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Abstract

This paper investigates several strategies for consistently estimating the so-called Hurst parameter H
responsible for the long-memory correlations in a linear class of ARCH time series, known as LARCH
models, as well as in the continuous-time Gaussian stochastic process named fractional Brownian motion
(fBm). A LARCH model’s parameter is estimated using a conditional maximum likelihood method,
which is proved to be consistent, to allow model validation via a portmanteau theorem, and to have
good stability properties. A local Whittle estimator is also discussed. By constructing the LARCH and
fBm processes on a common probability space, and showing the convergence of various partial sums of
the former to the latter in L?, the article is able to propose a specially designed conditional maximum
likelihood method for estimating the fBm’s Hurst parameter. In keeping with the popular financial
interpretation of ARCH models, all estimators are based only on observation of the “returns” of the

model, not on their “volatilities”.

1 Introduction

Long-memory behavior is one of the most important empirical properties exhibited by financial time series,
such as asset returns and exchange rates. It is well known that, for the most part, the values of such a
time series r;, t € N are uncorrelated but not independent, with most of dependency “hidden” within some

nonlinear functions of 7y, such as r? or |r;|. Historically, this has been modelled by conditional variance
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(volatility) models, such as the models traditionally included in the so-called (G)ARCH framework (see
Gourieroux (1997) [17] and also Ghysels, Harvey, Renault (1996) [18]). However, for the most part, these
models possess the so-called short memory, which means the exponential decay in autocorrelations of the
respective nonlinear function of ry, such as r2. A symptomatic situation is found in Dan Nelson’s well-known
convergence results of ARCH/GARCH models to stochastic volatility models (see Nelson (1990) [31]). The
linear autoregressive conditional heteroscedasticity model (LARCH), first introduced in Robinson (1991) [32],
has long been considered a very convenient vehicle for long-term memory modeling. Its name is probably
due to Giraitis, Robinson and Surgailis (2000) [14]. This model can be described as
2

[ee]
Ty = 0seg; 0L = | a+ ijrt_j ,teZ (1)
=1

where {e; : t € Z} are iid random variables with zero mean and unit variance. We also assume that a # 0 to
avoid special cases where the solution o; is a sequence of uncorrelated random variables. In order to ensure
weak stationarity of the LARCH process, one must require that ||b|| = [Z;; bﬂ v < 1. It is also easy to
observe that, under the same conditions, the LARCH process r;, as well as o3, is also strongly stationary,
meaning that the law of ry for fixed ¢t does not depend on ¢, and that the same holds for o;. This models
lacks the interpretation usually accorded to the volatility models, since o; is not necessarily positive; this is
arguably irrelevant when e, is symmetric, a case to which we will largely restrict ourselves here. Another
advantage of the LARCH model lies in the simple conditions under which the process r; itself and its powers
r{, J 2 2, can be understood using combinatorial diagrams; for more details, see Giraitis, Robinson and
Surgailis (2000) [14]. This, and the lack of a complete understanding of the long-memory modeling potential
of the ARCH framework, leads many authors into adopting LARCH as their primary long-memory modeling
vehicle.

Giraitis, Robinson and Surgailis (2000) [14] also prove that, with proper normalization, LARCH model
converges in law to the fractional Brownian motion process, that is, a zero-mean Gaussian process B (t)

with the covariance function
EB?(s)B7 (1) = (1/2)(|s]?" — |t[** - |t — )

where the Hurst parameter H describes the strength of dependence between the increments of the process.
Their proof is very sophisticated and involves some advanced combinatorial techniques. In this article, we
show in contrast that this convergence in law can be obtained using a much simpler technique that involves
the so-called moving-average representation of the fractional Brownian motion (fBm). Moreover, we take this
one step further and show, besides just convergence in law, that, with the right normalization, the LARCH
model converges to B¥ (t) in L?(Q) where Q is a single probability space supporting both processes. That
is, we claim that there really is an underlying fBm process on the same probability space as the LARCH

model that converges to it.




Due to the last result, it is legitimate to suggest estimating the memory parameter of a nonlinear time
series process that approximates the fBm process instead of the Hurst parameter of the fBm process itself.
In other words, we propose using methods commonly employed in theory of nonlinear time series to provide
an estimate of the Hurst parameter of the original fBm process. We view this article as a first exploration
of such proposals, opening new lines of parameter estimation research for long-memory continuous-time
stochastic processes. In particular, we feel that the quantitative financial community should appreciate the
use of approximations of such processes by LARCH models because it combines tractable estimation with
models for stock returns r; that are uncorrelated, but whose volatilities o; are random and explicitly exhibit
long-memory. This is in contrast to the often criticized so-called geometric fBm model, where the stock
returns are correlated directly according to an {Bm, and the volatility parameter is constant, in a naive
generalization of the Black-Scholes model.

Let us review vafious candidates for time series long-memory parameter estimation, from a historical
perspective. A first set of possibilities lies in the conditional maximum likelihood methods. For linear pro-
cesses, Cheung (1993) [9] showed that, under correct model specification, the various MLE methods perform
better than semiparametric estimators; the picture seems to be reversed when the model is misspecified. For
more details, see Boes et al. (1989) [4]. The exact MLE method was proposed in Sowell (1992)[36] and the
approximate one in Fox and Taqqu (1986) [12] (using the frequency domain approach). Wavelet-based MLE
methods for the long-memory parameter estimation were proposed in Jensen (1999) [21] for a narrow class
of fractional white noise processes and in Jensen (2000) [22] for ARFIMA(p, d, q) processes.

The other large group of methods utilizes the frequency domain ideas; in the parametric case, such is, for
example, the classical Whittle estimator. Its properties for Gaussian and linear processes were investigated
in the abovementioned article of Fox and Taqqu (1986) [12], also in Dahlhaus (1989) [10] and in Giraitis and
Surgailis (1990) [16]. The next logical step would be to relax parametric assumptions on the behavior of the

spectral density estimation and only assume that it has a pole at A = 0:
F)=1A"%g(A), 1Al 2

where g(\) — ¢ for some positive finite constants ¢ and ag. Semiparametric estimation methods constitute
another group. These methods require little a priori information about the spectral density of the time series,
except its behavior around the point A = 0. Among those methods, the log-periodogram method of Geweke
and Porter-Hudak (1983) [13] and the local Whittle estimator of Kiinsch (1987) [23] should be mentioned.
They were explored in great detail by Robinson (1995a) [33], and Robinson (1995b) [34]. Closely related are
the broad-band estimators of Moulines and Soulier (1999) [30] and of Hurvich and Brodsky (2001) [19], as
well as the exact local Whittle estimation method of Shimotsu and Phillips (2005) [35].

There has been relatively little work done on the semiparametric estimation of the long-memory parameter
for nonlinear time series. Some results for the local Whittle estimator were obtained in Hurvich, Moulines

and Soulier (2001) [20] and in Arteche (2004) [3]. General conditions under which the local Whittle estimator




of the memory parameter of a stationary (not necessarily linear) process is consistent are given in Dalla,
Giraitis and Hidalgo (2004) [11]. They also show that these conditions are satisfied for a fairly wide class
of nonlinear models that includes signal plus noise processes, nonlinear transforms of a Gaussian process
and EGARCH (exponential GARCH) models. Abadir, Distaso and Giraitis (2006) [2] obtain asymptotic
confidence intervals for the trend and memory parameters in the case of trending long-memory processes
that are possibly nonstationary, nonlinear and non-Gaussian. They call the estimator they use the Fully-
Extended Local Whittle Estimator (FELW) which is a modified, for the presence of a trend, version of the
estimator these authors developed in Abadir, Distaso and Giraitis (2005) [1].

In this article, we discuss two possible methods for estimation of the long-memory parameter of the
LARCH model. One of them is based on the conditional maximum likelihood approach and it has an
additional benefit of robustness to violations of distributional assumptions. As pointed out earlier in the
literature review, most of the work up until now was on the MLE-based long-memory parameter estimation
for linear processes, such as ARFIMA; we contribute an estimation method that seems to be quite robust to
the observation errors based on empirical evidence and, under additional constraints on the structure of the
random errors, we give certain theoretical properties that also support our claim of robustness. In addition,
we show how our conditional MLE may be modified so that it may be considered as an estimator of the
Hurst parameter H of the underlying fBm based solely on discrete observations of this fBm’s increments, and
we explain precisely how to implement this conditional MLE in practice. While the proof that the resulting
estimator for H is consistent will be tackled in a future publication, herein we prove that the appropriately
scaled accumulation of the centered squared LARCH observations r? — Er? converge in L? (2) to the {Bm.

We also attempt to use the local Whittle method to estimate the H of the LARCH process, with the
same long-term objective of using it with fBm observations instead. Since o is unobservable, we apply the
method to squared assets process r2. However, consistency of this method is not entirely clear. As is usual
for local Whittle method (see, for example, Dalla, Giraitis and Hidalgo (2004) [11]), it is necessary for the
renormalized periodograms 7; of the process to satisfy the weak law of large numbers (WLLN); a possible
set of sufficient conditions is mentioned in the same paper. An alternative set of sufficient conditions can be
obtained from Lahiri (2003) [25]. We show that the latter is not satisfied in the case of our LARCH model,
and the former can only be satisfied if certain conjectures on the asymptotic behavior of the covariances of
products of r? is satisfied, which is an open question at the moment, and non-trivially so, since the behavior
of such mixed moments for the LARCH process would involve calculations that are higher in complexity
than those already very delicate combinatorial arguments in Giraitis, Robinson and Surgailis (2000) [14].
Therefore, while we do provide the details of the local Whittle method in our context, we cannot guarantee
that it provides a consistent estimator for H based on time series observations, and a fortiori based on fBm
observations.

We now present the structure of our paper, along with a detailed summary of our results. In Section 2,




we present the LARCH(co) model, and show in Proposition 1 that n=# E;io (o; — a) converges in L? ()
to a constant multiple of an underlying fBm B¥ (t).

In Section 3, we prove that the conditional maximum likelihood estimator (&, H ) for the pair of pa-
rameters (a, H) in the LARCH(co) model with ¢ observations is given by the solution ;f the system of two
equations ?—%‘35& = 0 and 3—‘5’1‘;& = (), and that this estimator is consistent. All quantities in these equations
are explicit, which allows us to implement the resolution of this system, yielding a practical method for
estimating @ and H; we present numerical results based on simulated data which show that the method
preforms very well.

In Section 4, we justify a portmanteau test for model validation by proving (Theorem 1) that the vector
of standardized residual autocorrelations {¥; : 1 =1, - ,n} defined in (19), based on the residuals & =
€; (&i,ﬁi) where €; (a, H) is obtained from H, a, and the observations via the model (1), converges in
distribution to a centered normal with covariance matrix I~, where this /= is the generalized inverse of the
matrix I defined in (16) and calculated in (17); the corresponding asymptotic Chi-squared distribution is
also given explicitly in Theorem 1.

In Section 5, we investigate the robustness of our conditional MLE. We calculate the total error made
in the calculation of the conditional MLE H if exogenous errors enter the observation (Proposition 2).
This formula may be calculated explicitly in parallel to the calculation of & and H , which is useful if some
assumptions on the observation errors can be made and used in a simulation. We also provide an upper
bound for the total error (Proposition 3), which is the basis for theoretical evidence that when the eITors are
IID centered and square integrable, the total error converges to 0 faster than any power n™® witha < 1—-H
(Remark 4).

In Section 6, we draw the connection between our condition MLE and the estimation of A from discrete
observations of the underlying fBm. In Subsection 6.1, we prove that the following two naive ways of pro-
ceeding do not work: working with {Bm increment observations that are analogous to the r;’s themselves,
and working with the fBm increment observations related directly to the volatilities as in Proposition 1. In
Subsection 6.2, after showing convergence to fBm in L? (Q) of the partia,l. sums of the centered squared obser-
vations 77 — Er? (Proposition 4), we calculate the system of equations needed to implement the conditional
MLE based on these observations (formulas (32) and (33)), and we discuss the practical implementation of
this estimator.

In Section 7, we first present a local Whittle estimator § for § = 2 —2H , based on volatility observations,
using the periodograms (36) for the discrete Fourier frequencies, defining 6 as the minimizer of the quasi-
likelihood-type objective function given in (37). Then, admitting that volatilities are not directly observed,
we explain what modifications need to be performed in order to base the local Whittle estimator on squared
returns instead; here we run into difficulties in justifying that sufficient conditions for consistency of 6 are

satisfied, and show that this issue can only be resolved by establishing long-range dependence estimates on




the mixed moments of the returns.

The last Section 8 is an Appendix where a crucial technical estimate is proved.

2 The LARCH Model; first convergence to fBm.

As in Giraitis, Robinson, and Surgailis (2000) [14], we consider the linear ARCH(co) model (LARCH) given
by

Tt = O¢€¢ (2)
and
oo
oy =a+ Z bj’l‘t_j (3)
Jj=1
=a++ Z bjO't_jEt_j, (4)
Jj=1

In a typical financial data interpretation, the process o; can be understood as volatility process over an
elementary time interval, while the process 7; can then represent log returns of a stock price over the same
interval. In what follows, we will deviate from the standard time series notation of using t € Z for our
model’s time parameter, using instead this letter ¢, and s as well, for continuous time, while the letters k and
¢ represent discrete time. The relation between ¢ and k, as seen below, will typically be of the form k = tn
or k = [tn}, where n=! is thus our time step.

In order to obtain a long-memory model, we can inspire ourselves from the so-called moving-average
representation of fBm: if B¥ is an fBm with Hurst parameter H , there exists a standard Brownian motion
W defined on all of R such that

BE (t) = /Ot t—r) "2 aw (r) +/

0
(@ + 1= = =) aw ()

=/ (=) = (=)%Y aw (). (5)
If one sums the increments o; — a to obtain the mean-zero process defined by vy = 0 and
k
vk=’0k—1+0k~a=2(0i—a)7 (6)

=1
one will be approximating a process whose integration over time must yield the kernel in (5), suggesting that

one should take

b; = ch—z/z’
where ¢ is a fixed constant. It is well known that if
oo
2 2
1]l :=> " Ibs|* < 1, (M
j=1




then ¢ and r are weakly stationary processes, meaning they have constant means, here a and 0 respectively,
and constant second moment, here the common value a2/ (1 - ||b||2> One may recognize that the long
memory parameter used for instance in Giraitis, Robinson, and Surgailis (2000) [14] is denoted by § = 2—2H.

With this choice of b; we proceed to proving a strong L? convergence result to fBm by assuming that
the £;’s are constructed on the same space as W. In what follows and the majority of the remainder of the
paper, we assume that the independent noise terms ¢; are standard normal. This allows us to present simpler
proofs; we believe most results would hold for more general noise terms, but the proofs would be much more
involved, and beyond the scope of this article. To be more clear, the convergence in the next proposition
can be established in the sense of distributions if one only assumes that the independent noise terms ¢; are
identically distributed with mean 0 and variance 1, by a straightforward application of Donsker’s invariance
principle for Brownian motion (see [24, Theorem 2.4.20]). But this does not help us because we need our
convergences to occur within the same probability space in the L? (Q) sense, in order to justify our ultimate
goal of lifting parameter estimation techniques for discrete time series to continuous-time processes.

The easiest way to couple the ¢;’s and BH is to define the Brownian motion W underlying B¥ in terms
of the ¢;’s as the development above should suggest, as a linear interpolation of the partial sums of the ¢;’s

with k& = k; = [nt], the largest integer smaller than nt,
t —
§ : & ok (8)

Donsker’s invariance principle proves that, as a random element in the space of continuous functions, W (™)
converges in distribution to a Brownian motion W. But since our noise terms are Gaussian, more is true.
The stochastic process W™ is Gaussian. By the convergence in distribution, we trivially get that for each
fixed t, W™ (t) is a Cauchy sequence in the underlying probability space L? (Q) which is a Banach space (it
is of course a Hilbert space). Therefore, W(™ () converges in L? (Q) to a random variable W (t). It is then
immediate that W as a stochastic process is a Brownian motion, and we have thus constructed the limit of

the renormalized (and interpolated) partial sums W) (t) on the same space L? () where the ¢,’s live.

Proposition 1 Let n be an integer. Assume that k = ky = [tn] and that W is the Brownian motion given
as the limit of the Gaussian stochastic process given in (8). Define the process V on [0,1] that is continuous

and piecewise linear, with values at multiples of 1/n equal to

JORES
n

where vy, is the centered partial sum of the volatilities, as defined in (6). Then for every t > 0, V (k/n)
converges in L? () to the fractional Brownian motion aBf (t) at time t, as n tends to oo, where BH is

given in (5). Moreover, as a process in L? (), limy 00 V (*) has a continuous modification which coincides

with aBH.




Proof. We have
k k
Vv (;) = n_HZ;(ori - a)
k oo
= n_H Z Z bjcri_jst_]-

i=1 j=1
ko oi-1
= n_H Z Z (Z —j)H_3/2 0jE5.
i=1 j=—o0
Our goal is to obtain the moving average representation of fBm. In the last expression above, we will use
the sum over k to approximate a Riemann integral with respect to Lebesgue measure ds, for which we need
the factor 1/n to represent ds, and a factor n=(#=3/2) to account for (i/n — j /n)H_s/ 2. The sum over j,
on the other hand, will approximate a Wiener-1t6 integral with respect to standard Brownian motion, for
which £;n71/2 will represent the Brownian increment.
With F;' defined as the sigma-field generated by {€i,€i41,E442, -+ }, we add and subtract the term
7 =E [aj}f;r_ J] where J is fixed. Hence

k i—j H-3/2
V(;) = n—HpnH-3/2, 1/22 Z ( > ojenV?

]_—00

k -1 . H-3/2

1 -7 _
Zﬁ > ( ) (05 —75) e5m™ /2
i=1 j=—o00
k i1 ., H-3/2

1 —J =172
ZH Z < > T;E5T
i=1 j=—00

= Vi (k/n) + Vi (k/n).

Since k = [tn], we get that k/n converges to the fixed value ¢ € [0, 1]. The process V; (k/n) defined by

wim =31 5 (5

j=—

H-3/2
> T‘Ejn—l/z (9)

is an approximation of an iterated Riemann and It0 integral. Specifically, let W be the Brownian motion
that interpolates the independent noise terms ¢; as the limit of the process W™ defined in (8). We have

the following lemma, proved in the appendix.
Lemma 1 lim, .. E [(a f;zo ds [° (s— I3 aw (r) — Wy (k/n))] =0.

This lemma allows us to say that V3 (k/n) converges in L? () to an fBm because the process v defined

by the limit in this lemma, i.e.

v (®) _a/_ods/ — ) H32 gy () (10)




is an fBm. Indeed, using the stochastic Fubini theorem, we can rewrite

v (t) ::a/o_oodW(r)/t (s—r)H_3/2ds

+a/ dW(r)/ - HB/zds

_—_Tﬁ/r:_oo (( _pyH2 T)H—l/z) AW (r)

t
a H-1/2
_— t— dw (r),
g ) (r)
which, up to a factor, is the moving average representation (5) of fBm.
It remains to show that

-1, H-3/2
Z ( nj) (05— m3) en /2

]_—OO

k

can be made arbitrarily small. According to the ARCH(o00) specification in (4), the random variable o; (and

therefore 7;) is independent of €;. Therefore if j # 7/, E[(0; — 75) &; (05 — 75) €j:] = 0, and

B [Vi (k/n)?] = ij‘;} _Z ; (=)™ (i';j')H_B/ZEKaj—msj(ojl—n')ejf]%
R TE (D)) el

One of the underlying assumptions is that the solution to the ARCH(oc) specifications is a stationary process

o, which implies that E [(aj - Tj)z] does not depend on j. Thus
mm(z A ) 1

Bl =Bleo-n?] Y3 L > (20)T (L)L

i=1 =1 j=—o0

The limit of the above triple sum is the Riemann integral f; fot <ff::(”I) (s =) H732 (s = YH3/2 4 ) dsds,
which is equal to cyt?H for some constant cy depending only on H. Now letting J be arbitrarily large, we
have by dominated convergence that 79 can be made arbitrarily close to E [00[.7-"{_00,_1}] = g and therefore
E [(ao - 7-0)2] can be made arbitrarily small, so that V (£) convergence in L () to the fractional Brownian
motion v (t) given in (10).

We have finished proving that with k = [tn], V (k/n) converges in L?(Q) to aB¥ (t) where this fBm
is defined in (5), while the Brownian motion W therein is given as the limit of the Gaussian process W (™
defined by (8), as stated in the proposition. The proof of the last statement of proposition now follows from

Remark 3 below; details are omitted. |

Remark 1 It is possible to go one step further in showing that V converges to aB¥ as a process in
L% (2 x [0,7)) and even in L2 (Q;C ([0,T))). To do this, one may prove the convergence to zero of the quan-

tity E [ma.xte[o,T] [V ([t) — aB® (t)tz] This requires more involved arguments than the ones given above,




including use of the regularity theory of stochastic processes. It is beyond the scope of this article. Note that

such a result is much stronger than simply saying that V' converges to fBm in distribution.

Remark 2 It is crucial to note that our L? (Q2)-convergence result of Proposition 1 implies the convergence
in L2 (Q) of any finite-dimensional vectors of values of V to the corresponding vector of values of aB¥.
To then prove convergence at the process level, it is sufficient to show that the limit of V' is almost surely

continuous. Such a task is as technical as the one alluded to in the previous remark, and is also omitied.

Remark 3 However, using two-dimensional distributions, it is not difficult to invoke the Kolmogorov conti-
nuity criterion (see (24, Theorem 2.2.8]) to prove that the limit of V is an almost-surely continuous process.
Indeed, the proof of convergence of V (t) to aB¥ (t) in L* (Q) can be obtained using similar tools as the one
we give above in L% (Q); then the estimates required of the limit of V to use the Kolmogorou criterion follow
from the same estimates for BY | namely E {(a,BH (t) — aBE (s))4] < 3a|t — s|* (in fact, equality holds).
Having a process whose limit has a continuous modification equal to B¥ is satisfactory for our statistical

puTpOSes.

In this following sections, we consider the issue of finding a strongly consistent estimator for the param-
eters of the discrete- and continuous-time models. Because our data typically does represent time series, it
is legitimate and necessary to assume that at time 7, the only available observations are those given up to
that time. Section 6.2 draws a connection between the discrete time series and fBm by showing that the
LARCH observations r; are themselves asymptotically a set of discrete observations for a true fBm, and
that a conditional maximum likelihood estimator of the Hurst parameter H for these observations is a good
candidate for a consistent estimator of H for the fBm itself. Section 6.2 also explains what not to do when

trying to lift estimation of H from the LARCH observations to the fBm observations.

3 Conditional MLE in the ARCH(c0) model

In the discrete-time model, our observations are the log returns r;. Therefore we seek the conditional
maximum likelihood estimator of the two parameters a and H for the ARCH(oo) model. At time ¢, that
is, given past the observations r; : j = 1,2, ,% , this conditional MLE is defined as the value of the pair

(&, A ) which maximizes the conditional log-likelihood function log L (a, H) defined via

L(a,H) =[] f(rilrjk -k =1,2,-)

j=1
where f (r|rj_x : £k =1,2,---) is the conditional density at point r of the random variable r; given the prior
random variables rj_1,---,r1,70,7-1, - 7—k, - -. By the specifications (2) and (3), it is clear that r; is

conditionally normal N (0,0?) given r;_j : k = 1,2,---, since o; is explicitly given as a function of these

10




past observations. Hence

1 r2
logL(a,H):——z- ilog (2m) +Zloga Z—J2 (11)
=1 Jj=1 9
where
o0
o =a+ ZjH—3/2ri_j. (12)
j=1
We easily calculate
atfi 30’1
E =1 Z]H 3/27'1,—] log j,
j=1
so that
dlogl 1 72
w5 (1)
a e o; 0
dlog L : ( 1 ?) H_3/2
— 7 = e k732, 4 logk (14)
o0H ; o;  0; kzzl

Therefore (&, B ) = (&, H ) _is the solution to the system of two equations %’—‘—;L = 0 and Q%E—Ii = 0 for fixed
number of observations 4, i,le. with the understanding that o; is given via formula (12) and each r; : j <4
is known.

Under standard regularity conditions, this estimator is consistent, as ¢ tends to infinity, even if the
underlying distribution is not conditionally normal. In our conditionally lognormal case, the conditions are
satisfied. For instance, Christian Gourieroux’s textbook Gourieroux (1997) [17] can be consulted for this
fact.

We have implemented this estimator on a standard personal computing platform (PC), and have observed
that it performs very well using simulated data, even though the LARCH model is capable of producing
significant “outliers”, as can be seen from the simulated data in the figures 1 and 2 at the end of this article.
Despite the apparent algebraic complexity of the equations (13) and (13) one needs to solve to obtain (&, Jif ),
the problem poses no difficulty for standard symbolic algebra packages. Using MATLAB’s simulations and
algebra capabilities (Version 7.0 running on the University of Valparaiso CIMFAV cluster) yielded the best
computing times.

In our implementation, which performs an iteration of the algorithm from ¢ = 0 to ¢ = n, we had to
arbitrarily truncate the memory length so as to have a finite series in the model, replacing such summation
symbols as Z;’il by E;;l where P is thus the finite memory length. Implementation with this P also implies
that the only values of observations “in the past” that are needed in first P iterations of the algorithm are
it =—P=P+1,---,-2,—-1. In addition to this new parameter P, in the table below, one recognizes the
sample size n, the true values for a and H, and the conditional MLEs & and H. Values are given with 4

significant digits.
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n P a H a H

1000 50 0.1 0.5 0.09999 0.4960
1000 100 1 0.7 09996  0.6998
1000 500 0.8 0.8 0.7998 0.7999
1000 500 0.9 0.6 0.8956 0.5966
1000 500 0.2 0.9 0.1977 0.9005
1000 1000 0.8 0.7 0.8000 0.7000

Heavy-handed truncation (P small) does not seem to effect the estimator at a very significant level,
although the second-to-last line shows that using a past memory P = n as long as the data set (or equivalently
considering half of the data set as past memory) achieves the very highest precision. Convergence as n

increases seems quite rapid: n = 1000 is a reasonable number of data points for the precision attained above.

4 Model validation and hypothesis testing

In addition to having the convergence in law of (&, A )n to the true parameters (a, H) as the number of
observations n tends to infinity, one is interested in the asymptotic distribution of (&, H ) so that one may
draw some conclusions regarding hypothesis testing, such as testing whether or not H = 1/2, which can then
serve as a way to validate or invalidate the long-memory time series model for the given time series data.

Such an asymptotic theory was proposed for parametric ARCH models by Weiss (1986) [38], Lee and
Hansen (1994) [26], Ling and Li (1997) [27], Ling and McAleer (1996) [28], Lumsdaine (1996) [29], and
Tjostheim (1986) [37], among others. In Weiss (1986) [38], the author studies the properties of the quasi-
maximum likelihood estimator (QMLE) and related test statistics in dynamic models that jointly parametrize
conditional means and conditional covariances when a normal log-likelihood is maximized but the assumption
of normality is violated. It is shown that QMLE is still consistent. For consistency and asymptotic normality
of the QMLE estimator in the GARCH(1, 1) models, see Lumsdaine (1996) [29].

The general theory of conditional MLE also implies, under appropriate regularity conditions which are
satisfied in our conditionally normal setting that our estimator 6, = (d, A )n is asymptotically normal, i.e.

that the following convergence to a normal distribution holds
VT (0, - (a,H)) —» N(0,J"11J7Y) (15)

as n tends to infinity, where the 2 X 2 matrices I and J are defined by

2 (-
I=E, [_6 loglj(r,e)} ,

5000"
dlog;(r; 6) Blog s (r; 6
J=Eo[ 8 4irif) Jhogu(r )} (16)
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and we have used the standard likelihood notation
logl;(r;0) :=log f (rjlri—k 1 k=1,2,--)

for the conditional log density of the model r at time j given past observations, and the column vector 8/96
denotes the gradient operator w.r.t the components of § (in our case a two-dimensional column vector), while
8/08' is the corresponding row vector, so that I and J are (in our case 2 x 2) matrices.

We propose a portmanteau statistic for testing the adequacy of fitted time series models. The study of
the distribution of residual autocorrelations in linear times series started with the work [6] of Box and Pierce
(1970). They showed that a portmanteau test, called Box-Pierce statistics, which is essentially a sum of
squared residual autocorrelation coefficients, follows a chi-square distribution.

The required assumption for this result will be satisfied in our case of IID standard normal &’s:

Assumption (A1) ¢; is a sequence of independent and identically distributed (i.i.d.) random variables

with mean zero and variance 1; and E(z—:;?) < 00.

Assumption (A2) J and I are positive definite.

Given the observations 71, ..., 7, and the initial value ro = (rp,7-1,...), using our new likelihood nota-

tion, recall that the conditional log-likelihood function in (11) can be written as:
Ln(0) :=log L (a, H) = > _Li(6)
i=1

where
2
T

2
207

1 1
1i(6) = — log(2m) — 5 log(0?) -

Again, from Section 3, the maximizer of £,(f) on the parameter space ©, denoted by b = (6, Hy) is
the conditional- maximum likelihood estimator of . The algebraic derivation of the formulas immediately
following is elementary, and is omitted. We have included, among the following quantities, some values (H
(not to be confused with the Hurst parameter), R, P) which are not strictly necessary to define in order
to understand the asymptotic distribution of the residual autocorrelation function (Theorem 1 below), but
they do enter in the calculations which lead to the formulas for the matrices I and J, in ways that should
be familiar. For instance, R below turns out to be 0, and P, the term involving second derivatives w.r.t. 6,
is therefore useful in the expression of the asymptotic normality. All further details are omitted.

Denote ¢,(8) = iy, Which, as such, depends only on 6 and the observations. Denote D,;(9) = 615(99) =
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—Ui(0)€:(6), and Py(8) = SEO — _u,(0)U!(6) ~ Ry(6), where

£(0) = (&:(0), = [1 - £2(0)]
7

[ 1 Ge(8) 1 84i(6)
Ui(6) = [a,-(e) 86 ' V3o2(6) 00 ]
_ 1 [8%3() 1 907(9) 89 (6) r3(6)
R0) = 225 [ 606" ~ o2(6) 00 06’ ] [1— 0?(9)]
We have
H = E[£(60)¢(60)],
J = E[U;(60)HU;(80)] ,
I =E[Ui(60)U;(60)], (17

where I and J are defined in (16). The next fact is sometimes taken as an assumption for general studies;

in our case, it does hold, with the matrix I and the vectors D; defined above.

Fact (A3) The conditional maximum likelihood estimator 8, which is consistent, has the expansion
~ -—.1 n
V(0 — 6) = W ;Di(e) +0p(1) (18)

where we use the standard econometrics time series notation o,(1) for a random variable that tends to
0 in probability as n tends to co. Indeed, a Taylor expansion and the fact that Dt(én) = 0, show that
—D;(8o) =~ (6, — 60)P;(6). Taking expectations yields (18).

Finally, using the next assumption, easily satisfied in our conditionally normal case, we can consistently

estimate H, J, I using Oy,.

Assumption (A4) E [maxgeo €f(6)] < 00, and E [maxgeo [|U3(6)]%] < 0.

Using the residual

the log —! (standardized) residual autocorrelation function can be defined as:

n ~A oA
Zi=z+1 €i€i41

'\/Z?:H—l é?——l Z?:l ézz

i (19)

By Theorem (3.1) in [28] we have that:
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From the facts Al through A4, we have that 0,(1) in the above expression does indeed converge to

zero in probability. Therefore we only need to consider the asymptotic distribution of

N
= Z Eifiti- (20)
i=l+1

In [27] the authors proved that:

\/ﬁ(ﬁla"',p}w)l = \/E(Pl,---aPM)/ _D\/ﬁ(én _00)+0;ﬂ(1)

where,
1 n
pL== Y ey, (21)
ni:l—l—l
so that "
1 — 1
(p1,.- pM) = - Zl (€i€i1,. .., 68— M) = - Z;Ti; (22)
1= =
and where
Op
D= nalye = (22) (23)
p.q a6, i

where now 8/06, is a standard partial derivative w.r.t. the gth component of 6 = (a, H), ¢ = 1,2, so

that the matrix D is an M x 2 matrix in our case.

Lemma 2 Let (p1,...,pnm) be the random vector where p; is defined as in (21), then v/n{p1,...,pm) 18

asymptotically normally distributed with zero mean and covariance matriz ¥ = X, = I En],i.e. defined by
Ep’q =IE (Ti (p) Ti (q)) =IE [Ei_pEi_q]
where 7 = (€;64-1, .. .,€i€i—p) was introduced in (22).

Proof Let N; = (gi€5-1,---,€i€i—nm). Then the sequence (N;);>o is a martingale-difference array. Fur-
thermore, if we define v; = I E (sz /.7-',-_1) then v; does not depend on ¢. Finally by using the Central limit.

theorem for martingale differences the results follows. |
Lemma 3 The asymptotic variance of \/n(p1,...,HPn) is given by
, T
S+ DJ I + 217 Cov | (p1,- .., pm), D, De(fo) | DE.

t=1

Proof: By using A3 and equation (15) we obtain
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Var (Vo (py,-..,bu)) =Var (Va(pr,...,ou)) + Daux2Var(v/n(d - 6))D*
—2Cov (Vi (p1,. ., pa) , /6 - 6))) D"
=3, +DJ IV D

— 21—100:” ((pl, .. ,pM) ,Z U1§z> Dt
=1

=%, +DJ'J Dt

i=1

—2I"'Cov ((pl, cePM), Z Di(6)> Dt

Then the result follows. |

Theorem 1 As n goes to infinity, /n(p1,...,Pm) converges to the normal N(0,%;) in distribution. Fur-
thermore, nﬁtE; p converges to x2, the Chi-squared distribution with v degrees of freedom, where 7 is the
rank of X5 and Xy is the generalized inverse of ¥, the latter being defined in Lemma 2.

In our preferred setting where the €;°s are independent with mean 0 and variance 1, in the notation of

Lemma 2, E [g;_pei—q| = 6pq, and therefore X5 = 1.

Proof: It follows from Lemmas (2) and (3). ||

5 Conditional MLE robustness

In this section we investigate what happens when there is additional exogenous uncertainty on the observa-
tions 7;. While a full stochastic-filtering-based treatment of how to extract information dynamically about
the true process (T'j)j given only a noisy observation sequence is beyond the scope of this article, we may
still assume that a small amount of error is present in the reported values of r;, i.e. that we observe instead
quantities ¢; = r; + h;, and ask ourselves by how much our estimators 4 and H will be effected by the
errors h;. We will see that this question is difficult to tract analytically, but that nevertheless there is strong
mathematical and empirical evidence supporting the claim that our conditional MLE estimators are robust
with respect to observation errors. A

We simply propose to estimate the magnitude of the error committed on H when replacing all the
r;’s by all the g;'s. It is thus best to consider that 4 and H are functions of the k = nt variables 7y :=
(r1,--- .,7,).Because there is no analytical way of solving the system of two equations yielding (d, A ), we

must invoke the mean-value theorem assisted by the implicit function theorem in order to evaluate the error

ex = H (7)) — H (@) -
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The implicit function theorem tells us that when a system of equations F (X,Y,7;) = 0, G(X,Y,7%) = 0
has a unique solution (X,Y"), the latter can be considered as a function of the equation’s parameters (here

the r;’s), whose derivatives with respect to these parameters can be calculated as

0X _OF OF | 0G 0G.
or;  Or;' 0X ' or;' 90X’
8_Y OF /(9F oG /8G’
Or; Or;’0Y  or;’ oY’
Here we will use X = &, Y = H, typically omitting the hats as is the practice in implicit function
notation, and therefore the functions F' and G are the expressions dlog L/8a and dlog L/OH given in (13)
and (14), that is:

k 1 r?
F(a,H,Tt) = — + —Z>
@ =3 (55
k 1 7'2 &)
G et =3 (5 +55) Soricss™ 7 1ogs
i= \9i i j=1
with the understanding that each o; is a function of 7j._1,7j_2,- -+ ,71 given explicitly in formula (3). Note

here that all further “past” observations r; : j < 0 are assumed to be known, and are not considered as
variables in the calculation.

Thus we can calculate
k

OF Oo;
Zc’)maa Z@az

r1 32
:‘Z(;ﬂ;&)

i=1 K ?

with .
i—
v—a+2rj(z H3/2+ZT (i — )H 3/2
j=—o0 j=1
also since for all 7’ > ¢, we have

80'1" — (’LI _ Z-)H—3/2

(' — 1) =il g,
ar, log (i —d) =: £

we get
OF _ 2r; k (31"?, 1 )
—_ = — —r 4 Cor .
or, o3 Z_,:Xi;rl of oz ) "

Similarly, since

801' Zn—]JH 3/210g j —ZT’ _it;,

we have
k

OF 1 r2
A CH )t

i=
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For the function G we get immediately

A product rule yields

i=1 RN | z 7
k
1 WAy
+ 2 o)
V=il N @

and

With these formulas we can now express the “error” e in our calculation of H based on g;'s rather than

7;'s, using the Mean Value Theorem:

i (8F 8OF 8G ac) ") (24)

er = H (T) ~ H(q,) = Ty —
e H )~ H@) =300 (5 55 + o
where for each ¢, the value 7; is in the intervals (g;,7;). In the above expression, the quantities @ and H also
appear, as is logical to expect in a formula issued from the implicit function theorem; these are to be replaced

by the functions & and H evaluated at the common values 7;. Thus our calculations can be summarized in

the following basic, and naive, statement.

Proposition 2 The error committed by using an erroneous observation q; = r; + h; instead of r; in the

estimation H is equal to the quantity in (24) above, where the notations used therein are introduced in the

previous paragraphs.

Nevertheless, it is perhaps more intelligent to investigate in what way the quantity in (24) is related to
basic convergence results such as Proposition 1. Because of the complexity of evaluating the error e, we
have not been able to find a rigorous stochastic analytic argument to provide a simple criterion for its “small-
ness”. Nevertheless we now present compelling theoretical calculations showing under what circumstances a
convergence of e; to 0 can be expected.

For illustrative purposes, we begin with the slightly simpler question of sensitivity of &, that is, using
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OF/0a instead of OF/8H, omitting tildas and hats for simplicity of notation, we can express

Z(T‘ _ 8F/87"z

) 5F/da
r2,
k Y (%,‘ + ;%) (@& — )7 log (i —4)
=> (ri—a) P (25)
= S (B )
k
2r; o}
=> (ri—q) -
= SL(F )
=f1—fa

We estimate the coefficient of (r; — ¢;) in fi:

2
Shon (B +3) 0 -9 108 - )
2
T (%)

k
. ~H—3/2 1
<logk Z (7', - Z) / 3r2 1 3r2 1)’
v=itl Lo it i ('v‘f + ?’) / (F‘ + 3’%7)

The random variable >, _; . .z (%2- + ;1?) / (3T’ + T) is the sum of k — 1 positive r.v.’s which are
formed with mean- and variance-stationary r.v.’s; thus the sum can be shown to be of order k. In order to
attain uniformity in ¢’ (for large 7) in this statement, one can again invoke stationarity, plus our hypothesis
that all noise terms &; are Gaussian, to conclude, after some effort, that the same statement holds almost
surely if one is willing to multiply by a power of v/logk: this comes from taking a supremum in i’ of a
sequence of r.v.’s which are bounded by a power of sub-Gaussian r.v.’s. Hence the coefficient of (r; — ¢;) in

f1, which is positive, is bounded by a term of order

)

k- 110g1+p/2k Z ) H —3/2
=i+l

and with the notation dy := Y%, i#-3/2, which is of order k¥~1/2, we get for some constant ¢,p and for

large n,

Al <k~ llog“”/?kZm—qA Z @ — a3

=1 i/ =i41

_,log't?/2 k NH—
= ct 1———g—~7:b-———2|ri—q,-[(k—z)H 12, (26)

i=1
The term fo is much smaller than fi, as the inequality 2r;/0f < r?/0} + 1/02 clearly shows. Dealing
with 8F/0H instead of OF/0a is more problematic yet, because of the presence of the mean-zero factor
Z;’il i g 3/2 log; in the denominators of the terms f; and f2. Nevertheless, since this term coincides

with the expression for o; — a except for the additional log j, its larger magnitude than the stationary
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o; — a helps us. Repeating the above considerations for the expressions involving G instead of F' involve
similar expressions as for F, with combinations of additional factors of the form £; and 3232, ;- ;£;, and
similar conclusions hold, at further calculatory costs. These considerations yield the following more explicit

statement than Proposition 2.

Proposition 3 The error committed by using an erroneous observation q; = r; + h; instead of r; in the

estimation H is bounded by the quantity in (26) above.

The formula in (26) is problematic in the sense that for uniform observation errors, it seems to diverge.
Still, it stands to reason to abusively ignore the absolute values in the expression (26), and take advantage
of some possible structure for the observation errors. Thus assume that these errors h; are centered IID
with unit variance, and are independent of the observations r;. We can hence write that the global error ey

“should be of the order

log! ™2 n Ex by (k- \ T2
€r X : ( )

ni-H Tﬁ

n

i=1
Standard approximation results in stochastic calculus show that for some Brownian motion B, the series
Zf___l % (M)H_l/2 converges to fot (t— s)H_l/2 dB (s), implying that e; converges rapidly to 0. More

n

specifically we claim the following strong robustness.

Remark 4 One can expect that, with IID centered observation errors hi, the resulting error in the estimator

H converges to 0 faster than any power n=% with o < 1 — H.

This remark is also supported by numerical evidence, since our explicit formula (24) for e allows us to

compute the estimation error empirically.

6 Connection with Hurst parameter estimation for fBm

The connection between ARCH models and fBm has in the past been phrased as a convergence in distribution
of normalized partial sums. However, our calculations in Section 2 show that there really is an underlying
fBm on the same probability space as the LARCH(c0) model {;,7;). Indeed, a common standard Brownian
motion W was used to define both the fBm B, via its moving average representation (5), and the time series
model {0, r;) from the specification (2, 3) where W and the ¢;’s are related via the fact that W is the limit of
the process W{™ defined in (8). When n is fixed, it is possible to argue that the €;’s can be calculated from W
itself (instead of the other way around as given in (8)) via the formula e; = +/n [W ((7 + 1) /n) — W (j/n)].
We will not make use of this representation explicitly, however; moreover, it may not be used to prove
convergence theorems as n tends to infinity. ‘

Given these pathwise connections, one may wonder whether we can use the estimators defined in Section

3 to claim that we are in fact estimating the Hurst parameter of a fBm. If the underlying fBm is not observed,
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but the ;s of the ARCH(co0) model are, then answer is of course affirmative, since B¥ shares the same H
as (ry) ;- But this is of little comfort to a practitioner oberving the fBm itself. The correct question is thus
the following: if the trajectory of BY is observed — possibly at discrete times — may one devise a conditional
MLE for H similar to the one in Section 3 based on the ARCH(co) observations r;, but using instead true
observations from B¥, for instance B¥ (j/n):j=1,2,---7

This question is similar to that of robustness, since the information contained in B (j/n):j =1,2, -
will approximate that contained in (r; )j, but the question is not as simple, since there is no simple formula
relating B (j/n) and r; via a “small” error term h;. Our first task is thus to find a transformation
f(r;) of the observations r; for which the true fBm increments B; := B ((j + 1) /n) — B¥ (j/n), are an

approximation to the f (r;)’s.

6.1 Some negative results
6.1.1 Direct use of observations r;

To make our point that a simple-minded use of r; as representative of fBm observations is bound to fail,
consider the following decomposition of fBm, derived from the alternate form (10) of the moving average

representation: for k = k; = tn,

aBf (t)y=a t | s — )32 s
B (1) /s_ods/ (s = )" aw (5)

'/
=a (s— T)H~3/2 aw (7‘)) ds
Z Z / (i=1)/n </r=<j'—1>/n

i=1 j'=—o00
which is asymptotically equal to the same quantity with (s ~ 7) repalced by (i — j'), i.e.

k i—1 j/n n
aBF (t)mad Y / (/ (i/n—j/n)H‘3/2ds> aw (r)

=1 J/__oo (G-1)/n (i-1)/n
=n~# Z Z av/m{W ('/n) = W (7' = 1) /m))} 6 = )2

i=1 j/=—o0
This is to be compared with the decomposition

k ko i-1 ~

Vv (;) =n"Hy, =n_HZ Z ri (4 s 8z
=1 j'=—00
because V (k/n) converges to B (t) in L? ().
Therefore, it is apparent that the analogue, in the continuous-time fBm model, of the observations r;, are

the IID terms a/n{W (j/n) — W ((( — 1) /n))} = ag;j_1. But there can be no hope, of course, of deriving
any estimate of H from these IID noise terms. This negative result is symptomatic of the fact that the

observations r; are uncorrelated. They are not, however, independent, as can be seen from the behavior of

their second moments.
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6.1.2 Volatility observation

One may then be tempted to devise a Hurst parameter estimation method for fBm based on Proposition
1, i.e. using the “volatilities” o; as observations, since n=# Z;?:l (0 — a) converges to B¥ (t), and thus
n~H (0; — a) can be considered as approximate increments of B¥ (t). Econometricians will not consider such
modeling as viable, since volatilities are never directly observed. But there is a more fundamental objection
to this angle: the reader will easily check that the equations yielding the conditional MLE for (a, H) at time

i based on the full past observations (r;,0;),.; ; are

=1
0=+ 1L,
o; | 0

o<
0—( )Z jH- 3/2r1_klogk,

which is obviously degenerate, yielding infinitely many solutions & = £r; — 3 32, GH32p,

6.2 Hurst parameter estimation for fBm based on LARCH observations
6.2.1 Squared observations

The following proposition provides the simplest transformation of the r;’s which yields a non-degenerate
connection to fBm. It has been established previously in Giraitis, Robinson and Surgailis (2000) [14], but
only as a convergence in law, which is why it could not be considered as the basis for an estimation of H for

{Bm.

Proposition 4 Let n be a fized integer, with k = ky = [tn] and define the process Vo on [0,1] that is

continuous and piecewise linear, with values at multiples of 1/n defined by

k e _
i=1
-1
Then Va converges to the fractional Brownian motion 2a® (1 - ||b][2) BH in L% (Q) as n tends to co where
H is defined in (5).

Proof. Given our L? convergence established in Proposition 1, this proposition is largely a consequence

of calculations performed in Giraitis, Robinson and Surgailis (2000) [14]. Indeed, we can write

(Ieil” = 1) losf* + ol

v + |<7i|2

i
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where we thus have defined a sequence v; of uncorrelated identically distributed random variables, which

implies

w3 (inf ~ i) - —2% B ) 2
=N EAREITE

=1

H é H & 2 2 20’ H ‘]
-E (n— ;(W-Em)—m— ;(1@-[ — E|oi| )— et )
< on2H Zk:E [[V~|4] +2E iBH (t)y—n# zk: <|a-[2 - E]or-lz) 2
— p k3 1 _ ”b”2 pe 1 1] |

k 2
= 2n~@HE [jyg - Euol*] + 2B (1—3‘”%“—23" -y (lol* - E laii2)>
- i=1

It is thus sufficient to prove the convergence of n=f Zf___l ([oiIZ -E |ai|2) to 0 in L% (Q).
It was established in Giraitis, Robinson and Surgailis (2000) {14, Corollary 5.3] that for any integer £, we
can decompose (o;)¢ into
(0:)° = £a™'E [(Uo)z] o + Yie
where lim, o, E [!n‘H Ele (yse — E [yig])lz] =0and Eflyy]=~-(¢-1)E [(ao)l]. Therefore with £ = 2,
since E |o;]* = a2/ (1 - Hb][z), we have
k

2% g —pH il — Brl? 2
(1—nbn2B ORT (0 E|z|)>

i=1
2

k
nH " (yie — E [ad])

i=1

20?2 2a2 2
E BY () —nH oi — _
e ( BT Z < T T T ))

8a H —H
=0 ——=E || aB -n o;—a
W+ T ( 2 L ))

The conclusion of the proposition now follows immediately from our Proposition 1. |

=0(l)+2E

The above proof shows that each term n~—# (|ri12 — (lebll ) in the above proposition is asymptotically

close to the fractional Brownian increment 2W (BE ((i+1) /n) — BH (i/n)) = ZWB Because of

this, it is natural to propose a conditional MLE for estimating a and H based on the observations
- 2 2
;i =n"H (|'ri| —E|r ),

-1
and use it with the observations 2a? (1 - ||b||2) B, instead, claiming that the resulting scheme is a consis-

-1
tent estimator for the parameters (a, H) of the stochastic process 2a? (1 - ||b||2) BH observed at discrete
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times. We will not prove this consistency, since it would be mathematically significantly more involved than
the proof of the robustness proposition 3. Note also that we consider here the observation of a scaled fBm,
with scaling parameter 2a? (1 - ||b||2> B which will be determined once o and H are estimated.

We now present the equations for this new conditional MLE. It presents an added difficulty that the
observations z; = n™H (|r;|* — a2/ (1 - ||b]|2)) depend on a and H, and that the sign of r; remains undeter-
mined, so that there is uncertainty in the expression of o; using these observations x;. More specifically, we
will be obliged to write

(T.L—a+ZY1 i i ]l—a+ZY, by \/on2+a,2/ (1— I8l ) (27)

j=1

where Y; is an IID sequence of random variables (mdependent of the observations) which equal +1 or —1 with
equal probabilities, under their probability measure Py. The likelihood function for r; given zg, z1, -+ ,Zs—1

can thus be represented as

1 : r2
L=Ey [Ly]=Ey |exp—5 log2m +2) " log|o;| + Z—Jz
=1 i=1%
where o5 is to be replaced by (27) and
2 H a2 ( 8)
T =n"T; + ———. 2
! EEE
Note that ||b]|* depends on H, and that we have .
d|b)? N o 2H-31 -
-—~——C|Z|H” =c? ZZ]ZH 31ogj.
=1
We have the following partial derivatives:
oj_ % 05 H . d  d) (29)
da  1-|p)* OH  nl-HY (1 _ ”b”2>2 dH
and
80']'
995 _ - 30
g = T e 0
9o a dl|b||2 .- b; c- -
i = Yi_; Yi; |riej|bs 1 31
OH ~ N2 dH ; J2|7"i-—j|+; 1J|7'1 ]|J0g.7 ( )
1— o] i=1 j=1
Therefore, the maximum likelihood estimator (d, H ) is obtained as the solution of the system
2 2\ |
1\8c; 11 0r;
= L B [t R § 2
0=Ey YZ((? crj> a 207 a) ’ (32)
2 2\ |
1\8o; 1160r
=Ey |L A A [ A i
0="Bv YZ(( o? a]> 0H 2026H> (33)

given the above formulas for the various partial derivatives.
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6.2.2 Practical implementation

In practice, we use only a finite memory horizon P instead of co, as we did in the conditional MLE of

Section 3 (see the description of the table of results on page 12). Thence the formulas (29), (30), and (31)
for the partial derivatives above have sums Zleinstead of Z;’;l, the expectation symbols Ey in (32) and
33) can be replaced by the summation symbols 272::"01 2~P, with the notation L, instead of Ly, and the
understanding that Y; must be replaced by m; where m; is the jth term in the binary expansion of m.
In order to evaluate the expressions in (32) and (33), it is useful to divide Ly by ELy (or divide L., by
Ef:z_ol 2=PL,,), in order to deal with convex, rather than possibly very large, coefficients.

Additional simplification can be obtained by noting that in practice, the first summand in the expression
for 8r%/0H in (29) is of the order n~#. Since the mean value theorem implies that its effect can be considered
as replacing r; by r; + h; where the error term h; is bounded above by n? (|rj| + ﬁm) our
robustness results in Section 5 show that neglecting this term should not change the estimator’s consistency.

A further simplification is to replace the averaging over the Bernoulli random variables Y; by a Monte-
Carlo implementation of this average, using far fewer terms than a sum 23:;01 27P (--.). However, one can
show that the distribution of & and H is invariant with respect to the actual signs of the increments €.
Therefore the above implementation can be performed with a single random sequence Yj, i.e. without any
averaging. This amounts to choosing the signs of the r;’s arbitrarily, according to a distribution consistent
with the model. Using Y; = m;, the jth term in the binary expansion of a pseudo-random number m €
(0,1) is of course an appropriate choice. The resulting scheme is then no more complex than the original
Conditional MLE of Section 3.

One may also consider schemes based on moments of order 2p for p any integer, not just p = 1. Although
we leave the derivation of the analogues of formulas (32) and (33) to the reader in this case, such analogues
are obtained in exactly the same way, and the same simplifications apply. Indeed, a proof nearly identical to

that of Proposition 4 shows that, with gg, the 2p-th moment of the noise terms ¢;, the sum of the observations
- 2
ml(-p) i=n " (|n~| P_E |ri|p)
=nf {rilzp ~-n"Hg g E loo|?

converge to the same fractional Brownian motion B as for k = 1, up to a scaling factor:

k 2
lim B (zwgm—ngzpa-lE [lool”] B (t)) =0.

n—0o0 £
i=1

Such higher-order moments may result in faster convergence of the conditional MLE. It is very important to
realize that this method works only for even moments, under our assumption of Gaussian noises ;. Indeed,

while the above convergence holds for moments of all integer orders g, it yields convergence to 0 when g, = 0.
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7 A local Whittle-type estimator of the Hurst parameter

7.1 A local Whittle estimator

In this section, we revert to denoting discrete time by ¢ instead of ¢ or k, because the latter two letters are
used in standard roles for Whittle estimators. We also use another standard notation € := 2 — 2H. Recall

that the LARCH model

o0
or=a+ E biri_j; Tt = o1E¢
i=1

with a # 0 is weakly stationary iff (7) holds. Recall that we are interested in the long-memory case, that is
where the Hurst parameter 0.5 < H < 1. Defining b; = O(j7~3/2), with small enough a, we ensure that (7)
is true. It is also true (e.g. Corollary 2.1 in Giraitis, Robinson and Surgailis (2000) [14]) that

v(h) = Cov(ag, o4) ~ h2H=1 = p=0 (34)

which means that the covariance and, by extension, a correlation function decreases very slowly as b — oo
since —1 < —6 = 2(H — 1) < 0. Suppose we want to have a consistent estimator of the Hurst parameter H.
It seems that a possible candidate that converges to the true value H in probability is the localized version
of the Whittle estimator described as Theorem 2.1.in Dalla, Giraitis and Hidalgo (2004) [11]. First, imagine
that the volatility process oy can be observed directly. Using such an estimator means using the periodogram

of the process o; defined as
2

I, =n""t

n
§ : o_te—zt)\
t=1

The periodogram I, ()\) measures the contribution of the frequency A to the overall ”energy” of the process

ot. By definition, I,(X) = > 7o ¥(h)exp(—ih)). On the other hand, we know that, for any frequency
Aj = 2—77;1 with j integer,

I(A) = Y #(h)e™ N,

|hl<n
Therefore, it is tempting to say that I,()\) can be used as an estimator of 2w f(A). It is a well known
fact, however (see any time series textbook, e.g. Brockwell and Davis (2002) [7]) that the periodogram per
se is not a consistent estimator of the spectral density. If o; were a sequence of iid Gaussian variables, we

would have the joint distribution of {In(A\1),...,In(Am)} as

F(T1,. ., Tm) = ﬁ <1 ‘exp{zw}a(gj\i)D ’

i=1

for any integer m. Consequently, periodograms would converge to a set of independent exponential random
variables with means 27 f();), 2 = 1,...,m. In order to obtain a consistent estimator of the spectral density

f(N), averaging over Fourier frequencies A; would be done, resulting in an estimator belonging to the class
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of discrete spectral density estimators. They are defined as

=g ¥ Walidts (sn )+ 22) (39)

where m,, — 00, m,/n — 0 as n — oo and g(n, ) is the multiple of 27/n closest to A. The weights W,,(j)
have to be even, non-negative, add up to 1 and be such that lelzmn W2(j) — 0 as n — co. Again, for
details see Brockwell and Davis (2002) [7]).

Thus, the periodogram has to be smoothed in order for it to be a consistent estimator of the spectral
density, and, by extensions, to provide a consistent estimator of the long-memory parameter. Note that the
“window” m, used in (35) provides for a local as opposed to the generic Whittle method.

Now define

i.e. the local Fourier frequencies, and
2

In(’\]) =n"! (36)

n
E o.telt)\j
t=1

as the periodogram of the sequence oy, ¢t = 1,...,n and m = m, is an integer bandwidth parameter such

that m — oo and m = o(n) as n — 0o. The local Whittle estimator of the parameter
0:=2-2H

can be defined as the minimizer

a =0, = argmini_1,1)Ux(c)
of the quasi-likelihood-type objective function

m m

1
Un(e) = log | — > ALn(y) | - % Y logA;. (37)

j=1 j=1
7.2 Local Whittle estimator based on squared returns

Unfortunately, oy is the “volatility” process and, as such, should not be presumed observable. Thus, the
problem is to find a suitable substitute process that still allows us to extract enough information to estimate
the Hurst parameter H. The simplest choice appears to be the squared returns r2.

To show that the Whittle local-likelihood based estimator of § = 2 — 2H using squared returns is

consistent, we may verify assumptions A and B in the main result of Dalla, Giraitis and Hidalgo (2004) [11].

e Assumption A requires the process 72 to be weakly stationary and to have the spectral density of the

form

FQ) = A7 L) (38)
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where L(\) — bp as |A\| — 0, 0 < bg < 0o and |ag| < 1. That 77 is a weakly stationary process is clear.

Moreover, according to Theorem 2.2 in Giraitis, Robinson, and Surgailis (2000) [14], we have
Cou(rd,r?) ~ ct™*

when ¢ — oo where the constant ¢ does not depend on ¢ and 0 < 6 < 1. This implies that the spectral
density function of the process r# is f(A) ~ A7 as A — 0. So we do indeed have condition (38) with
g = 0 = 2 — 2H. This means that the assumption A of Dalla, Giraitis and Hidalgo (2004) [11] is
fulfilled.

e Instead of the periodogram for ¢ in (36), we now have

2g=ikst

where \; = 2—21, j=1,...,m. Then, Assumption B requires that renormalized periodograms of the
process 72, i.e. n; = i"—i*_%, satisfy the weak law of large number (WLLN). We now discuss the issue
0725

of verifying this condition.

Dalla, Giraitis and Hidalgo (2004) [11] suggest a simple sufficient condition that enables us to claim that

the Assumption B is true. Let us denote

k
AW maxEZ i —Enj)

1<k<m

Then, A,, = o(m) implies Assumption B; for details, see Proposition 2.2 in Dalla, Giraitis and Hidalgo
(2004) [11].
By definition,

n

2
1 it
In() = > riem™
=1
(O n
er—&— Z r2rZ cos( ]t — s|)
t=1 t#£s=1
n n n—t
= [er +ZZZ TETeh cos()\jh)] (39)
t=1 h=1

Therefore,

n—t

1 n
n; — Enj = ———nb N [Z(frt Erf)+2)

(reri n — ET?T'?_'_}L)COS(Ajh)}
t=1 t=1 h=t

Note also that r? and r} are strictly stationary.
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Let us first handle the first term in (39). It is easy to find out that

n 2
Z i —Er})
= n 2 n
= —E Z(Tf -Erd)*+ s Z E(r} —Er)(rs, —Ery)
i=1 t1,ta=1;t1<ta

Giraitis, Leipus, Robinson, and Surgailis (2004) [15] can be consulted for the fact that if pay := Ee?* < oo
and Ziiz |IB][B]pp| < 1, then ErZF < oco. With k = 4, we guarantee the existence of the 8th moment, and,

therefore, ZE Y1, (rf —Er{)?2 = O(n~!). The remaining portion of the first term in (39) is the expression
2 n 2 n n—
4
ﬁ Z E (rt41 -E Ttl)(rtz E th —E Z Z ov ‘rt H rt+h)
t1,t2=15t1 <22 t=1 h=1

which can be handled using the fact that for any positive integer j > 2, we have Cov (ré, ri‘) ~ c?h“9 (see
Giraitis, Robinson and Surgailis (2000) [14]). Here ¢y = 2.E (r§) is the constant that does not depend on
the difference h = ¢; — t3; ¢; depends on a, b;,j = 1,2,... and & only. Thus, we have

2 n 2 n n—t
4 4 4 4N 4 4
) E , E(rf, —Erg,)(ry, —Ery,) = w2 Z Cov (ry,Tiyn)
t1,to=1;t1 <tg t=1 h=1
n n—t 2 n
=2 Z R0 = 2 Z — )10 b
'n
t=1 h=1 t=1

Consequently, E [2 % (rf - E'rf)]2 = o(1) and, by Jensen’s inequality,

1. & 1w
~E Yot -Erf| < —E D (rf - Erf)2 =o(1)
t=1

t=1
as n — oo.
The second term
2 S 2.2 2.2
o DD (ririin — Brirgyy) cos(h) (40)
n90A; t=1 he=1

is much harder to handle. It should involve the study of more complicated moments of r? which seems to
be undesirable. In particular, it should be necessary to establish a property of mixed moments analogous to
Cov (rg,r;’;) ~ c3h~% in other words, to investigate asymptotic behavior (as ¢ — o0) of “mixed moments”
of the form Cov (rérf ,ri’r{ ;) for positive integer j > 2 and integer 2,/ > 0. Indeed, one can prove by
elementary calculations that any failiure to distinguish between the various covariances for different ¢, h,,
i.e. any attempt to use only covariances of the form Cov ('rg, rfl), yields a second term whose variance diverges.
No elementary ways to solve this problem are clearly visible. The estimation of the “mixed moments” is a

worthy open problem in its own right.
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8 Appendix: Proof of Lemma 1.

Let 7 (r) be the limit of 7; in L? (Q), where j = [sn]. We show first that 7 (r) exists and equals the constant

a. Indeed, as o; is independent of all noise terms ¢ for j' > j, we actually have

= E [0j|F - 7.5-13]

where Fy;_ ;1) is the sigma-field generated by €;_7,€j-541, " ,€j-1. Since J is fixed, as n tends to
infinity, this sigma field, which is a sub-sigma-field of .F[JV.‘;n_ J/ngj /) CONVErges to the trivial sigma-field by
continuity of W. Since o; is square-integrable, 7; is a non-random function of the finite number of random
variables generating Fy;_ ;5 1y
75 =g" (€j-11€j=dt15 " 1Ej-1)
g* is the function that minimizes E [(Gj —g(€j=g,Ejmdt1s ,Ej_l))2], and 7; converges almost surely to
a constant c¢. Since ¢ thus minimizes E [(oj - c)2] , ¢ = E(0;) = a, and therefore lim,_,., 7; = a almost
surely and in L? (Q). By stationarity of o, the convergence of 7; to a in L% () is uniform in j. We denote
the common value of E [(Tj - a)z] by h(n).
Next we study Va (k/n): because ¢; is independent of 7; and of the previous g;:'s for j' < j, we get

2

k 1 H-3/2
E|{Va( k/n)—azn Z ( ) en1/2 (41)

j=—o0
)H 3/2

e ._a>z(

J——OO i=j+1

5§ (5 (i)

j=—oo \i=j+1

The last sum above, together with the factor n =3, is the Riemann sum approximation of the integral

/Ot (/t (r — )32 dr>2 ds = (H —1/2)"* (H + 1/2)—‘1 (HH1/2,

Therefore we have proved that the quantity in (41) converges to 0 as n tends to oo, which means that in
the definition (9) of V, (k/n), we may replace 7; by a as far as L? (2)-convergence goes.

Consequently, the lemma will be proved as soon as we can establish the following convergence:

i—1 . H-3/2
: ) —1/2 _ _ H 3/2 _
T}LII;OE E J_g—oo ( > 0 /_0 ds/ dW ()|l =0 (42)

This follows easily by first noting that the Wiener stochastic integral above can be approximated in L? (2)
by its Riemann sums over the partition {j/n:j = —o0,- - ,i— 1} of [-00,% = [ns] /n], in which the only

relevant values of increments of W are for these partition points; then one replaced W by its approximation
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W) which is straightforward because of the evaluation at partition points only, further L? (Q2)-convergence
being easily guaranteed by the convergence of W) to W as a Gaussian process. The resulting Riemann
sums coincide exactly with the discrete term in (42). The only remaining discrepancy comes from using
i = [ns] /n instead of ¢ = s above; this is resolved by using the Riemann-sum approximation of the Riemann
integral in (42), which is easily done at the start of the evaluation described here, before discretizing the
Wiener-Itd integral, by first performing a Fubini on the integrals in (42), and then replacing the Riemann
integral by its Riemann sum, which causes an error in L2 () proportional to the square of the Riemann

sum error, and thus also converges to 0. We omit all these cumbersome and elementary calculations.
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Fig. 1. Observation values for a typical LARCH time series
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Fig. 2. Variance estimation for the above time series
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