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SUMMARY. The modified version of Bayesian Information Criterion (mBIC)
is a relatively simple model selection procedure that can be used when locat-
ing multiple interacting quantitative trait loci (QTL). The statistical prop-
erties of mBIC have been demonstrated for situations where the average ge-
netic map interval is at least 5 cM. In this work mBIC is adapted to genome
searches based on a dense map and, more importantly, to the situtation where
consecutive QTL and interactions are located by multiple interval mapping.
Easy to use formulas for the extended BIC ére given. A simulation study, as

well as the analysis of real data, confirm the good properties of the extended

mBIC.
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1. Introduction

Many quantitative traits in plants, animals and humans are, to a certain ex-
tent, determined genetically. Regions of the genome that influence such traits
are called quantitative trait loci (QTL), and typically molecular markers are
employed to detect and locate QTL using statistical models. These molec-
ular markers are polymorphic (exhibiting variation) at identifiable locations
on chromosomes, and their genotypes can be identified experimentally. From
a statistical point of view, marker genotypes are qualitative explanatory vari-
ables and the task of locating QTL relies on the associations between marker
genotypes and the trait values.

The earliest methods for QTL mapping date back to Sax (1923), Thoday
(1961) and Soller et al. (1976). These early approaches used standard sta-
tistical procedures such as t-tests or analysis of variance and were limited by
the availability of markers. To address the accuracy of QTL location Lan-
der and Botstein (1989) proposed interval mapping (IM), based on the EM
algorithm (Dempster et al. (1977)), which searches for QTLs within known
intervals defined by genetic markers. The main disadvantage of interval map-
ping is that it is based on a single QTL statistical model that leads to biased
estimators of both QTL effect size and QTL location when the trait is in-
fluenced by more than one QTL. To account, for multiple QTLs Zeng (1994)
and Jansen and Stam (1994) proposed Composite Interval Mapping (CIM)
and Multiple QTL Mapping (MQM), respectively, by including additional
background markers into the model. Although CIM and MQM both have

potential to increase the accuracy of detecting QTLs with additive effects,




they remain unable to detect epistatic effects (i.e., interactions). Epistasis
is a common phenomenon that plays an important role in the genetic de-
termination of complex traits (see e.g., Doerge (2002), Carlborg and Haley
(2004) and references given there), as well as in evolution (see e.g., Wolf
et al. (2000)). Neglecting these epistatic effects may lead to oversimplified
models for inheritance of complex traits and, as noted by Carlborg and Haley
(2004), may result in a relatively low economic gain if such models are used
for marker-assisted selection.

The growing awareness of the importance of epistasis has lead to the
development of new statistical methods for QTL mapping (see Kao et al.
(1999), Carlborg et al. (2000), Bogdan et al. (2004), or Yi et al. (2005)).
Although simple approach that acknowledges epistasis is multiple regression
or ANOVA models with interactions, the most difficult part in fitting such
a model lies in the identification of the nonzero coefficients of the model.
The standard approach is to perform sequential statistical tests (Doerge and
Churchill (1996), Kao et al. (1999), Carlborg and Andersson (2002)), but is
limited to the comparison of nested models. An alternative is to employ a
model selection criteria (e.g., Bayesian Information Criterion (BIC, Schwarz
(1978)) or the Akaike Information Criterion (AIC, Akaike (1974)) when for-
mulating the QTL model.

AIC and BIC belong to a class of so called penalized maximum likelihood
methods that select the best model by maximizing the likelihood of the data
minus a penalty for the model dimension. By comparison to other penal-
ized likelihood methods BIC has a relatively large penalty and is generally

considered to be one of the most conservative model selection criteria. How-




ever, in an exploration of BIC as applied to QTL mapping, Broman (1997)
and Broman and Speed (2002) reported that it overestimates the number
of QTLs, and proposed to increase the penalty for the model dimension.
Simulations reported in Broman and Speed (2002) show that the resulting
modified version of BIC behaves well and in some cases detects the correct
model more often than composite interval mapping. Later, Bogdan et al.
(2004) explained the same overestimation phenomenon by observing that,
due to the large number of markers used in typical genome scans, the num-
ber of possible high dimensional models is disproportionately large compared
to the number of low dimensional models. Therefore high dimensional mod-
els have a larger probability to be chosen by chance. To address this problem
Bogdan et al. (2004) proposed a modification of BIC (mBIC), which takes
into account the number of markers used in the analysis while allowing prior
knowledge on the QTL number to be incorporated. When prior knowledge
is lacking they proposed a standard version of mBIC which adjusts for mul-
tiple testing and controls the type I error. In Baierl et al. (2006) mBIC is
further extended by a two-step procedure. In the second step the prior is
adjusted according to the results of the initial step. Simulations reported in
Bogdan et al. (2004) and Baierl et al. (2006) demonstrate that both mBIC,
and the two-step version retain good power when distances between genetic
markers are larger than 5¢cM. However, when distances between markers are
smaller than 5¢cM the penalty for mBIC becomes too large, and results in an
unnecessary decrease of statistical power. Motivated by the fact that current
QTL mapping populations are relatively large, and dense genetic maps are

common, mBIC is extended to situations where map distances are smaller




than 5 cM. This extension also sets the stage for applying mBIC to interval
mapping and association mapping (discussed elsewhere).

The article is supplied with the web appendix, available at
http://www.im.pwr.wroc.pl/ mbogdan/mBIC/appendix.pdf . The appendix
contains some additional, theoretical material, as well as the example of the

real data analysis, demonstrating the properties of our method.

2. Methods
Consider a backcross population, the QTL genotypes at each location are
denoted by Qs;: Qs = —% if the 7th individual is homozygous at the jth
QTL, and Q;; = % if it is heterozygous. Assume the relationship between
quantitative trait values and multiple QTL genotypes is given by a normal
regression model

m

Yi=p+ ZﬁjQz’j + Z V1QiQu + &, (1)

Jj=1 1<i<i<m
where m is the number of QTL and g; ~ N(0,0?%) is environmental noise.
The second summation corresponds to pairwise epistatic interactions. Since
the coefficients §; and <y;; can both equal zero, denote the number of QTL
with nonzero main effects as p, and the number of nonzero epistatic terms as
g. Because locating so many interacting QTLs by multiple interval mapping
poses a complex multidimensional computational problem, as a first step
QTL location is restricted to marker positions. Specifically, the problem of
detection and location of QTL is based on choosing the best model of the

form

Yi=upu+ Z ﬁinj + Z Yur XiuXiv + Eiy (2)
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where X;; is the genotype of the ith individual at the jth marker, and I and
U are sets of markers with significant main and epistatic effects, respectively.
When the mBIC criterion (Bogdan et al. (2004)) is employed to select the

best marker model, it chooses the model which minimizes

mBIC = nlog RSS + (p+q)logn + 2plog(l — 1) + 2qlog(u — 1) ,

where p is the number of main effects in the model, ¢ is the number of
epistatic effects, and RSS is the corresponding residual sum of squares. The
penalty coefficients [ and u depend on the prior distribution of the number of
QTL effects and the number of epistatic effects. When the expected values
of the number of main effects and epistatic effects are equal to ¢; and ¢,
respectively, then the penalty coefficients can be calculated as [ = N,,,/c; and
u = Ne/cy. Here, No = Np(Ny, — 1)/2 is the number of possible pairwise
interactions between N, markers. For situations where the prior knowledge
on the number of QTL is not available Bogdan et al. (2004) proposed the

use of ¢; = 2.2 and ¢; = 2.2 which leads to a standard form of mBIC

mBIC = nlog RSS+ (p+q)logn+2plog(N,,/2.2—1)+2qlog(N,/2.2—1) .
@)

2.0.1 Calibrating mBIC for dense markers. Committing a weak sense
familywise Type I error occurs when at least one QTL is detected when there
is none. In this context, mBIC might either wrongly detect a QTL with one
of the simple regression models, including only one marker, or detect false
QTL based on a multiple regression model when all simple regression models

do not detect QTL. The extensive simulation studies reported in Bogdan
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et al. (2004) and Baierl et al. (2006) demonstrate that the probability of the
second event is extremely small. Thus, the familywise error rate (FWER)
of mBIC is mainly determined by the results of the initial search over single
markers, a fact that will be used when calibrating mBIC for densely spaced
markers.

As mentioned previously increasing the marker density increases the penalty
in the mBIC, and results in a significant loss of statistical power. Specifically
for densely spaced markers (less than 5¢M) the correlation between neigh-
boring marker genotypes becomes very strong. Adding a new marker to an
already dense genetic map does not provide much new information and is un-
likely to increase the maximum of the likelihood ratio statistic over the entire
genome, which suggests that the distance between markers when computing
mBIC penalty has to be taken into account.

The challenge of computing the penalty for highly correlated markers is
related to the issue of choosing a threshold for the test of QTL presence, when
the QTL search is performed over many markers simultaneously. As is well
known, any multiple testing problem can be dealt with by using a Bonferroni
correction. While the Bonferroni correction provides a good control of FWER
when individual tests are independent, it can be strongly conservative (i.e.,
give smaller FWER , which results in decreasing of power) when test statistics
are correlated. Cheverud (2001) proposed a modification of the Bonferroni
procedure. Instead of dividing the overall significance level by the number
of markers Np,, it is divided it by an effective number of tests, N/f, which
should provide an accurate control of the probability of the overall type I

error. N7 is estimated using the eigenvalues of the empirical matrix of




correlations between marker genotypes.

Cheverud’s method of estimating N&// turned out to be inaccurate in
many cases (see e.g. Salyakina et al. (2005)). In this article we propose
an alternative method for computing N¢// by comparing the threshold value
for the maximum of the likelihood ratio tests at IV,, markers with the corre-
sponding threshold for N/ independent tests. The issue of computing the
genome-wise threshold value for the single marker and interval QTTL map-
ping has been intensively studied. In particular Lander and Botstein (1989),
Feingold et al. (1993), Dupuis and Siegmund (1999) and Rebai et al. (1994)
addressed the problem by approximating the distribution of the likelihood
ratios at neighboring marker locations by the square of the Gaussian pro-
cess. The most common alternative approach for obtaining QTL thresholds
is based on permutation tests (Churchill and Doerge (1994), Doerge and
Churchill (1996)). In this article we use computer simulations to estimate
the chromosome-wise thresholds for detecting main and epistatic effects and,
in case of main effects, we compare our results with asymptotic theoretical
values provided by Dupuis and Siegmund (1999) and Rebal et al. (1994).
2.1 Searching over markers.

The standard likelihood ratio (LRT) statistic for testing of association
between the trait data Y and the genotype of jth marker is given by

) L(Y|M;)
LRT(j) = 2log ~ 237
(4) 8 LV |My)
where L(Y|M;) is the maximum likelihood of the data for the model Y; =
p+ BXy;+€;, with X;; being the genotype of i** individual at j* marker, and

L(Y|Mp) is the corresponding likelihood for the null model (when g = 0).




When the null hypothesis is true LRT'(5) has approximately x? distribution.

To detect a QTL we perform a sequence of such tests at every marker.
Dupuis and Siegmund (1999) showed when a genome scan based on one

chromosome with N markers spaced every ¢ cM is performed, the weak sense

FWER can be approximated by

ie{1,..,N}

~ 1—exp (—2 [1 = ®(/e)] — 0.04Lv/p(/e)v (m)) ()

where ¢ is the threshold for the likelihood ratio test, L = (N — 1)d is the

o = PH0< max LRT(i)>c)

length of the chromosome in ¢cM, ¢ is the density and & is the distribution

function of the standard normal distribution, and v(t) is

v(t) = 2t 2 exp [ 2277,‘1(1) |tlnl/2 } . (5)

Alternatively, the weak sense FWER resulting from performing N%/7 tests

at unlinked markers is

a = Py, ( {maj;vceff}LRT(i) > c) =1- ﬁ (1 — Pr(LRT(i) > c))
~ 1-(1-2(1-2 (V)™ . (6)

Comparing equations (4) and (6) the effective number of independent tests

corresponding to N markers spaced every dcM is computed as

off log(1 — )
* = ey 1) ™

where ¢ depends on a, § and N according to equation (4). It turns out that

the dependence of N%¥ on o is comparably small, therefore only the case
of o = 0.05 is considered. Smaller levels of significance give rise to slightly

larger effective numbers making the procedure slightly more conservative.
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[Figure 1 about here.]

For the purpose of scaling the corresponding penalty in mBIC when
searching over densely spaced markers we define a weight w34 (8, N), which
is assigned to additive effects if the average distance between markers is equal

to écM. If we consider a single chromosome,

Neft '
wiie (6, N) = %~ . (8)

This weight (Equation 8) clearly depends on §, but also on the number of
markers on the chromosome. It is evident that for any fixed §, w34 (5,1) = 1.
Moreover in web appendix it is shown that 1\}1_1}(1)0 w4 (5, N) = 1. This result
illustrates that the dependence between neighboring markers is of a “short
range” and has a negligible influence on the behavior of the maximum of
the likelihood ratio statistic when the length of the chromosome converges to
infinity. However, Figure la demonstrates that the rate of increase of w34
is very slow, and the weights remain relatively stable over a wide range of N.

Equation (4) from Dupuis and Siegmund (1999) is based on the assump-
tion that the likelihood ratios at neighboring locations can be asymptotically
" described by the square of a Gaussian procéss. This fact was utilized when
designing a simulation study to estimate the weights for the additive and
epistatic effects. In the first step the correlation matrix S for genotypes of
markers uniformly spaced on a chromosome was calculated, and 10,000 in-
stances were generated from a multivariate normal distribution with mean 0
and the covariance matrix S. For each of these 10,000 random vectors the
maximum over the squares of its coordinates was calculated and 0.95 quantile

of the empirical distribution of these maxima was used as the estimate of the
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chromosome-wise threshold value ¢ for the likelihood ratio statistic to detect
main effects. Finally weights w34 were computed by applying equations (7)
and (8). As seen in Figure 1b, the simulated values tend to be consistently
slightly smaller than the theoretical counterparts, but the difference is so
small that the effect on mBIC is negligible.

It is assumed that markers on different chromosomes are inherited inde-
pendently. Therefore, when considering the whole genome N¢// is calculated
separately for each chromosome. The effective numbers are then added and
divided by the overall number of markers to achieve the appropriate weights.
For chromosomes of equal length this procedure is the same as choosing the
weight for a single chromosome. As a general rule, since the difference in
weights is small in the range between 100 and 300 cM, we suggest using the
weights computed for 150 ¢cM for a standard adjustment of mBIC for corre-
lated markers. When the distance between markers is larger than 30cM then
wl is larger than 0.90 and the modification of the penalty in mBIC is not

necessary. Otherwise, w34 can be very well approximated by

wgﬁ‘}(é) -1 0.96(—106/100+10(6/100)2) ) (9)

The particular shape of W% was chosen in accordance with the observation

that w2ie tends towards 1 for large 8. Figure 2a shows that 0% serves well

both for chromosomes of length 150cM as well as 300cM.
[Figure 2 about here.]

While dealing with individual markers is relatively straightforward, the
structure of dependence between epistatic terms is much more complicated.

In fact, when considering interactions there is no theoretical result that is
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equivalent to equation (4). However, our simulation approach led to reason-
ably good approximations of the weights for additive effects, therefore the
same strategy is applied to interactions. Thus, in the first step, the correla-
tion matrix Cov(l; ;, Iy;) between all pairwise interaction terms I;; = X;X;
is calculated and 10,000 instances from a related multivariate normal dis-
tribution are generated (the formulas for the covariances between different
interaction terms are given in web appendix). For each of these 10,000 ran-
dom vectors the maximum over the squares of its coordinates is computed
and 0.95 quantile of the empirical distribution of these maxima is used as
the estimate of the chromosome-wise threshold value ¢ for the likelihood ra-
tio statistic to detect epistatic effects. Finally, the equation (7) is employed

to compute the effective number of interactions, N°//, and the weight for

ot . . ; e
epistatic effects is computed according to the formula wd, = &=, where
e

N, = (];’ ) is the total number of interactigns. The dependence of these sim-
ulated weights on the number of markers and on the distance § is illustrated
in Figure lc. Note that wg”,@(d, N) appears to. have the same qﬁalitative
behavior as w%iZ (6, N) in the sense that for N = 2, wé%(d, 2) =1, and the
simulation results suggest that ]31_r)noo wi (6, N) = 1. Figure 2b illustrates
that the weights of chromosomes of length 150cM and 300cM for different ¢

can be well approximated by

wgp]&(é) _ e(—10.76/100+8.7(6/100)2) ) (10)

For situations where the markers are not equally spaced the average in-
termarker distance & can be used with weights wiid = %24(8) and wdy, =
W (8) according to equations (9) and (10). Based on these results the stan-

dard version of mBIC for dense and unequally spaced markers recommends
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choosing the model for which

2.2
(11)

adde epi Ne
mBICspy = nlog RSS+(p+q)log n+2plog (w5342 )+2q log (wSM > 7

obtains a minimal value.

Multiple Interval Mapping. Interval mapping (IM; Lander and Botstein
(1989)), while originally based on a single QTL model, was extended to mul-
tiple interval mapping (MIM; Kao et al. (1999)) for the purpose of locating
multiple interacting QTL. In the present paper we apply a simplified version
of multiple interval mapping based on the approach proposed by Haley and
Knott (1992). The method relies on replacing missing genotypes of putative
QTL by their expected values conditioned on the genotypes of neighboring
markers. The procedure is very simple and quick and is particularly advanta-
geous when there are multiple interacting QTL and many competing models
need to be searched to estimate QTL number and their location. A compar-
ison between the EM algorithm, applied in Kao et al. (1999), and Haley and
Knott regression did not provide significant differences in the i;)erformance of
mBIC in an interval mapping setting.
MIM based on Haley and Knott method relies on fitting the multiple
regression model
Yi=p+ Z B;iGiz + Z YuwGiuGiv + €, (12)
jel (uv)eU
on a dense net of possible QTL locations. Here G;; is the expected value
of the genotype of ith individual at jth position on the genome (the for-
mulas for G;; are provided e.g. in Kao (2000)), and I and U are sets of

13




locations corresponding to QTL with significant main effects and epistatic
effects, respectively. To estimate the number of QTL and their locations the
appropriate version of mBIC is used.

The main difference between multiple interval mapping (MIM) and search-
ing over individual markers is that a much larger set of possible QTL loca-
tions is investigated with MIM. To accommodate the increased number of
investigations the penalty of mBIC needs to be increased. Because the pre-
dictor variables corresponding to the given inter-marker locations are com-
pletely specified by genotypes of neighboring markers the correlations be-
tween likelihood ratio statistics at neighboring locations are stronger than
when searching over a dense map of markers. To adapt mBIC for MIM the
effective number of tests NI/ corresponding to the genome search based on
one dimensional interval mapping is calculated. As mentioned previously one
can make use of the threshold value of the likelihood ratio statistic for a one
dimensional interval mapping, because under the null hypothesis of no QTL,
the probability is very small for obtaining at least one false positive QTL
in MIM, where there are no significant effects found in one dimensional IM.
To find this threshold one option is to use the theoretical results from Rebal
et al. (1994), which state that the significance level o of the genome search

based on interval mapping can be approximated by

0<z<3k 4

o = Pr( sup LTR(a:)>c2>

k
arctan ( i (13)
1 1-— T3

2 1
~ 20(—c)+ — —=c?
(=) Wexp( 26)

i=

where ¢? is the threshold, & is the number of intervals, d; is the length of the

1th interval and r; is the probability of recombination for the ith interval. In
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this case markers can be either equally or unequally spaced.

To find the related number of independent tests N%IJ equation (7) is used,
with dependence between « and ¢ provided by equation (13). When search-
ing intervals (IM) the additive effect weight is w2 = ﬂlzvﬁ As might be
expected, the behavior of w3d4(§, N) differs from that of w33 (8, N). Specifi-
cally, in web appendix we prove that ]\}E,%o w4(§ N) = oo, or more precisely
for every fixed 6 w4(5, N) = O(;/log(N)) when N — oo. Therefore, wisd
increases slowly with NNV, and in particular it is not expected to be bounded by
1 (Figure 1d). This result is very appealing since it demonstrates that strong
correlation between likelihood ratio statistics at neighboring locations has
a negligible influence on the distribution of the maximum of the likelihood
ratio statistic when the length of the genome tends to infinity. Note however
that this result no longer holds in the situation when the interval mapping is
performed by maximizing the likelihood function at a finite grid of locations
spaced every 1 or 2 cM. In this case the effective number of tests is always
bounded by the number of positions at which tests are performed. To deal
with this more realistic situation, simulations are used to estimate the corre-
sponding weights. Imputations that are equally spaced within each interval
at distances equal to 2cM are considered. When calculating covariance ma-
trices for genotypes of imputed positions the Haley and Knott imputations

are approximated by linear combinations of the flanking marker genotypes,

N 01.X9; + 02 X1;
? (51 +62 )

where §; and &, are the genetic distances between the putative QTL and

1=1,...,n ,

the flanking markers, and X;; and X,; are the corresponding genotypes of

flanking markers for it* individual. This approximation, neglecting the pos-
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sibility of a double crossover within a given interval, is very accurate when
the distance between neighboring markers is small. In cases where the dis-
tance between flanking markers does not exceed 30cM the relative error in
approximating Gj is never larger than 4.53% with the largest value obtained
in the middle of a 30cM interval with both flanking markers having the same
genotype (if Xy; = Xa; = 0.5 our approximation leads to G; = 0.5 while
the value of G; computed upon the assumption of no interference is equal to
G; = 0.4783). In a subsequent simulation study interval mapping based on
exact Haley and Knott regression demonstrates that the weights computed
according to the presented simulation strategy perform very well. In Figures
1d and 1le simulation results are compared to theoretical values of Rebai et al.
(1994). As expected, the simulated weights are systematically smaller, which
is due to the fact that they model the more realistic situation of a discrete
set of imputations.

Simulations were also used to estimate the weights corresponding to in-
teraction terms (Figure 1f and 2). For the purpose of reducing the size of the
covariance matrix required to simulate weights for interactions correspond-
ing to a chromosome of the length of 300cM, a “loose” grid of imputations,
separated by approximately 4cM was used. For a 150cM chromosome both
“medium” (approximately 2¢M) and “loose grid of imputations” were imple-
mented. The difference in weights resulting from the “medium” and “loose”
grid turned out to be negligible, while the difference between 150 and 300
¢M chromosomes is substantial only when the distance between markers ex-
ceeds 20 cM (Figure 2). For the purpose of aiding the reader in applying the

mBIC s to real data the following empirical approximations for the additive
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weights can be used

WI%(8) = —0.15 4 3.14/6/100 — 1.35/100 . (14)

The corresponding interval mapping weights for interactions (for chromosome

length of approximately 150cM) can be well approximated by

WP () = —0.53 + 5.44/6/100 — 2.75/100 . (15)

Approximations (14) and (15) were obtained after examining several classes
of simple functions (including logarithm) for approximating the simulated
weights. The coefficients were calculated using the method of least squares,
and the accuracy of these approximations is demonstrated in Figure 2. In
situations where markers are not equally spaced the average distance between
markers & can be computed to yield weights %%4(5) and @, (8) (equations

(14) and (15) respectively). The adjusted version of mBIC for MIM recom-

mends choosing the model for which

add \f ept A
mBICry = nlog RSS+(p+q) logn+2plog (wfgzz m)—|—2q log <w12M2 °)

(16)
obtains a minimal value.
3. Simulations
Both dense markers and multiple interval mapping adjustments to mBIC
are studied via simulation. Marker and QTL genotypes for a backcross with
3 unique 100cM chromosomes are considered under two sample sizes: n =
200 and n = 500. All simulations are based on 1000 replicates. Due to
the computational complexity of large scale simulations a simple forward

selection with the standard version of mBIC is used.
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3.1 Type I error

For purpose of examining whether the proposed modifications to mBIC
allows the control of weak sense FWER, at the desired level quantitative
trait data were simulated under a null hypothesis represented by a normal
distribution with 4 = 0 and ¢ = 1. Both a dense marker and multiple
interval mapping setting is investigated. Specifically genotypes of markers -
densely spaced every 2, 5, 10 and 20cM were simulated. Furthermore MIM
based on simulated markers spaced every 5, 10, 20 and 25¢M was considered.
To adjust mBIC weights based on equations (9) and (10) for densely spaced
markers and equations (14) and (15) for MIM were implemented. Finally, 30
unequally spaced markers (Figure 3) were simulated such that the average
width of the intermarker distance was 11.1 ¢cM and the corresponding weights
were equal to wild = w, = 0.66 for single marker analysis and w4 =

0.74, w: =0.97 for MIM.
[Figure 3 about here.]

Table 1 gives the estimated probabilities of wrongly detecting both the
main and the epistatic effects, as well as the total Type I error. These re-
sults demonstrate that the weak sense FWER both for single marker analysis
and MIM are comparable, and that both are at the assumed level of 8% for
n = 200 and 5% for n = 500. Since mBIC is a consistent model selection
procedure FWER will further diminish as the sample size inéreases. Further-
more even though the penalty for including epistatic effects is much larger
than the penalty for main effects, the probability of falsely detecting the

epistatic term is comparable to the probability of falsely detecting the main
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effect. This is due to an increasingly large number of potential epistatic

effects investigated by mBIC;y,.

[Table 1 about here.]
3.2 Power and accuracy of QTL localization

The statistical power and accuracy of QTL localization based on the
adjusted mBIC is considered under three different search strategies: single
marker analysis over a relatively sparsely spaced set of markers (scenario
1), multiple interval mapping (scenario 2), and single marker analysis over
markers spaced every 2cM (scenario 3).

QTL locations, as well as locations of markers used in scenario 1 are
presented in Figure 3. Six QTL (Q1-Q6) were simulated, two on each of
three chromosomes. Three of these QTL: Q1, Q4 and Q6 have main effects.
The corresponding effect sizes, according to the model (1), are: Bo1 = 0.6,
Boa = 0.7, Bgs = 0.5. Additionally, three interaction effects are simulated:
interaction 1 involving Q1 and Q6, interaction 2 between Q2 and Q4, and
interaction 3 between Q3 and Q5. The corresponding effect sizes are YQ106 =
1.2, 7gegs = 1.4 and ygs3gs = 1. The standard deviation of the error term
¢ is 1. Define a single effect heritability as h* = o7;;/0%, where o2, is
the variance of the trait due to a particular effect, and o2 is the total trait
variance. The heritabilities corresponding to the simulated effects are equal
to by, = h&10s = 0.058, hdy = h204 = 0.08, hs = h2Q3Q5 = 0.04. The
overall broad sense trait heritability H* = 0.355.

Table 2 illustrates both the power of detection for each of the simulated
effects, and the standard error of the estimate of QTL location. When n =

200 the standard errors of the estimates of location reach the level of 15¢M,
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therefore an effect identified by mBIC is qualified a true positive if it is within
30cM of the true QTL. Epistatic effects are classified as true positives if both
detected positions are within 30 cM of the true epistatic QTL. For the sample
size n = 500 this detection window was decreased to within +15 c¢cM of the
tfue QTL. If more than one effect was found in a detection window only
one was classified as a true positive. All other effects were classified as false
positives. We also report the estimate of the proportion of false positives,
pfp = %55, where Sfp and Sap are the sums of false positives (fp) and all

positives {ap) over all 1000 replicates.
[Table 2 about here.

Table 2 summarizes both the power and precision of QTL location over
increasing sample size. As expected, the power of mBIC increases with an
increase of the sample size and for n = 500 the power of detecting the
weakest main effect with h?2 = 0.04 reaches 93% and the corresponding,
weakest epistatic effect is detected with the power of 84%. Note that lower
power for epistatic effects results from using a larger penalty than for main
effects.

Results demonstrated in table 2 show that using dense genetic maps can
greatly increase the power of detecting QTL. For n = 200 the power of de-
tecting the weakest main effect, Q6, which was 11cM from the closest marker
in the sparse map, increased from 35% for the sparse map to 53% for a dense
map. Furthermore, a dense genetic map also allowed a greater power of de-
tection of the weakest interaction. For n = 500 this power increased from

40% for a sparse map to 84% for a dense map. Note that one of the QTL
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involved in this interaction, Q6, is 15¢M from the closest marker in the sparse
map and thus it is difficult to detect. The advantage of using a dense map is
however not so obvious when the QTL effects are large and located close to
markers from a sparse map. In fact in this situation the search over a dense
map may even yield slightly lower power due to the necessity of adjusting
the detection thresholds to the increased multiple testing problem. However,
even in the situation where the dense map does not yield the highest power
it usually allows for a more precise QTL localization. The only exception for
these simulations is Q4, which is located outside the last marker on chromo-
some 2 (Figure 3). The dense map was constructed only within the markers
on this chromosome and did not allow for a more precise localization of Q4.

The use of MIM had a small influence on the power of QTL detection when
compared to the sparse map case. However, as anticipated it substantially
increased the precision of QTL localization. This difference is clearly visible
for n = 500 where the standard deviation of QTL localization estimates
obtained by interval mapping was smaller than the distance from the closest
flanking marker. Again, Q4 is an exception to this, where interval mapping
actually increases the standard deviation.

Our simulations demonstrate that the precision of QTL location increases
significantly with the sample size. In case of multiple interval mapping the
standard deviation of the estimate of the location of the weakest QTL, Q6,
decreases from 13.2 ¢cM for n = 200 to 6.3 ¢cM for n = 500. In case of
the dense marker map the standard deviation of the estimate of Q6 location
changes from 9.8 ¢cM for n = 200 to 4.3 cM for n = 500. However, in case

when the search is performed over markers, then the standard error of QTL
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location is always larger than the distance between the QTL and the closest
marker. Therefore, in the sparse map case, the improvement of the precision

with increasing sample size is limited.
4. Discussion

The mBIC of Bogdan et al. (2004) is adapted to two unique and applicable
situations, namely the search over markers from the dense marker maps and
multiple interval mapping. Results based on simulations demonstrate that
the proposed methods of relaxing the penalty in the standard version of
mBIC allows for the control of the weak sense FWER and the proportion
of false positives at the assumed level. The need to relax the penalty in
the standard version of mBIC is apparent when markers are spaced closer
than by 5 cM. In fact, using mBIC with such dense marker maps may help
to increase the power and precision of QTL location. For multiple interval
mapping the implemented penalty keeps the FWER error rate at the assumed
level and only slightly depends on the number of tests performed within
intermarker intervals. Based on our results multiple interval mapping only
slightly increases the power of QTL detection when compared to the search
over relatively distant markers, but can substantially increase the precision
of QTL localization.

The particular weights to calibrate the penalty as presented in Figures 1
and 2 are specific for the backcross design. However, a general method for
computing the “efficient” number of markers to be used in mBIC criterion and
provided by the equation (7) can be used for other experimental designs. In
situations where the structure of correlations between the regressor variables

is known, the critical value ¢ can be simulated using the approach presented
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in this paper. When the structure of correlations is not known the critical
value ¢ can be approximated using the permutation approach described in
Churchill and Doerge (1994).

Under complicated genetic scenarios (Zeng et al. (2000)) there are usu-
ally many comparable statistical models that provide a good fit to the data.
The comparison between such models can be made within a Bayesian frame-
work. Computing posterior probabilities of different models allows Bayesian
averaging (Hoeting et al. (1999)) to estimate the genetic parameters, (e.g.,
heritability). In fact, mBIC allows an approximation to the posterior prob-

abilities of different models

exp(—mBIC(i)/2)
5, e (-mBIC()/3) °

where the sum in the denominator is over all possible statistical models. It is

P(M,|Y) ~ (17)

worth mentioning that the calibration of the proposed penalty corresponds
to the choice of the prior distribution on the QTL number, such that the
resulting Bayesian model selection procedure has good frequentist properties.
Furthermore, when estimating the posterior probability of a given model by
mBIC it is enough to visit each of the plausible models just once. This allows
to substantially reduce the computational burden as compared to standard
MCMC methods often used in QTL mapping (see Yi et al. (2005) and
references given there), which require multiple visits of each model. However,
even for mBIC the estimates of P(M;|Y’) are accurate only if the majority of
plausible models are represented in the denominator of (17). Therefore, to
use mBIC in a Bayesian context, a suitable, computationally efficient search

strategy still needs to be developed.
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Figure 1. Dependence of the weights on the number of markers (V) and the
genetic distance between markers (§) for both additive (add) and epistatic
(ept) effects when searching over markers (SM) and for multiple interval map-
ping (MIM), respectively. For additive effects both theoretical and simulation
results are reported. Circles and stars denote chromosomes of length 150cM
and 300cM, respectively.
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Figure 2. Investigating the accuracy of the approximation for simulated
weights. Circles and stars denote chromosomes of length 150¢cM and 300cM,
respectively. For multiple interval mapping the weights for main effects are
obtained based on 2cM grid of imputations. For epistasis circles mark the
observations for 150 ¢cM and 2 cM grid, and dots for 150 ¢cM and 4cM grid of
imputations. The weights for epistasis for a 300 cM chromosome are denoted
by stars and were obtained using 4cM grid of imputations.
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Figure 3. Marker and QTL locations for a scenario with 30 unequally
spaced markers. Markers are denoted by black vertical lines. QTL locations

are represented as circles. The distance between markers is specified, the
average interval distance is 11.1 ¢cM
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Table 1
Probabilities of false detections (in %). en and e. denote the percentage of
simulations for which main and epistatic effects were falsely detected.

e = e + e is the percentage of simulations for which at least one false
signal was detected (i.e. weak sense FWER). SM denotes the search over
markers and IM denotes our multple interval mapping approach. The
significance levels are assumed to be 8% for n =200 and 5% for n = 500.

n | method é em | € | e
SM 2cM (44,2469
SM 5cM |48 (29|78
200 SM 10cM | 37|36 7.3
SM 20cM | 4.7 3.4 8.1
SM Fig. 31483078
IM 5cM 14929178
M 10cM | 4.1 4.0 8.1
200 M 20cM | 4.8 { 4.2 | 9.0
IM 25cM | 3.9 4.3 (8.2
M Fig. 3148|3179
SM 2cM | 1.7115]3.2
SM 5cM | 2924153
500 SM 10cM | 28| 2 |48
SM 20cM | 3.4 (24 ]5.8
SM Fig. 313324 (5.7
M 5¢cM | 3 [26]5.6
IM 10cM | 24|26 5.0
500 M 20cM | 26|24 (5.0
M 25cM [ 3.122](5.3
M Fig. 3 13.2]2115.3
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Table 2

Estimates of power and the precision for QTL location (in cM) for the

search over markers in a sparse map (scenario 1), multiple interval mapping

(scenario 2), and the search over markers spaced every 2cM (scenario 3).

pfp denotes the estimated proportion of false positives as defined in the text.

Q1 Q4 Q6 Int 1 Int 2 Int 3 pfp
n | scenario | power | power | power power power power
std.loc. | std.loc. | std.loc. | std.loc.Q1 | std.loc.Q2 | std.loc.Q3
std.loc.Q6 | std.loc.Q4 | std.loc.Q5
0.67 0.76 0.35 0.24 0.47 0.07 0.06
200 1 10.2 6.9 14.8 10.9 9.2 10.1
14.5 7.8 16.6
0.69 0.76 0.39 0.28 0.47 0.10 0.07
200 2 9.8 8.1 13.2 9.7 8.0 9.0
12.1 8.6 11.4
0.71 0.75 0.53 0.40 0.45 0.19 0.06
200 3 7.8 9.6 9.8 8.3 7.3 7.1
8.2 9.7 8.2
0.96 0.98 0.86 0.79 0.94 0.40 0.07
500 1 8.0 5.0 12.9 8.2 5.8 9.2
13.0 5.0 15.0
0.97 0.997 0.83 0.80 0.97 0.48 0.07
500 2 5.6 7.0 6.3 6.2 4.7 5.7
6.1 6.9 6.8
0.99 0.985 0.93 0.955 0.97 0.84 0.04
500 3 3.6 6.3 4.3 3.8 3.2 3.8
3.4 6.2 4.4
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