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Abstract

It is often the case, that high dimensional data consists of only a few infor-
mative components. Standard statistical modeling and estimation in such a sit-
uation, is prone to inaccuracies due to overfitting, unless regularization methods
are practiced. In the context of classification, we propose a class of regulariza-
tion methods through shrinkage estimators. The shrinkage is based on variable
selection coupled with conditional maximum likelihood. Using Stein’s unbiased
estimator of the risk, we derive an estimator of the optimal shrinkage method
within a certain class. A comparison of the optimal shrinkage method in a clas-
sification context, with the optimal shrinkage method when estimating a mean
vector under a squared loss, is given. The latter problem is extensively studied,
but it seems that the results of those studies are not completely relevant for
classification. The method is demonstrated and examined on simulated data.

1 Introduction

In this paper we consider the problem of finding a classifier for a response Y, Y €
{—1,1}, based on a high dimensional vector (X1, ..., X;,) of explanatory variables.
Here, by high dimensionality we mean m >> n where n is the size of the training set.




We consider linear classifiers, or predictors ¥ for Y of the form

' m
Y =sign Zanj +ao ), 1)
j=1

where ag, a1, ..., G are constants.

Accurately estimating the constants ag, a1, ...anin high dimensions requires spe-
cial care. In such cases there is a need for regularization in order to avoid overfitting.
The regularization that we suggest involves:

(a) Variable/Model-selection
(b) Correction of selection-bias through conditional maximum likelihood.

Specifically, when a model is selected at stage (a), its parameters are estimated at
stage (b) by a conditional MLE, which takes the selection into account. The likelihood
is based on assuming a multivariate normal distribution of the vector (X1,..., Xpm)
conditional on the value of Y. Formally, we assume X;}Y = 1 ~ N(u;,1) and
X;|Y = —1~ N(1;,1), both independently.

The normality assumption is robust when both m and n are large and when
considering linear classifiers that involve linear combinations of many explanatory
variables. This follows from the central limit theorem. The role of large m and large
n in applying the C.L.T is different. Large m implies that ) a;X; will be close to
normal when a; are comparable in size even if the individual X; are not normal as
in Lindeberg C.L.T; large n implies that Z; defined in the sequel through averages of
independent X;:, 1 =1,...,,n are close to normal.

When searching for a good set ay, ..., an, it is obvious that one may assume w.l.o.g
that 37°; a? = 1. Then the optimal choice is the vector (as, ..., @), that maximizes
I3 aju;— a;7;|. Note that the optimal choice of ay, ..., ar, is the same regardless of
the misclassification loss (or prediction loss). In order to see it observe that 3 a;X; ~
N ajp;,1) conditional that Y = 1 and " a;X; ~ N(3_ a;7;,1) conditional that
Y = —1. Hence an optimal choice of a1,...am is such that |3 . a;u; — 37, a7 is
maximized. A formal argument showing that the optimal choice of ay, ..., an, is the
same regardless of the misclassification loss is through the theory of comparison of
experiments, implying that the experiment that consists of the distributions N(6;,1)
and N(f2,1), dominates the experiment that consists of the distributions N(67,1)
and N(65,1) if and only if |01 — 03] > |6} — 65]. See Lehmann (1986) p-86, for some
basic theory on comparison of experiments and some additional references.

Consider first the case where u; and 7; are known, j = 1,...,m. Denoting A; =
uj — 77 the optimal choice for a;, j = 1,...,m is

A.
ad = —L, 2
TN @)

where [|Al| = />, A? is the l; norm of A = (Ay,..,Ap). In practice A; are
unknown, thus we can not find the optimal a?. A natural approach is to estimate a?
through maximum likelihood.




Suppose a training set of size n is available for which Y = —1, and a further set
of size n for which ¥ =1 is available. Let (Z1, ..., Z,,,) be the vector obtained when
subtracting the mean of those two n-size samples. Then the resulting random vector

Z; ~ N(Aj,2/n), §=1,..m. 3)

is the MLE estimator for A;.
The naive estimation of aJP through m.l.e. The m.l.e estimator of a? is:
yn
AY= 1
A
where Z = (7, ..., Zp,). In order to demonstrate its inefficiency consider asymptotics
where n — oo, m = m(n) and m > n. Denoting D = AJZ-, the quantity

V= ZH-ZZZTI-XAJ'EZA?A]'

becomes

v D+ 0,(y/D/n) |
\/D +0,(\/DIn) + (2m/n) + O, (y/m/n)

The above is straightforward when writing Z; = (A; + ¢;), where ¢; ~ N(0,2/n)
are independent. For any fixed D or more generally when D = o(1/m/n), we have
V = 0p(1). Note!, V = 0,(1), implies that asymptotically, the corresponding classifier
is equivalent to random guessing. Furthermore, the value of V corresponding to the
optimal set a; = ag? j =1,..m, is vVD. As explained above, given ay, ..., am, the
larger the value of V, the better the resulting optimal classifier is, when confined to
classifiers which are functions of ) a;X; (regardless of the prediction loss).

The above asymptotic consideration, where m increases and D is fixed, or, more
generally, when D is small relative to y/m/n, reflects a situation of sparsity, where
most Z; have mean (nearly) zero. As a result most explanatory variables are (nearly)
irrelevant for our classification task. We will elaborate on this point in the next
section. More sophisticated estimators of ag?, based on careful regularizations, will
yield much better classifiers (i.e., with much larger V). Our result, about asymptotic
equivalence between random guessing and the resulting estimator when estimating a;
by m.le, is very much related to Theorem 1 of Fan and Fan (2007). Our result was
obtained independently.

The last example is brought to demonstrate the need for regularization. A popular
method of regularization is by model/variable-selection. When no prior information
is known a natural model selection procedure will select the variables whose corre-
sponding |Z;| are large. Such a method, could include all the variables corresponding
to j such that |Z;| > C, for an appropriate threshold C. Once a model is selected, a
standard routine is to perform m.l.e based on the selected model. In the context of
estimating a sparse high dimensional vector of means such a method is also termed
‘hard threshold’. The pioneering research, on the magnitude of the threshold in such




a context when estimating a vector of means, is Donoho and Johnstone (1994), (1995)
and Foster and George (1994). When rescaling so that the variance of Z; is 1, a ‘uni-
versal threshold’ suggested in those papers is C = /2log(n). An extensive research
on the ‘right’ threshold has been conducted since those mentioned studies. See recent
results and further references in Johnstone and Silverman (2005). Donoho and John-
stone suggested a modification of hard threshold by a soft threshold, i.e., where the
mean of Z; is estimated by sign(Z;)(]Z;| — C)+. One advantage of the soft thresh-
old is that its smoothness enables evaluation of its performance for example through
Stein’s unbiased estimator of the risk.

This paper develops such concepts in the context of classification. The analog
of a hard threshold is the (unconditional) MLE. An analog of the soft threshold is
our conditional MLE, which also defines a smooth shrinkage estimator. Shrinkage
by conditional MLE is also appealing in non-classification problems, for example
estimation of means. We choose to emphasize the classification problem because it
is seldom studied in terms of thresholding and shrinkage estimation. We find an
advantage of the conditional MLE relative to unconditional MLE as shown in our
numerical study in the next section.

As in Donoho and Johnstone (1995) we arrive in Section 3, through Stein’s method
of unbiased estimator of the risk, to an analog of ‘unbiased estimation of the risk’.
This is done for various regularizations (i.e., various choices of thresholds), which is
helpful in approximating the optimal threshold.

An important message (though not surprising when thinking of it) is that the op-
timal threshold in classification, may behave dramatically different from the optimal
threshold in the context of estimating the mean vector under a square loss. Conse-
quently, many more variables Z; may be selected, in comparison to the case where
the purpose is estimation. Hence the extensive research on the latter problem is not
completely relevant for classification. The difference between the optimal thresholds
in estimation versus classification may be seen in Table 1 of Section 3. Future research
is needed to determine whether model selection and conditional MLE is indeed the
right approach in classification problems.

Finally, we mention a recent work on high dimensional classification by Bickel and
Levina (2005). Their setup is also of multivariate normal explanatory variables, but
under their formulation the major problem becomes the estimation of the unknown
covariance matrix, rather than inference concerning the vector of means as in our
formulation. They investigated the naive regularization method called ‘naive Bayes’
which assumes independence of the explanatory variables. They show that such an
assumption is often not very harmful and the resulting procedures are not too bad
relative to the optimal. Their result suggests that studying a model with independent
X;, as we do, is of interest. Note that when assuming a diagonal covariance matrix,
the assumption of known variance (w.l.o.g cr;‘.’ = 1) is mild when n is large, since the
variance may be estimated from the data.




2 Regularization through Subset Selection and Con-
ditional MLE

The discussion in the introduction suggests that a reasonable approach is to choose a;

. . A C
which are estimates of a? = TAJW’ j =1, ...,m, under some regularization procedure.

The regularization method suggested next has two components. First, selecting
only a size k subset of explanatory variables, out of X1, ..., Xy, thereby decreasing
the variability due to estimating the corresponding A;. Second, compensate for the
selection-bias, introduced by the above selection.

When there is no prior information about the relevance and importance of the
explanatory variables, a most natural subset selection is of the explanatory variables
that correspond to indices j for which |Z;| > C. Assuming, w.l.o.g |Z1| > ... > |Zx| 2
C >..>|Zyl|, we select Xy, ..., Xk, as the explanatory variables. Here C is a tuning
parameter that defines a collection of regularization methods.

Another related model-selection setup is when the signals are known to be positive,
i.e,, A; > 0. In such a case the natural variable selection is of the form: select variable
J, iff the corresponding Z;, satisfy Z; > C for an appropriate C.

Notice, that for a sparse setup, as we have in mind, C will be typically large in
both models and corresponding variable selection methods. Thus, the MLE when
conditioning on the event {|Z;| > C} is practically the same as the MLE when condi-
tioning on {Z; > C1}; see Figure 2 in the sequel and further elaboration bellow. Thus,
using either conditioning and selection methods yield practically the same results.

We will use the latter model and variable selection method, (i.e., model with
A; > 0 and selection through Z; > (). This is since the resulting equations are
simpler and so is the presentation of the ideas. Yet, the same treatment and ideas
work for selection through |Z;| > C.

Given a value C, let {Ga} be the family of distributions parameterized by A and
defined by a N(A,o?) random variable, conditional that it is greater than C. The
value of o2 that is relevant for us is 2/n, see (3). Then, {Ga} is an exponential family.

Consider first the conditional MLE for A; conditional on {Z; > C}, without
assuming that A; > 0!

Given an observation Z, distributed Ga, it is easy to check that the MLE estimator
A for A is the solution of

Z=A+0 h((C-A)/o) @)

where h(a) = T;ﬁ%%j and ¢ and @ are he density and the cumulative distribution of
a standard normal distribution.

For any combination of C and o, there is a corresponding MLE A(Z, C, o), given
an observation Z. The following proposition gives the relation between the MLE
corresponding to various values of C and o.

Proposition 1: A(Z, C,o)=C+ O'A(Z_C,O, 1).

o

Proof A(Z,C,0) is a solution of Z—A(UZ’C’”) - h(C_A(UZ’C’a)) = 0. After slight




modifications, we have

zZ-C A(z,c,a)—c_h(_A(Z,c,a)-o) o

(2 [ g

Denote Z* = £=€ and A* = éﬁz’—i’”ﬂ, then the above is Z* — A* — h(—A*) =0,
which means A* is the maximum likelihood estimator given Z* when C=0ando=1
By strict convexity of conditional likelihood, MLE is unique, i.e., A is one to one
function of Z. From this uniqueness, é(—z—’%ﬂi =A* = A(Z*,O, 1) = A(Z‘C,O, 1)

and A(Z,C,0) = 0A(%2€,0,1) + C.

The function A(Z,0,1) is illustrated in Figure 1.

10

conditional m.l.e.

-5

Figure 1: Conditional maximum likelihood estimator when C =0 and o = 1.

Now!, consider our model when assuming that A; > 0. Then, the conditional
MLE for A; conditional on {Z; > C} is:

5j = max(Aj,O). (5)
Figure 2 shows the difference between the conditional MLE when conditioning on

|Z] > C, and the conditional MLE when conditioning on Z > C. As C increases, the
results become similar.
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Figure 2: Solid lines represent § = max(A, 0) for likelihood conditioned on Z > ¢,
and real lines represent conditional MLE based on |Z| > ¢. Upper left and right panel
are for ¢ = 0 and ¢ = 1, and lower left and right panel are for ¢ = 2 and ¢ = 3.

Finally, our suggested conditional MLE estimators for a®

2a%,j=1,..,k are:

N &5
&) = (6)
where § = (1, ..., 0m)

Similarly to the above one obtain the unconditional MLE as:

2 Z;

a; = ==,
|
where Z; = Z;-1(]Z;| > C) for an indicator function I. Note that the notations above
suppress the dependence of d? and &? on C. We further introduce the notations

V(C) =) alA;,
and

V(C) =) a%A,;.




Figure 3: The graphs represent V(C) (dashed) and V(C) (dotted) for m = 10° and
o =1 vs. C. Graphs in the first row are for (A,[)=(1,2000) and (1.5,1500), the
second row for (2,1000) and (2.5, 300), the third row for (3,250) and (3.5,200) and
the fourth row for (4,150} and (4.5, 100)




In the following graphs, we demonstrate the performance of conditional MLE and
the unconditional MLE in a simulation study, through the pair of functions V(C)
and V(C). We study various combinations of [ and A, where | variables are normal
with mean A and variance 1, and m — [ variables have mean 0 and variance 1, e.g.,
EZ;=A, j=1,..,[, EZ; =0 j =141, ...,m. We present the following combinations
of | and A where m = 10°. Figure 2 shows the simulation results. Each curve in each
graph is based on average of 100 simulations.

Remark 1: We may assume w.l.o.g that by rescaling Z; have variance 1. Yet, as
explained in the introduction, if X; have variance 1 under the original scale then the
variance of Z; is 2/n under that scale. In this section we rescale so that the variance
of Z; is 1 and n is not explicitly mentioned. Yet, given a concrete value of n, the scale
of the above graphs should be multiplied by 1/2/n in order to be interpreted under
the original scale for which the variance of X; is 1.

Discussion. Figure 3 indicates that typically Vo = maxc V(C) is larger than
Vo = max¢ V(C). Yet, it is larger by 10% or less and sometimes even comparable or
(very) slightly smaller.

Assuming, that we may find the optimal C under each procedure and that also the
optimal ag is found, let us examine the advantage of the conditional MLE procedure
when Vg is 10% larger than V. Suppose we want equal misclassification errors, then
the values are 1 — ®(V,/2) and 1 — ®(V;/2) correspondingly. Suppose under the
relevant scale Vy = 4.4 and Vy = 4, then the advantage in terms of misclassification
errors is 1.8% versus 2.3%. It is some advantage but not a major one. Obviously it
is less impressive for V < 4.4 while it might be more impressive for V > 4.4.

In practice however the optimal C is not given. The above graphs indicate that
errors in approximating the optimal C will have more severe effect in the case of the
unconditional MLE. Moreover, for the conditional MLE, we have a good procedure for
approximating the optimal C, as demonstrated in the following section. Those facts
make conditional MLE further advantageous when comparing with the unconditional
one.

3 Choosing the Appropriate Regularization Para-
meter C.

In this section we will consider the problem of choosing the regularization parameter
C. For every C there are corresponding §; = §(Z;, C, 0), for a given data set Z1, ..., Z;,
and a given ¢. The optimal C is:

2% 85 = argmaxo V(C).

lal

The optimal C can not be found since the values Ay, ..., A,,, are unknown. Note
that a naive approach where we plug in J; for A; trivially yields C = 0 as the
optimizer. As may be seen in the numerical examples of the previous section, the
choice C' = 0 could be very poor due to overfitting. The formal explanation about
naive estimation of a? is given in Section 1.

argmaxq




We consider the use of Stein’s unbiased estimator of the risk in obtaining a good
estimation of V(C) for the purpose of approximating the optimal C. A naive way for
such an estimation is the use of a validation test. An important advantage of Stein’s
unbiased estimation method is that it does not use a validation set thereby enabling
the use of a larger train set.

Stein’s unbiased estimator of the risk. In the expression for V = V{(C), the
denominator is given and the unknown quantity 3 4&; - A; should be estimated. The
method suggested, is based on Stein’s unbiased estimation of the risk, applied to the
exponential family {Ga}, see Brown (1986) p-99. The idea is to introduce a function
of the data, denoted U, such that:

EAjU(Zj) = EAjUj = EA].(SJ' . Aj.

The obvious advantage of the left hand side over the right hand side is that the
expression U involves only the data and does not involve the unknown parameter A,
hence >, U; is an unbiased estimator of the quantity of interest 3 A; - §;.
We denote, for a fixed C and o,
5 = -1 5z,C0)
J dZJ 7 3 Ll
and similarly denote A’. . A
Note that for Z such that A(Z) > 0 we have A'(Z) = §'(Z), while §'(Z) = 0 for
Z such that A(Z) < 0.
(From (5) we get
1
1-Hw((C-A)/a)

A(Z) =

We further denote
Uj - (5ij - 025‘;.

Lemma 1: EAU; = EAA6;

Proof: The proof is straightforward and is based on the principle of Stein’s un-
biased estimator of the risk, see Brown (1986) p-99. We apply the technique on the
exponential family of distributions parameterized by A, obtained when conditioning
that a N (A, 1) variable is greater than C.

Lemma 1 motivates us to estimate the quantity V(C) = 3~ 8;A;/||6|| by the

fOllOWing [/A (C), where
~ 5 Z:>C U7

The relationship between V(C) and V(C) is illustrated in Figure 4. Since the
agreement seem to be very good it is a good practice to select

C = argmax,V(C),

as the regularization parameter.
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Estimation versus classification. Table 1 below, shows optimal C for different
combinations of (A,l) under classification, in comparison with those for estimation
under a squared loss. Those optimal values are obtained through simulations in
various combinations. In both cases of classification and estimation, we examine the
class of conditional MLE procedures parameterized by C, and the optimal value of C
in each case is reported in Table 1. The values were found through simulation.

It should be emphasized, that the corresponding optimal values of C in classi-
fication versus estimation may be very different, e.g., when (A,I) = (1,2000) and
(1.5,1500). Under square loss, when signals are weak, we choose large C, so most of
the estimates for A; are 0, but in classification problem a small C is chosen ( C' =0
in the case (A,l) = (1,2000) ), so many (even all) of the variables are selected.

(A1) | C under classification € under squared loss
(1,2000) 0.00(0.00) 4.12 (0.28)
(1.5,1500) 0.97(0.19) 4.39 (0.30)
( 2, 1000) 1.92(0.15) 4.15 (0.72)
(2.5, 300) 2.59(0.19) 3.55 (0.32)
(3, 250) 2.79(0.10) 3.08 (0.12)
(3.5, 200) 2.92(0.09) 2.98 (0.09)
(4, 150) 3.07(0.08) 3.01 (0.08)
(4.5, 100) 3.25(0.09) 3.16 (0.10)

Table 1: Average of 100 optimal C under V(C), versus the optimal C under a squared
loss. The numbers in () indicate standard deviations.

4 Discussion

The proposed method does not really have an iterative training stage as the ML
problem is one dimensional which is extremely fast and can also be tabulated. Support
vector machines, on the other hand, require quadratic programming with the number
of variables scaling up linearly (depending on the number of support vectors) with the
number of examples. This means that our method is useful in large scale problems
where a fast solution is desirable.

For the case of correlated data, we consider known covariance. Then, if we scale
all the variables to have the same variance, we should (i) select all the variables with
corresponding Z; > ¢, estimate their mean using conditional MLE (ii) use the linear
transformation on the selected variables, for which the new variables are independent,
(iii) estimate the mean of the transformed variables based on the estimates in (i), and
proceed as before. The problem of unknown covariance matrix is beyond the scope
of this paper.

Some previous studies concerning regularization in discriminant analysis are Camp-
bell(1980), Friedman(1989) and Hastie et al.(1995). The regularization in those pa-
pers is based on inverse of the covariance matrix, but under high dimensional problem
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such as 10,000 variables, this procedure is numerically infeasible. Another regular-
ization direction is assuming independence, namely naive bayes, in Bickel and Levina
(2004). This independence assumption as well as variable selection through condi-
tional MLE brings us to our main work on regularization in high dimensional problem.

Conditional mle is a less arbitrary method of soft shrinkage compared to some
other shrinkage methods. Our framework is general, it is based on specific modeling
assumptions. Other modeling assumption (for example non-normal data) would lead
to analogous different shrinkage procedures.
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