the interval [¢, R]. We treat f* and g* as the component and mixing densities of h(y), respectively.
Estimating g*(r) is equivalent to estimating g(r) because there exists a one-to-one correspondence

between them. Theoretically, if we can get an estimate §* of g*, then the estimate of g is

FONTE
feRg*(s)/\/s2 — €2 ds

g(r) = (7.2)

However, as 7 — e+, 1/v/72 — €2 — oco. Therefore, a small amount of error in estimating g* near
¢ will result in a large amount of error in the estimation of g and the estimate will be numerically
unstable near the left end point €. For this reason, we adapt the FEM algorithm to estimate g
directly, instead of estimating g*.

Suppose g(r) o €’("). We define a penalized likelihood functional of 7,

1 R
b =2 tog [ f(uln)VE= @ ar
=1 €
R R
- log/ Viz—eeldr - / " (r))? dr. (7.3)
€ €
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The NPMPLE of 7 is arg maxpes lp(n). The same procedure to derive the FEM algorithm can be
used to derive an algorithm to compute the NPMLE of ), which is a variant of Algorithm 1. In
the M-steps of the new algorithm, we need to find the maximizer of the following functional

R R R
Olens) = / (YD1, Tewr) b — / Vi — e dr — \ / @) dr (7.4)

where

1 i F*(ys|r)vVrE = 2 enr)

iry 2L 75
D(r|F, New) n 2 R ()5 = B en®) ds (7.5)

It can be shown that the maximizer of Q exists, is unique, and statisfies feR V2 — el dr = 1.
Furthermore, the maximizer of Q satisfies the ODE

’(/)(1""}7, ncur) I T2 — €2 677(7") —2A 77(4) (7') = 07 . (76}
with boundary conditions
n"(e) =n"(e) =0, n"(R) =n"(R) = 0. (7.7)

We summarize the steps of the new algorithm to compute the maximizer of (7.3) as follows and
refer to the algorithm as Algorithm 1.

Algorithm 1’
(a) Specify .
(b) Set k =0 and no(r) =log g=, 7 € [¢, R].
(c) Compute (7|7, nk) as in (7.5). Numerically solve the ODE (7.6) with boundary conditions

(7.7), and denote the solution 7+;. Normalize the solution before proceeding to the next
step,

R
Me+1(r) = Mt (r) — log/ V12 — 2 em+1(r) gp.
€

(d) k — k + 1. Run step (c) until 7 converges. Let 7, be the final estimate of 7. Then
Gg=¢em/ [em.

Silverman et al. (1990) and Wilson (1989) proposed to use the EMS algorithm to compute the
density g(r) of the sphere radii. We have conducted a simulation study to compare the performances
of Algorithm 1’ and EMS. The results show that Algorithm 1’ outperforms EMS numerically and
visually. In particular, the new algorithm works much better than EMS on the left boundary point.

Due to limited space, the simulation results are not reported here.
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8 Concluding Remarks

In this article, we have proposed the FEM algorithm to compute the the mixing density in a
mixture model. The algorithm can be considered an extension of the maximum penalized likelihood
approach for direct density estimation to indirect density estimation. Simulation studies have
shown that the new algorithm outperform many existing methods such as the EMS algorithm
and the kernel methods. We have proposed to use Gu’s self-voting principle and the maximum
smoothing principle to select the smoothing parameter. Though it performs well in general, the
optimal selection of smoothing parameter for the FEM algorithm is still an open problem and
invites further study. An important characteristic of our work is the use of methods from the
calculus of variations and differential equations. As a matter of fact, theories and methods in
the calculus of variations and differential equations are developed to study functions that possess
certain optimality over various function spaces. They are naturally related to many nonparametric
function estimation problems in statistics. We believe that their use in statistics deserves further
exploration.

Appendix

The following lemma, is needed in the proof of Theorem 1.

Lemma 1. For any constants C,B > 0, define S©F = {n € H : n(a) =0, |7'(a)| < C,J(n) < B}.
Then there exists an # € S©B such that 1,(7) > lp(n) for any n € SE5.

Proof. For any n € S9B, because ' € W12, by Theorem A.6 of Braides (2002), without loss of
generality, we can assume 7’ € Cla,b] and 7'(z) — 7' (y) = [ 1" (t) dt for all z,y € [a,b]. Hence we

have
max(z,y) 1/2
n'(@) ='W < | |z —yl / [ () dt )  for allz,y € [a,b] (a-1)
min(z,y)
by Cauchy inequality and
7' ()| < I'(@)] + |7’ () — 7' ()] < C + (b—a)/*B"* forallz,y € [a,b]. (a-2)

Since n(a) = 0,n(z) = [’ 7/(t) dt, we have
n(z)| < (C+ (b~ a)/?B)(w~a) < (C + (b~ a)/*B2)(b - a).

Therefore

£1() ¢(C+(b-0)"/?B1/%)(b-a)

<
Pt ge ~ e CHE-aPEA6-a)(p — q)

(= U(C, B)). (a-3)
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For all n € S8, we have Ip(n) < I(n) < log(MU(C, B)) < oo, hence sup,cgc,s lp(n) < oo.
Therefore, there exist a sequence {n;} € S®Z such that I,(nx) — D = Suppesc.B lp(n) as k — oo.
Without loss of generality, assume 7, (z) € Cla,b] for allk. Since 7} (x)’s satisfy the condition
(a-2), {n,}'s are equicontinuous and equibounded. By the Arzela-Ascoli theorem, there exists a
subsequence {n; } and a continuous function & on [a,b] such that n;,_(z) — &o(z) uniformly as
m — oo. Then g, (z) = [7m;, (t)dt — [ &(t)dt = mo(z) uniformly. For convenience, we still use

{m.} to denote {nk }.
Because f m( z)?dz < B, that is, the Lo-norms of 7}, are equibounded, and Lz(a, b) is a reflexive

space, there exists a subsequence {nkm}, such that nkm converges weakly in La(a, b) to some function
v € La(a,b). Again for convenience, we still denote the subsequence by {7;,}. The weak convergence
of n;, implies that

/a b nheds — /a b vodz _ (a-4)

for all ¢ € Lo(a,b). In particular, for any ¢ which is smooth and has compact support in (a,b),

that is, ¢ € C(a,b), we have
b b
[ o=~ [ nigda.
a a

Hence

/£O¢dac—— lim / n,d'dr = — hm/n q’)da:——/ vedz, for all p € CP(a,b).

The above equation can be interpreted as saying that v is the weak derivative of & = 1.
Since b2 — a? > 2a(b — a), we infer that

b b
hm 1nf/ MO = / [v(x)]*dz > likminf/ 2u(ny — v)dz =0
a =X Ja

The last equality is due to equation (a-4).
Therefore

Il

b b b
/ Flyi|z)e™@dz — / ™) dz — lim inf/ [n% (z))?dz
a a k—oo Jq

b b b
/f(yilx)e""(”)d:c—/ e”‘)(’”)dx—/ [v(x))?dz
ab ab ab
= /f(yilx)eno(x)d:c—/ en"(w)dx—/ 76 (z)]dz.

lim sup lp(nk)
k—oo

AN

Let 7} = mo. Sincemp(a) = 0, |n{a)| = |limg n;,(a)| < C and f [n4(z)]? dz < hmlnfk_,oof ! (z))?dz
< B, one has § = mp € S9B. Because limy_o0 lp(7k) = sup,egc.5 lp(n), one can conclude that
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Ip(f) = sup,egc.s lp(n). Note that the proof follows the techniques in Buttazzo et al. (1998). O

Proof of Theorem 1

Proof. By Assumption A2, let n =0, we know that

i) =16 = S 108 (52 [ tule) ao)

exists. Therefore sup, ¢y Ip(n) > —oo.

Let Ho = {n : n € H,n(a) = 0}. It is easy to see that sup,cs, L(n) = sup,es l(n) and the
existence of one side implies the existence of the other side. Let {nx} C Ho be a sequence such that
() = SuDyery bp(n)- Let Ci = Inf(a)l, By = [ln"k(2)] do.

If both C’s and By’s are bounded above, that is, there exist constants C' and B such that Cj <
C and By < B, then by Lemma 1, there exists # € S©F such that 1,(}) > I,(n) for all n € SEB.
Since ny € S5, supy e, lp(n) = limy lp(nk) < 1p(7), 50 Ip(7)) = SUPyeny, Lp(n) and the theorem is
proved. Therefore, it is sufficient to show that Cj, and By are indeed bounded above.

We will prove the theorem in three steps. Step 1 shows that Cy — (b~ a)l/ 2B,Y/?'s are bounded
above; Step 2 shows that Bg’s are bounded above; and Step 3 shows that Ci’s are bounded above
as well.

Step 1:
By (a-1), we have

ni(e) = (b — @) ?By}/? < mj(e) < () + (b — @) /2By, (a-5)

Assume that {Cy — (b — a)'/2B4!/?}’s are not bounded above. Then we can find a subsequence
of {nx}, which is still denoted as {7}, such that one of the following statements is true: (a)
Ci — (b—a)/2B,1/2 - o, which implies Cy — 00, and 7}, (a) = Cj; or (b) Crp— (b—a)}/2B;!/?% — oo
and 7. (a) = —C.

Without loss of generality, we assume the statement (a) is true. Then
m(z) > Cr — (b— a)/?B;,1/? > 0 for large k. (a-6)

For any v > 0, we can find A > 0 such that f(yi|z) < f(yi]b) +7, forallz € (b— A,b), and i =
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1,2,...,n. Since ng(x) is a increasing function for large enough &, for = € [a,b — A],

enk (Z) enk(b_A) enk (b_A)

< <
[rem®dt = [P, en@ dn = emEmAA/2

1 / 1
— Me(b=B)=ne(0-8/2) ___ _ o—m(b—08)AJ2_~
e N ek 7 where 1/2 <0< 1

< e—A/2<Ck—<b—a>lszk1/2>AL/2 S 0as k— oo.
Therefore, for large enough k and z € [a,b — A],

enk (:E)
——
f: e () dt 7

Hence
f; f(yi|:v)e’7’°(x)d:c _ ff—A Flyilz)em®dz + fbb_A Fyilz)en @) dz
f: eMe(®) dx f: eMe(z)dy
b—A fbb_A e ()
<o [ Hulo)da + (Flult) + AR
a N e ()

< My + fyilb) +

fori=1,2,...,n and

k—o00

: 1

limsup () < — > log{f(wilb) + (1 + M)}
i=1

0 Since v can be any positive number, we have

limsup I(m) < % > log f(yilb).

k—o0 i=1

Since n* satisfies (2.7), we have limsupy [(nx) < I(n*) = lp(n*), which implies

sup lp(n) = sup bp(n) = limip(n) < limsup () < Lp(77).
neH n€Ho k k

Noting that n* € N; C H, the foregoing inequality contradicts the the definition of sup, ez lp(n)-

Thus the initial assumption must be false, and Cx — (b — a)l/ 2B,1/?’s are bounded above.

Step 2:

By Assumption A2 and (a-3), I(m) < log(MU(Ck, B)) = O(Cy, + (b — a)}/2B;/2). In Step 1
we have shown that Cy — (b—a)1/2Bk1/2’s are bounded above. Therefore, O(Cj+ (b—a)l/szl/z) =
O(By/?). If By’s are not bounded above, then Ip(ng) = I(nk) — AJ(n) < O(B'/?) — ABy — —o0
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and sup,ey lp(n) = limly(nk) = —oo . This is clearly a contradiction. Hence By’s are bounded
above.

Step 3:
Because both Cy, — (b— a)'/2B/?’s and By’s are bounded above, C’s are also bounded above.

We have shown that By’s and Ci’s are bounded above. Therefore, the theorem follows. O

Proof of Proposition 1

Proof. Let g(z|n) = €7@}/ f: ") dt. Then the complete penalized log-likelihood functional lep(n)
can be rewritten as

b
o) = % Y~ log flulas) + og g(aitn)} — X [ [1'(@))” d.

Again let o(z|y,n) = f(y]x)e”<z)/f; f(ylt)e"™® di. Because

flz)g(zin) = hyIn)e(zly,n) = p(z,yln)

where p(z,y|n) is the joint probability density of (z,y) given 7, we have

b
L) = = S log h{wsbn) +log p(aifyem)} = A [ [1(@)]” do

=1,(n) + % Z{logw(milyi,n)}-

Therefore,

n b
Q(n[ncur) = lp(77) + %Z/ {1Og Qo(leyz; n)}so(xilyiﬂ’/cur) dmi = lp(n) + H(Tllncur)
i=1va

By the definition of 7,.,, and the Jason’s inequality, we have Q(Tuew|Meur) = lp(Mnew) + H (Maew [Meur) =

QMeurMeur) = lp(Mewr) + H (Mewe|Newr) 80 H (Nnew [Tewr) < H (Neur|Meur). Therefore Lp(fnew) > Lp(Teur)-
O

Proof of Proposition 2

Proof. Let S = {n € H: [e" =1} Let n* =n—log[e”. Then [e" =1landn* € S. It
is clear that maxyes Q) = maxnes Q(leur). Because Q(MiNew) = Q(*|n..) and 7* € S,

maxner Q(lNeur) = Maxnes Q(leur). Because Q) = Q0" lewr) + 1 — [ €7 + log([ &) <
Q(M*|Neur) and the equality holds if and only if [e7 = 1, that is, n € S, we can obtain that
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maXpeH Q(T/[ncur) = mMaXpeg Q(nl’r]cur) Therefore,

cur = ) cur d ) cur S'
r%aﬁcQ(nln ) I;lea,,fQ(nln ) an argr%a%cQ(nln ) €

Sketch proof of Theorem 2

Proof. Theorem 4.1 of Gu and Qiu (1993) states: Suppose A(n) is a continuous and strictly concave
functional in a Hilbert space H = Hy & Ny, where Hy has a square norm J(n) and Ny is the null
space of J(n) of finite dimensions. If A(n) has a mazimizer in Ny, then A(n) — AJ(n) has a unique
mazimizer in H for any A > 0.

Let A(n) = [, n@0(@ld, nw)dz — [} &"@dz, J(n) = [ [n"(z)]* dz, H = W?2(a,b), and
Njy={cz+d:cdeR,}. We can prove that A(n) is a continuous and strictly concave functional
and A(n) has a unique maximizer in Nj. By Theorem 4.1 of Gu and Qiu (1993), Theorem 2
holds. O

Proof of Theorem 3
Proof. Define

A(t) = Q(n(x) + te(z) o) (a-7)

b b b
=/ n(z) + te(z) | (z|Y, Deur) dT — / (@) +te(z) g )\/ [7"(x) + te" (z)]? dz. (a-8)

a

~Under some mild conditions, we have

b
At) = / ()@l Newr)

b b

_ / €(z) @) gy _ ) / 26 (@)l (z) + te' ()] da. (2-9)

and
b b b
A'(0) z/ €(2)Y(T|T, Neur) dT —/ e(z)e"®) dz — 2)\/ ¢ (z)n" (z) dz. (a-10)
A necessary condition of 7 maximizing Q (7|7, is A’(0) = 0 for any function e.

Using intergration by parts, we have f: e'n" dz = € (b)n" (b)—¢€'(a)n” (a)—e(b)n™ (b)+e(a)n’” (a)+
f: en® dz. If € is chosen to be a function such that e(a) = €(b) = ¢'(a) = € (b) = 0, then

b
A'(0) = / e(z) {¢(x[gj,nm)—e"<w>—2An<4>(x)} dz. (a-11)
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If 7 is a maximizer of Q(7|Neur), then A’(0) = 0, which further implies
Y217, Mewr) — €7@ — 220 @ () = 0,for 3 € (a,). (2-12)

Under the above equation (a-12), we have A'(0) = —2X\{¢/(b)n"(b) — € (a)n”(a) — e(b)n’(b) +
e(a)n”'(a)} for any e. So A’(0) = 0 for alle implies

n"(a) =n"(a) =0, n"(b) =n"(b) =0 (a-13)

In conclusion, if 7 maximizes Q(7|7Neur), it must satisfy (a~-12) and (a-13), which are exactly (3.7)
and (3.8). The theorem is proved. O

The proofs of Theorem 4 and Proposition 3 are omitted due to limited space; readers are referred
to Liu (2005) for more details.
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