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Abstract

Whole genome microarray investigations (eg, differential expres-
sion, differential methylation, ChIP Chip) provide opportunities to
test thousands of features in a genome. Traditional multiple com-
parison procedures such as familywise error rate (FWER) controlling
procedures are too conservative. Although false discovery rate (FDR)
procedures have been suggested as having greater power, the control
itself is not exact and depends on the proportion of true null hypothe-
ses. Because this proportion is unknown, it has to be accurately (small
bias, small variance) estimated, preferably using a simple calculation
that can be made accessible to the general scientific community. We
propose an easy-to-implement method for estimating the proportion
of true null hypotheses. This estimate has relatively small bias and
small variance as demonstrated by (simulated and real data) compar-
ing it with four existing procedures. Although presented here in the
context of microarrays, this estimate is applicable for many multiple
comparison situations.

Keywords: False discovery rate; Multiple comparisons; Type I
error rate; Microarray.




1 Introduction

Genomic technologies are producing vast amounts of biological data that are
the basis for investigations that require repetitive testing of the same hy-
pothesis. Because the number of tests performed (eg, differential expression)
is so large, sometimes the multiple comparison procedures that control the
familywise error rate are too strict for biological applications (eg, differen-
tial methylation). In fact, many biologists would rather experience several
more false positives (ie, type I errors; false rejections of the null hypothe-
sis) than lose important information. In an attempt to address the multiple
comparison issue Benjamini & Hochberg (1995) introduced an error rate
measure called False Discovery Rate (FDR) (ie, the expected proportion of
false rejections among all the rejected hypotheses). Specifically, a family of
m hypothesis tests is considered, of which mg are true. The proportion of
erroneously rejected null hypotheses among all the rejected null hypotheses
can be captured by the random variable Q = V/R, where R is the number of
rejected hypotheses and V' is the number of false rejections (type I errors).
Benjamini & Hochberg (1995) formally define the FDR to be the expected
proportion of falsely rejected hypotheses among all the rejections,

FDR = E(Q) = E(V/R), (1)

where ) = 0 when R = 0 (no rejections). _

Let pay < pey < -+ < pim) be the ordered p-values and Hy;) be the null
hypothesis corresponding to p;). In Benjamini and Hochberg’s (BH) FDR
controlling procedure (Benjamini & Hochberg 1995), K is considered to be
the largest k such that py) < (k/m)a. If a such K exists, all null hypotheses
Hg,i=1,---,K are rejected. If no such K exists, then no hypotheses are
rejected. The BH FDR controlling procedure controls the FDR at exactly
the level (mg/m)a < «, and hence conservatively at «, for independent test
statistics and for any configuration of false null hypotheses (Benjamini &
Yekutieli 2001, Storey, et al. 2004). Benjamini & Hochberg (2000) proposed
an adaptive procedure which provides more power than the original FDR
controlling procedure by comparing each pgy with (k/fo)a where g is an
estimate of my. If the estimated value of mg is such that my, > mg with
probability one, then the adaptive BH FDR controlling procedure will lead
to FDR = %Q(%a) = %ga < a. Because the accuracy and variation of
the estimate of myg, or my = mg/m, directly affects the performance of the
adaptive FDR controlling procedure our focus is on the estimation and effect
of To.




We propose a simple and easy-to-implement method for estimating the
proportion of true null hypotheses. The performance of this estimate is
compared to existing methods via simulated and real data. Specifically, Ben-
jamini & Hochberg (2000) estimated the number of true hypotheses from
the observed p-values using the Lowest SLope (LSL) estimator. Their ap-
proach was based on a modification of the graphical method of Schweder &
Spjotvoll (1982). Alternatively, Storey (2002) proposed an estimate of my by
assuming the p-values corresponding to true null hypotheses are uniformly
distributed on the interval (0,1) and selecting a reasonable tuning parame-
ter 0 < A < 1. Finally, Langaas, et al. (2005) derived estimators based on
nonparametric maximum likelihood estimation of the p-value density, under
the restriction of decreasing and convex decreasing densities. Although Ben-
jamini and Hochberg’s original and adaptive FDR controlling procedure are
developed for independent statistics these procedures can also be applied to
some dependence structures (Benjamini & Yekutieli 2001). Simulations have
also demonstrated that they can be used for situations where there is a weak
correlation structure among the genes (Storey et al. 2004). However, because
of the small number of biological replicates used in most microarray exper-
iments, it is very difficult to measure the correlation structure among a set
or family of genes. Reiner, et al. (2003) proposed a procedure for the general
case, but it is conservative when compared to the adaptive FDR controlling
procedures.

2 Methods

2.1 Storey’s approach

Our approach is motivated by the work of Storey (2002), where the propor-
tion of true null hypotheses, ng, is estimated by

W(A)

Fo(A) = Ty (2)

where W(X) = #{p; : p; > A}, and 0 < X < 1 is a tuning parameter.
The rationale for this estimate is that p-values corresponding to true null
hypotheses are uniformly distributed on the interval (0,1), of which most
should be close to 1. Thus, for a reasonable A, there are about mg(1 — A)
such p-values in the interval (A, 1] such that W()X) = mg(1 — ). Black
(2004) pointed out that Equation (2) is an unbiased estimate of m for all
values of A if all the null hypotheses are true and the p-values have a uniform
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distribution on the interval (0,1). However, there is an upward bias when
the p-values come from both true null and true alternative hypotheses. As it
turns out, choosing the tuning parameter A in Equation (2) is very important
since there is a bias-variance trade-off. When A — 0, the variance of 7y()\)
becomes smaller, and the bias of this estimate increases. When A — 1, the
bias of 7o(A) becomes smaller, and the variance of this estimate increases.
To address this point, Storey et al. (2004) proposed a bootstrap method that
automatically chooses A when estimating 7o(A).

Instead of choosing one specific A, Storey & Tibshirani (2003) proposed an
estimate of 7y using }‘eri 7o(A) so that the bias is small and there is a balance

between both bias and variance. For this approach, 7o()) is plotted over
a range of A = 0,0.05,0.10,---,0.90, and then a natural cubic smoothing
spline is fit to these data for the purpose of estimating the overall trend of
7o(A) as A — 1. In the QVALUE (http://faculty.washington.edu/~ jstorey/)
software, the predicted value of () at A = 0.90 is chosen as the estimate
of 0.

2.2 Average estimate approach

As mentioned previously, the estimate To(A) = (K% where 0 < A < 1, has
a large bias and small variance when A is small, and a small bias and large
variance when A is big. Suppose for each A;, where 0 < A\ < Ay < -++ <

Ar < 1, we compute To();) as in Equation (2), then
E[”/F\Q()\z)] = T + £q,

where Ele;] = 6;, 6; > 0541, Var[e;] = 02, and 07 < o7, ;. Therefore, a natural
choice is to consider the average of () over the values of A;,

The bias of 7o, 1/n i d;, is smaller than §; (the bias of the estimate of g

i=1
at A = A1), and at the same time, Ty has a smaller variance. Considering
the average of 7p(\) over a range of A to estimate mg reduces the problem to
choosing the range of A.
Define 0 =t; <ty < -+ < tp < tgy; = 1 as equally spaced points in the
interval [0, 1] such that the interval [0, 1] is divided into B small intervals with
equal length 1/B. Specifically, ¢; = (i — 1)/B. For example, when B = 10,
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t1=0,8,=0.1,--- ,t10=0.9. Foreacht; (i =1,--- , B), #io(t;) is an estimate
of my via Equation (2) with A = ¢;. The goal then becomes finding a subset
of t;’s such that a new estimate of my is obtained by taking the average of
the corresponding values of 7p(t;). Let NB; denote the number of p-values
which are greater than or equal to ¢;, and let N.S; represent the number of
p-values in the interval of [t;, ¢;41). Therefore,

NB; = #{px:pr >t} (3)
. N B;
7o (i) m, (4)
NS, = #{pk:t: <pr < tin}, (5)

where i =1,--- ,B.

If the N B; p-values come from the null distribution, then on average there
are -B—]%%—l p-values in each of the (B —i+ 1) small intervals on [t;, 1], ie, there
are E@%ﬁ p-values in each small interval [t;,¢;41) for ¢ < j < B. Since the
p-values corresponding to the true alternative hypotheses are smaller than
those corresponding to the true null hypotheses, there are more p-values in
the intervals [¢;,¢;11) with small index 4. For small ¢, NS; is usually greater
than BJX ﬁil. Therefore, initiating from ¢ = 1, we find the first 7 such that
NS; < —EJ—X%. If such 1 exists, t; can be considered as the change point and
we assume all the p-values bigger than ¢; come from the true null hypotheses.
Then m, can be estimated by

. 1 .
To(B) = B_ir1 To(t5) (6)
j=t
1 =2 nwB 0
- B—-i+1 = (1-t)m

where 1 = min{i : NS; < 222}, In order to find the range of A, only a lower
bound of X is required. The large values of ¢; are used so that it ensures the
estimate of mp has small bias. This is equivalent to fitting a straight line
with slope 0 in the right bottom part of a 7y(t;) versus ¢; plot, such that the
intercept provides the estimate of 7y. A simple modification of this approach

is to estimate mp by taking the average of o(t;) from j =i —1 to B, that is,

=B

TBoiv2 24 -tym ®)




where ¢ = min{i : NS; < N VB, -+ }. This ensures that the upward bias increases
and the variance decreases as #o(ti—1) has smaller variance and bigger bias
than 7y(¢;) for j =14,--- , B.

A remaining issue is how to choose B. Specifically, how many \’s should
be used in the interval [0,1]. Recall that a motivating factor of the proposed
average estimate approach is to balance the bias and variance. The natu-
ral way to measure both the bias and variance is the mean-squared error,
E[7mo(B) — mo)?. Since the true value of m, is unknown, and the theoretical

result is intractable, we take a bootstrap approach in the following way:

1. For each B € I, I = {5, 10,20, 50,100}, compute 7o(B) as in Equation
(8).

2. Form N bootstrap samples of the p-values, and compute the bootstrap
estimates m3°(B) for b= 1,--- , N and B € {5, 10,20, 50, 100}.

3. For each B € I, estimate its respective mean-squared error as

1
MSE(B) = NZ_: *5(B) — )2,
where,
Tip = averageg ¢ {To(B')}.
4. Let B = arg minge;y @(B), then the estimate of 7y is 7Ty = %O(E).

Notice that in step three the value of 7 is estimated by the average of the
7o(B) over a range of B.

3 Results

3.1 Simulation studies

To investigate the performance of the proposed average estimate approach,
a simulation study was performed. Taking m = 1,000 (ie, 1,000 genes
are tested for differential expression), let mg vary over a wide range, say

mo = 0.50,0.60,---,0.90 which are reasonable for microarray experiments.
Hypotheses, Hy: = 0 versus H,: p > 0, are tested for independent random
variables Z; (i = 1,--- ,m) from null distribution N(0,1) and alternative dis-

tribution N(2,1) (ie, mmy and m(1 — mp) random variables have mean 0 and
2, respectively). For each test, the p-value is computed as p; = P(Z > z),
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where Z is a random variable of standard normal distribution N(0,1) and z;
is the observed value of Z;. For each value of my, [ = 1,000 data sets were
simulated.

For the choice of B, we have either B being fixed (ie, B = 5, 10, 20, 50,
and 100) or being chosen by the proposed bootstrap approach. For each of

the [ = 1,000 simulated data sets, when B is fixed, the estimate of mp is
j=B

computed via Equation (8), that is, 7o = =5 >, o(t;) where ¢ = min{i :
j=i-1

NS; < BJX ﬁ’_l} If such ¢ does not exist, mp is estimated by the average of

7io(tg—1) and 7o(tp). For the bootstrap approach to automatically choose B,

the range of B is 5, 10, 20, 50, 100.

For completion the performance of the proposed average estimate ap-
proach is compared with several existing procedures. Specifically,

1. Benjamini and Hochberg’s lowest slope estimate (LSL) (Benjamini &
Hochberg 2000),

2. Storey’s bootstrap estimate (Storeynee) (Storey et al. 2004),

3. Storey and Tibshirani’s smoother estimate (STsmoother) (Storey & Tibshirani

2003),

4. Langass et al’s nonparametric maximum likelihood estimate (convest)
(Langaas et al. 2005).

For procedures 2 and 3, the QVALUE software was downloaded from the
website http://faculty. washington.edu/ ~ jstorey/. For procedure 4, the R
function convest was downloaded from the R library limma as part of the
Bioconductor project at http://www.bioconductor.org.

Table 1 summarizes the simulation results. Bias and the standard devia-
tion of the estimates are estimated by

—— 1 &
Bias = -l- Z=: 7!'01,
1 t=l i=l

Sid = l—1Z:7T0z Z 0i)?,

=1

where 7o; estimates 7y for the ith simulation, and 7y is the true value. As
demonstrated, the LSL approach has the largest upward bias which guar-
antees that Benjamini and Hochberg’s adaptive FDR controlling procedure
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controls the FDR below a pre-chosen FDR level. However, the FDR can
be much lower than the pre-chosen FDR level. The LSL approach also has
the smallest variation. The last three approaches [2-4] all underestimate the
proportion of true null hypotheses. The proposed average estimate approach
provides estimates of my that have upward but relatively small bias and rela-
tively small variance regardless of whether B is fixed or automatically chosen
via bootstrap procedure. When B increases, the bias increases and the vari-
ation decreases. Both the small upward bias and small variance provide
evidence that the proposed average estimate approach has better properties
when compared to the other approaches.

The FDR is also compared in this numerical study by applying Ben-
jamini and Hochberg’s adaptive FDR controlling procedure (Benjamini &
Hochberg 2000) with 7y estimated using the above mentioned five methods
(Table 2). The FDR significance level was chosen as oo = 0.05. For the pur-
pose of comparison, the original BH FDR, controlling procedure (Benjamini
& Hochberg 1995) and the adaptive FDR controlling procedure with the
incorporation of the true value of my were also applied to the p-values. It
can be seen that the original BH FDR controlling procedure has the lowest
FDR as expected. Because Benjamini and Hochberg’s lowest slope approach
overestimates my, the FDR is below, but much lower than, the pre-chosen o,
although this approach has a bigger FDR than that of the BH procedure.
Storey’s bootstrap estimate, the smoother estimate, and convest estimate
produce higher FDRs than the pre-chosen level because all three methods
underestimate 7. Our proposed average estimate approach overestimates 7y,
its FDR. is below but very close to the pre-chosen significance level a = 0.05.
Table 2 also demonstrates that the FDR for the proposed average estimate
has the relatively small variation.

The power of the five adaptive FDR controlling procedures is compared
(Table 3). The power of a procedure is measured by average power which is
defined to be the ratio of average number of correct rejections of true alterna-
tive hypotheses to the total number of true alternative hypotheses. Formally,
average power = E(S)/(m — my). As illustrated, the power decreases when
7o increases for all of the FDR controlling procedures. The original BH
procedure has the lowest power, while Benjamini and Hochberg’s adaptive
procedure has the second lowest power. It is not surprising that Storeypoot
procedure has the largest statistical power, because the FDR of this proce-
dure exceeds the pre-chosen FDR significance level (Table 2).




Table 1: The estimate of the proportion of true null hypotheses is compared
for: Benjamini and Hochberg’s lowest slope approach (LSL), Storey’s @o(A)
estimate with A selected via bootstrapping (Storeypees), Storey and Tib-
shirani’s smoother method (STsmoother), Langass’s nonparametric maximum
likelihood approach (convest), and the proposed average estimate approach
with fixed values of B = 5,10,20,50,100 and with B chosen via the boot-
strapping procedure (Byoot). There are 1,000 simulated data sets, each with
a total of m = 1,000 hypothesis tests, for each value of 7.

o 0.5 0.6 0.7 0.8 0.9
Estimates of mg

LSL 0.7151 0.7889 0.8561 0.9184 0.9683
Storeypoot 0.4814 0.5789 0.6765 0.7728 0.8660
STsmoother 0.4951 0.5939 0.6980 0.7993 0.8973
convest 0.4963 0.5938 0.6947 0.792 0.8882

B=5 0.5132 0.6113 0.7136 0.8086 0.9058
B=10 0.5082 0.6084 0.7083 0.8045 0.9052
B =20 0.5141 0.6128 0.7115 0.8076 0.9064
B =50 0.5196 0.6175 0.7156 0.8106 0.9078
B =100 0.5243 0.6210 0.7180 0.8122 0.9085
Bpoot ~ 0.5195 0.6175 0.7148 0.8113 0.9082
Standard deviation of 7y estimates

LSL 0.0323 0.0269 0.0225 0.0155 0.0092
Storeypoot 0.0467 0.0491 0.0513 0.0522 0.0549
STsmoother 0.0513 0.0570 0.0608 0.0654 0.0656
convest 0.0331 0.0364 0.0337 0.0321 0.0328

B=5 0.0335 0.0356 0.0420 0.0428 0.0382
B=10 0.0391 0.0390 0.0402 0.0412 0.0366
B =20 0.0331 0.0343 0.0358 0.0371 0.0331
B =50 0.0293 0.0309 0.0321 0.0334 0.0315
B =100 0.0272 0.0291 0.0307 0.0321 0.0312
Bhoot 0.0301 0.0301 0.0313 0.0313 0.0311
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Table 2:  Simulation results of the False Discovery Rate (FDR) at signif-
icance level o = 0.05 for six procedures: Benjamini and Hochberg’s FDR
controlling procedure with incorporation of the true my (BH,,), Benjamini
and Hochberg’s FDR controlling procedure (BH), Benjamini and Hochberg’s
adaptive approach with incorporation of the estimate of 7y which is estimated
by the proposed average estimate procedure where B is chosen via bootstrap-
ping, Benjamini and Hochberg’s lowest slope approach (LSL), Storey’s boot-
strapping approach (Storeypoot), Storey and Tibshirani’s smoother method
(STsmoother), @nd Langass et al.’s nonparametric maximum likelihood es-
timate (convest), respectively. The total number of hypotheses tests is
m = 1,000, and the size of simulation study 1,000 for each value of .

) 0.5 0.6 0.7 0.8 0.9
Estimate of FDR

BH, 0.0499 0.0501 0.0506 0.0507 0.0520
BH 0.0252 0.0301 0.0349 0.0408 0.0455
LSL 0.0352 0.0386 0.0409 0.0445 0.0474

Storeypoor 0.0521 0.0524 0.0526 0.0529 0.0542
STsmoother 0.0527 0.0529 0.0528 0.0531 0.0546
convest 0.0506 0.0508 0.0512 0.0516 0.0531

Bioot 0.0479 0.0492 0.0486 0.0485 0.0493

Standard deviation of the FDR estimates
BH,, 0.0129 0.0166 0.0222 0.0328 0.0743
BH 0.0117 0.0151 0.0214 0.0332 0.0736
LSL . 0.0126 0.0163 0.0220 0.0331 0.0740

Storeynoot 0.0144 0.0177 0.0226 0.0336 0.0742
STsmoother 0.0146  0.0177 0.0226 0.0334 0.0742
convest 0.0139 0.0171 0.0224 0.0332 0.0754

Bboot 0.0134 0.0173 0.0219 0.0314 0.0625
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Table 3: Simulation results for the evaluation of statistical power at signif-
icance level o = 0.05 for six procedures: Benjamini and Hochberg’s FDR
controlling procedure with incorporation of the true my (BH,,), Benjamini
and Hochberg’s FDR controlling procedure (BH), Benjamini and Hochberg’s
adaptive approach with incorporation of the estimate of 7y which is estimated
by the proposed average estimate procedure where B is chosen via bootstrap-
ping, Benjamini and Hochberg’s lowest slope approach (LSL), Storey’s boot-
strapping approach (Storeypeet), Storey and Tibshirani’s smoother method
(STsmoother), and Langass et al.’s nonparametric maximum likelihood es-
timate (convest), respectively. The total number of hypotheses tests is
m = 1,000, and the size of simulation study is 1,000 for each value of .

o 0.5 0.6 0.7 0.8 0.9
Estimate of power

BH,, 0.5376 0.4351 0.3330 0.2307 0.1181
BH 0.3619 0.3138 0.2572 0.1915 0.1061
LSL 0.4460 0.3683 0.2881 0.2061 0.1095

Storeynooy 0.5479 0.4451 0.3422 0.2370 0.1238
STsmoother 0.5508 0.4471 0.3435 0.2380 0.1244
convest 0.5400 0.4378 0.3353 0.2323 0.1198

Bhoot 0.5274 0.4304 0.3296 0.2281 0.1234

Standard deviation of the power estimates
BH,, 0.0331 0.0382 0.0452 0.0530 0.0564
BH 0.0361 0.0380 0.0451 0.0504 0.0542
LSL 0.0399 0.0407 0.0466 0.0526 0.0553

Storeypoor 0.0408 0.0445 0.0490 0.0547 0.0588
STemoother 0.0409 0.0445 0.0492 0.0547 0.0590
convest 0.0378 0.0414 0.0466 0.0537 0.0574

Bhoot 0.0367 0.0409 0.0449 0.0522 0.0591
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Table 4: The estimate of the proportion of true null hypotheses and the
number of statistically significant genes for the leukemai data (Golub, et al.
1999) at significance level o = 0.05 after applying Benjamni and Hochberg’s
adaptive FDR controlling procedure with 7, estimated using five methods:
Benjamini and Hochberg’s lowest slope approach (LSL), Storey’s mo(\) esti-
mate with A selected via bootstrapping (Storeyyoet), Storey and Tibshirani’s
smoother method (STsmoother), Langass’s convest approach (convest), and the
proposed average approach with B chosen via the bootstrapping procedure
(Bpoot)- A two-sample t-test was used to compute the p-values.

Method Estimate of mp Number of Significant genes
LSL 0.899 584
Storeypoot 0.595 787
STsmoother 0.583 791
convest 0.595 787
Bboot 0.604 776

3.2 Microarray data application

The same five estimating my methods were also applied to the training sam-
ples of the leukemia data of Golub, et al. (1999), which consist of 27 patients
with acute lymphoblastic leukemia (ALL) and 11 patients with acute myeloid
leukemia (AML). The samples were assayed using Affymetrix Hgu6800 chips
and the gene expression data of 7129 genes (Affymetrix probes) are available
from R library golubEsets. For each gene, a simple two-sample t-test was
employed for testing differential gene expression and the p-value was com-
puted. Table 4 gives the estimate of the proportion of true null hypotheses
and the number of statistically significant genes.

From this real data analysis, it can be seen that the Benjamni and
Hochberg’s LSL approach conservatively overestimates g, hence it leads to
lowest power in terms of the number of rejections. Our proposed average ap-
proach provides a slightly larger estimate than Storey’s bootstrap approach,
the smoother estimate, and the nonparametric maximum likelihood approach
(convest), even though they end up with a similar number of rejections.
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4 Summary

As array technology improves, it is anticipated that the number of features
per array will only increase, hence multiple comparisons will continue to be a
challenging problem. Specific to microarrays, the false discovery rate (FDR)
is preferred to familywise error rate (FWER) because the FDR controlling
procedures have more statistical power than the FWER controlling proce-
dures, even at the cost of a few more type I errors (ie, false positives). Since
Benjamini & Hochberg (1995) proposed their FDR controlling procedure, a
variety of methods have been proposed to estimate the g, the proportion of
true null hypotheses. When our, and others, estimate of 7g is incorporated
into the Benjamini and Hochberg’s FDR controlling procedure, the adap-
tive FDR controlling procedure has more power and an FDR close to the
pre-chosen level. In this work, we have compared several methods for esti-
mating mp via a numerical investigation. Benjamini Hochberg’s lowest slope
approach (Benjamini & Hochberg 2000) overestimates m. Storey’s estimate
7o(A) (Storey 2002) also overestimates mp for any fixed value 0 < A < 1.
When A — 1, the bias becomes smaller, and the variance becomes bigger.
In order to find the optimal A such that 7p(A) has small variation, Storey
proposed a bootstrapping method (Storey et al. 2004). However, this method
underestimates 7y and the downward bias increases as the true value my gets
bigger. Storey & Tibshirani (2003) proposed a smoother method to estimate
}\I—»Hi To(A) such that this estimate has small bias. Unfortunately, this method

also underestimates 7, although the bias is very small. Furthermore, the
variation of this estimate is relatively large, which makes the adaptive FDR
controlling procedure unstable. More recently, Langaas et al. (2005) pro-
posed an estimate based on the nonparametric maximum likelihood function
of the p-value density restricted to convex decreasing densities. However, this
method also underestimates my, most likely because the distribution of the
p-values is not decreasing for large p-values and tends to be flat. Using the
limitations of the existing approaches for estimating mg as the motivation, we
propose the average estimate approach by taking average of the estimates of
mo over a range of equally spaced points on the interval [0, 1]. While our aver-
age estimate approach has a slightly larger bias, it also has smaller variation
than any of the other methods. Furthermore, when compared to the other
methods it is easy to implement (eg, Excel) when the number of points used
in approach is fixed (say, B = 10), and can be automated to choose B via
a bootstrap procedure (ie, R code available). When our proposed estimated
value of 7y is incorporated into Benjamini and Hochberg’s adaptive FDR

14




controlling procedure, more statistical power is gained such that the FDR
can be controlled below, yet extremely close to a desired level a.
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