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Abstract 

Variance function estimation in multivariate nonparametric regression is consid- 

ered and the minimax rate of convergence is established. Our work uses the approach 

that generalizes the one used in Munk et al (2005) for the constant variance case. As 

is the case when the number of dimensions d = 1, and very much contrary to the 

common practice, it is often not desirable to base the estimator of the variance func- 

tion on the residuals from an optimal estimator of the mean. Instead it is desirable to  

use estimators of the mean with minimal bias. Another important conclusion is that  

the first order difference-based estimator that achieves minimax rate of convergence 

in one-dimensional case does not do the same in the high dimensional case. Instead, 

the optimal order of differences depends on the number of dimensions. 
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1 Introduction 

We consider the multivariate nonparametric regression problem 

where yi E R, xi E S = [0, I ld  C Rd while a, are iid random variables with zero mean and 

unit variance and have bounded absolute fourth moments: E lail 5 p4 < m. We use the 

bold font to denote any d-dimensional vectors with d > 1 (except d-dimensional indices) 

and regular font for scalars. The design is assumed to be a fixed equispaced d-dimensional 

grid; in other words, we consider xi = {xi,, . . . , xid)' E Rd where ik = 1 , .  . . , m for 

k = 1 , .  . . , d. Each coordinate is defined as 

for k = 1 , .  . . , d. The overall sample size is n = md. The index i used in the model 

(1) is a d-dimensional index i = ( i l , .  . . , id).  Both g(x) and V(x) are unknown functions 

supported on S = [0, lId. The minimax rate of convergence for the estimator v under 

different smoothness assumptions on g is the main subject of interest. The estimation 

accuracy for 6' is measured both globally by the mean integrated squared error (MISE) 

and locally by the mean squared error at a point (pointwise risk) 

We are particularly interested in finding how the difficulty of estimating V depends on 

the smoothness of the mean function g as well as the smoothness of the variance function V 

itself. This paper is closely related to  Munk et a1 (2005) where the problem of estimating a 

constant variance V(x) = a2 in the multidimensional setup (1) is considered. They use a 

difference-based approach to variance estimation but note that "... Difference estimators 

are only applicable when homogeneous noise is present, i.e. the error variance does not 

depend on the regressor" (Munk et a1 (2005), p.20). We extend their difference-based 

approach to  the case of non-homogeneous (heteroskedastic) situation where the variance 

V is a function of the regressor x. This paper is also closely connected to Wang et a1 (2006) 

where a first-order difference based procedure for variance function estimation was studied 

in the one-dimensional case. The present paper considers variance function estimation in 



the multidimensional case which has some different characteristics from those in the one- 

dimensional case. In particular, first order differences are inadequate in high dimensional 

case. In fact, as in the constant variance case, it is no longer possible to  use any fixed 

order differences and achieve asymptotically minimax rate of convergence for an arbitrary 

number of dimensions d > 1. The order of differences needs to grow with the number of 

dimensions d. 

We show that the minimax rate of convergence for estimating the variance function 

V under both the pointwise squared error and global integrated mean squared error is 

if g has a derivatives, V has ,f3 derivatives and d is the number of dimensions. So the 

minimax rate depends on the smoothness of both V and g .  The minimax upper bound is 

obtained by using kernel smoothing of the squared differences of observations. The order 

of the difference scheme used depends on the number of dimensions d. The minimum 

order needs to be y = rd/41, the smallest integer larger than or equal to d /4 .  With such a 

choice of the difference sequence our estimator is adaptive with respect to the smoothness 

of the mean function g .  The derivation of the minimax lower bound is based on a moment 

matching technique and a two-point testing argument. A key step is to study a hypothesis 

testing problem where the alternative hypothesis is a Gaussian location mixture with a 

special moment matching property. 

I t  is also interesting to note that, if V is known to belong to a regular parametric 

model, such as the set of positive polynomials of a given order (which corresponds to 

,f3 = cm), the cutoff for the smoothness of g on the estimation of V is d / 4 .  That is, if g has 

a t  least d / 4  derivatives then the minimax rate of convergence for estimating V is solely 

determined by the smoothness of V as if g were known. On the other hand, if g has less 

than d / 4  derivatives then the minimax rate depends on the relative smoothness of both g 

and V and, for sufficiently small a, will be completely determined by it. The larger d is; 

the smoother the mean function g has to be in order not to influence the minimax rate of 

convergence for estimating the variance function V. 

The paper is organized as follows. Section 2 presents an upper bound for the minimax 

risk while Section 3 derives a rate-sharp lower bound for the minimax risk under both 

global and local losses. The lower and upper bounds together yield the minimax rate 

of convergence. Section 4 contains a detailed discussion of obtained results and their 

implications for practical variance estimation in the nonparametric regression. The proofs 

are given in Section 5. 



2 Upper bound 

In this section we shall construct a kernel variance estimator based on squared differences 

of observations given in ( 1 ) .  Note that it is possible to consider a more general design 

where not all m k  = m, k = 1 , .  . . , d and xik is defined as a solution of the equation 

3~ = JFz f k ( s )  ds for a set of strictly positive densities f k ( s ) .  This does not change the 
m k  

conclusion of the paper and only adds a layer of technical complexity to the discussion. 

We will adhere to a simpler design ( 2 )  throughout this paper. 

Difference based estimators have a long history for estimating a constant variance in 

univariate nonparametric regression. See, for example, von Neumann (1941, 1942),  Rice 

(1984) ,  Hall et a1 (1990) ,  Hall and Marron (1990) ,  Dette et a1 (1998) .  The multidimen- 

sional case was first considered when the dimensionality d = 2 in Hall et a1 (1991).  The 

general case of estimating a constant variance in arbitrary dimension has only recently 

been investigated in Munk et a1 (2005).  The estimation of the variance function V ( x )  

that depends on the covariate is a more recent topic. In the one-dimensional case, we 

can mention Miiller and Stadtmiiller (1987, 1993) and Brown and Levine (2006).  The 

multidimensional case, to the best of our knowledge, has not been considered before. 

The following notation will be used throughout the paper. Define a multi-index J = 

{ j l , .  . . , j d )  as a sequence of nonnegative integers j l ,  . . . , jd .  For a fixed positive integer 

1 ,  let J(1)  = { J  = ( j l ,  j2 ,  . . . , jd : IJl = 1). For an arbitrary function f ,  we define 
D' f  = a'f ('I if I JI = 1.  For any two vectors x = ( X I ,  . . . , xd)' and y = ( y l  . . . , yd)' we ax:' ... ax? ' 
define the differential operator 

where zk is a generic kth argument of a d-dimensional function while V is a gradient 

operator in lRd. ( 6 )  is useful for writing the multivariate Taylor expansion in a concise form. 

For an arbitrary x E lRd we define xJ  = x? . . . x?. Also, for any vector u and real number 

v ,  the set B = u+ V A  is the set of all vectors { y  E lRd : y = u + v a  for some a E A c lRd). 

For any positive integer a,  let La] denote the largest integer that is strictly less than a,  

[a] the smallest integer that is greater than a ,  and a' = a - La]. Now we can state the 

functional class definition that we need. 

Definition 1 For any a > 0 and M > 0 ,  we define the Lzpschitz class A a ( M )  as the set 

o fa l l f unc t i ons  f ( x ) :  [O,lId- lR such tha t  l D 1 f ( x ) l  5 M f o r 1 = 0 , 1 ,  . . . ,La], and, 



We assume that g E Aa(Mg) and V E A ~ ( M v ) .  We will say for the sake of simplicity 

that "g has a continuous derivatives" while "V has ,O continuous derivatives". 

In this section we construct a kernel estimator based on differences of raw observations 

and derive the rate of convergence for the estimator. Special care must be taken to define 

differences in multivariate case. When d = 1 and there is a set of difference coefficients 

dj, j = 0, . . . , r such that x;=o dJ = 0, d: = 1 we define the difference "anchored" 

around the point y, as djyi+j. When d > 1, there are multiple ways to enumerate 

observations lying around yi. An example that explains how to do it in the case d = 2 is 

given in Munk et a1 (2005). For a general d > 1, we first select a d-dimensional index set 

J E zd that contains 0. Next, we define the set R consisting of all d-dimensional vectors 

i = ( i l , .  . . ,id) such that 

R +  J = { ( i + j ) l j €  J , i €  R ) ~ @ j ! = ~ { l ,  . . . ,  m). (7) 

Again, a subset of R + J corresponding to a specific i* E R is denoted i* + J .  Then, the 

difference "anchored" around the point yi* is defined by 

The cardinality of the set J is called the order of the difference. For a good example that 

illustrates this notation style when d = 2 see Munk et a1 (2005). 

Now we can define the variance estimator Q(x). To do this, we use kernel-based 

weights K;(X) that are generated by either regular kernel function K(.) or the boundary 

kernel function K,(.), depending on the location of the point x in the support set S .  The 

kernel function K(.)  : IRd + IR has to satisfy the following set of assumptions: 

K ( x )  is supported on T = [-1, :l.ld K(x)dx  = 1 ,S, 
S, ~ ( x ) x ~ d x = O  for0 < JJI < L,O] and 

Specially designed boundary kernels are needed to control the boundary effects in kernel 

regression. In the one-dimensional case boundary kernels with special properties are 

relatively easy to describe. See, for example, Gasser and Miiller (1979). It  is, however, 

more difficult to define boundary kernels in multidimensional case because not only the 

distance from the boundary of S but also the local shape of the boundary region plays a 

role in defining the boundary kernels when d > 1. In this paper we use the d-dimensional 



boundary kernels given in Muller and Stadtmuller (1999). We only briefly describe the 

basic idea here. Recall that we work with a nonnegative kernel function K : T + R with 

support T = [-I, lld c IRd. For a given point x E S consider a "moving" support set 

Sn = x + h(S - x )  which changes with x and depends on n through the bandwidth h. 

Using this varying support set Sn, it is possible to define the support T, of the boundary 

kernel that is independent of n. To do this, first define the set Tn(x) = x - hT; the 

subscript n again stresses that this set depends on n through the bandwidth h. This 

is the set of all points that form an h-neighborhood of z. Using Tn(x) and the moving 

support Sn, we have the transposed and rescaled support of the boundary kernel as 

T, = h-'[x - {Tn(x) fl S,)] = hK1(x - {x + h(S - x ) )  fl (x - hT)) = (x  - S )  fl T. (10) 

The subscript n has been omitted since T, is, indeed, independent of n.  Thus, the support 

of the boundary kernel has been stabilized. The boundary kernel K,(.) with support on 

T, can then be defined as a solution of a certain variational problem in much the same 

way as a regular kernel K(.) .  For more details, see Miiller and Stadtmiiller (1999). 

Using this notation, we can define the general variance estimator as 

The kernel weights are defined as 

h n-'hPdK (7) when x - hT  c S, Ki (2) = 
n - ' h - d ~ ,  ( ) when x - hT S. 

It  can also be described by the following algorithm: 

1. Choose a d-dimensional index set J; 

2. Construct the set R; 

2 
3. Define the estimator CitR K:(x) (CJE djR+j) as a local average using kernel- 

generated weights K:(x) 

In this paper we will use the index set J selected to be a sequence of y points on the 

straight line in the d-dimensional space that includes the origin: 



In addition, we use normalized binomial coefficients as the difference coefficients. This is 

the so-called polynomial sequence (see, e.g. Munk et a1 (2005)) and is defined as 

where k = 0,1, .  . . , y. It is clear that x i = o  dk = 0, x i = ,  d i  = 1, and x i = o  kqdk = 0 for 

Remark 1: It is possible to define a more general estimator by considering averaging 

over several possible d dimensional index sets J1, 1 = 1, . . . , L and defining a set R1 for 

each one of them according to (7). In other words, we define 

where pl is a set of weights such that El pl = 1. The proof of the main result in the 

general case is completely analogous to the case L = 1 with an added layer of technical 

complication. Therefore, in this paper we will limit ourselves to the discussion of the case 

L = 1 and the definition (11) will be used with the set J selected as in (12). 

Similarly to the mean function estimation problem, the optimal bandwidth h ,  can be 

easily found to be h ,  = ~ ( n - l / ( ~ P + ~ ) )  for V E A ~ ( M v ) .  For this optimal choice of the 

bandwidth, we have the following theorem. 

Theorem 1 Under the regression model (1)  with zi being independent random variables 

with zero mean, unit variance and uniformly bounded fourth moments, we define the esti- 

mator as in (11) with the bandwidth h = ~ ( n - ' / ( ~ p + ~ ) )  and the order of the diflerence 

sequence y = [d/41. Then  there exists some constant Co > 0 depending only on  a ,  P,  
Mg, Mv and d such that for suficiently large n, 

20 4u -- 

SUP sup E ( ~ ( X , )  - ~ ( 2 , ) ) ~  I C O .  max{n-7, n 20+d) (14) 
~ E A ~ ( M ~ ) , V E A ~ ( M V )  ~ * E S  

and 
20  4u -- 

SUP ( F ( ~ ) - ~ ( ~ ) ) ~ d x < C ~ . m a x { n - ~ , n  28+d). (15) 
SEA~(M,),VEA*(MV) 

Remark 2: The uniform rate of convergence given in (14) yields immediately the point- 

wise rate of convergence for any fixed point x, E S 

20 4u -- 
SUP E ( ~ ( x , )  - v ( x * ) ) ~  5 C o .  max{n-7, n ZP+~). 

g€AU(Mg) ,V€AP(M~)  



3 Lower Bound 

Theorem 1 gives the upper bounds for the minimax risks of estimating the variance func- 

tion V(x) under the multivariate regression model (1). In this section we shall show that 

the upper bounds are in fact rate-optimal. We derive lower bounds for the minimax risks 

which are of the same order as the corresponding upper bounds given in Theorem 1 . In 

the lower bound argument we shall assume that the errors are normally distributed, i.e., 

q "d N(0 , l ) .  

Theorem 2 Under the regression model ( I )  with 2, * N(0, I ) ,  

and for any fixed x, E [0, lld 

2 0  4 a  -- 
in f SUP E(?(x,) - ~ ( 2 , ) ) ~  2 C1 . max{n-7, n d + 2 0 }  

v S E A ~ ( M ~ ) , V E A P ( M V )  
(17) 

where C1 > 0 is a constant. 

Combining Theorems 1 and 2 yields immediately the minimax rate of convergence, 

for estimating V under both the global and pointwise losses. 

Theorem 2 is proved in Section 5. The proof is based on a moment matching technique 

and a two-point testing argument. One of the main steps is to study a hypothesis testing 

problem where the alternative hypothesis is a Gaussian location mixture with a special 

moment matching property. 

4 Discussion 

The first important observation that we can make on the basis of reported results is that 

the unknown mean function g does not have any first-order effect on the minimax rate 

of convergence of the estimator v as long as the function g has a t  least d / 4  derivatives. 

When this is true, the minimax rate of convergence for v is n-2P/2P+d, which is the same 

as if the mean function g had been known. Therefore the variance estimator V is adaptive 

over the collection of the mean functions g that belong to Lipschitz classes Aa(Mg) for all 

cr > d/4.  On the other hand, if the function g has less then d / 4  derivatives, the minimax 



rate of convergence for V is determined by the relative smoothness of both g and V. When 

4a ld  < 2,B/(2,B + d), the roughness of g becomes the dominant factor in determining the 

convergence rate for V .  In other words, when a < d,B/(2(2,B + d)), the rate of convergence 

becomes n-4Qld and thus is completely determined by a .  To make better sense of this 

statement, let us consider the case of ,B = cm which corresponds to the variance function 

V belonging to a known parametric family (see Hall and Carroll (1989)). Clearly, when 

,B + cm the cutoff d,B/(2(2,B + d)) + d/4. Thus, when d = 2, any mean function g with 

less than 112 of a derivative will completely determine the rate of convergence for V ;  when 

d = 4, any mean function with less than 1 derivative will do and so on. As the number of 

dimensions d grows and the function V becomes smoother, the rate of convergence of v 
becomes more and more dependant on the mean function. In other words, ever increasing 

set of possible mean functions will completely "overwhelm" the influence of the variance 

function in determining the minimax convergence rate. 

As opposed to many common variance estimation methods, we do not estimate the 

mean function first. Instead, we estimate the variance as the local average of squared 

differences of observations. Taking a difference of a set of observations is, in a sense, an 

attempt to "average out" the influence of the mean. It  is possible to say then that we 

use an implicit "estimator" of the mean function g that is effectively a linear combination 

of all y,, j E J except yo. Such an estimator is, of course, not optimal since its squared 

bias and variance are not balanced. The reason it has to be used is because the bias and 

variance of the mean estimator ij have a very different influence on V .  As is the case 

when d = 1 (again, see Wang et a1 (2006)), the influence of the bias of g is impossible 

to reduce at the second stage of variance estimation. Therefore, at  the first stage we use 

an "estimator" of g that provides for the maximal reduction in bias possible under the 

assumption of g E AQ(M,), down to the order n-2Qld. On the contrary, the variance of 

the "estimator" ij is high but this is of little concern it is incorporated easily into the 

variance estimation procedure. Thus, in practical terms, subtracting optimal estimators 

of the mean function g first may not be the most desirable course of action. 

Note also that it is not enough to use here a simple first order difference the way it 

has been done in the case of d = 1 by Wang et a1 (2006). The reason is that this does not 

allow us to reduce the mean-related bias of the variance estimator v to the fullest extent 

possible. It is not enough to consider only a < 114 as is the case when d = 1. Instead, 

when proving the upper bound result, we have to consider mean functions with a < d/4. 

Thus, higher order differences are needed in order to reduce the mean-related bias to the 

order of n-2ald and to ensure the minimax rate of convergence. 



5 Proofs 

5.1 Upper Bound: Proof of Theorem 1 

We will use M to denote a generic positive constant throughout this section. We shall 

only prove (14). Inequality (15) is a direct consequence of (14). Recall that T = [-I, lld 

is the support of the kernel K .  Using the notation we introduced earlier, we can write 

the difference D, as 

where 6i = CJE j djg(xi+j), V,' = Jc,, d?V(xi+j) and 

has zero mean and unit variance. Thus, 

Without loss of generality, suppose h = n-1/(2P+d). Because the kernel K(.)  has a bounded 

support T = [- 1, :l.Id, we have 

where lc = max(lcl, k2). In the above, K*,(u) = K(u) when u E Tn(u) f lS and K*,(u) = 

K, (u) when u Tn (u) fl S. 

Recall that 6'(x,) - V(z,) = CitR K,~(x,)D; - V(x*). Fbr a11 g E Aa(Mg) and 



V E A ~ ( M v ) ,  the mean squared error of at x, satisfies 

Recall that it is enough to consider only a < d/4. Denote y = [d/41. Thus defined y will 

be the same as maximum possible value of La] for all a < d/4. Denoting 0 I u 5 1 and 

using Taylor expansion of g(xi+j) around xi, we have for a difference sequence of order y 

The first two terms in the above expression are zero by definition of the difference sequence 

dj of order y. Using the notation x t  for the kth coordinate of xi, the explicit representation 

of the operator (DXi+, ,xi) La] gives 

I = 1 [ (; (xLj - xf ) DlffIg(xi + u(xi+j - xi))  
l<tl< ...< t,,., <d r=l  

Now we use the definition of Lipschitz space Aff(Mg), Jensen's and Holder's inequalities 



to  find that: 

as a consequence, we have < Mn-"Id. Thus, 

In exactly the same way as above, for any x ,  y E [0, lId, Taylor's theorem yields 

Therefore, we have 

(1  - u )  LPI -1 
( ( ~ z ~ + ,  ,z*) 1'' V (x i+j )  - (Dzi+, ,z*) L P ' V ( ~ * ) )  du. 

i E R  LPI - 1 



It  is fairly straightforward to find out that the first term is bounded by 

To establish the last inequality it is important to remember that the fact that V E 

A P ( M ~ )  and therefore I DkV(x,)I < Mv. To handle the product n a l ( x L J  - x?) the 

inequality ny.l xi 5 n-l C;=l x:, that is true for any positive numbers X I , .  . . , x,, must 

be used. The equality that follows is based on the fact that kernel K has LP] vanishing 

moments. After taking square the above will become ~ ( n - ~ h - ~ ( ~ - l ) ) ;  compared to the 

optimal rate of n-2P/2P+d, it is easy to check that this term is always of smaller order 
o(n-2Pl(2P+d)-(2P+2)/(2P+d)). 

- - 

< - 

Using (20),  we find that the absolute value of the second term gives us 

2 From here it follows by taking squares that 5 (CiER K:(x,)(& - V ( x * ) ) )  is of the order 
0 (n-2P/ (2P+d)). 

On the other hand, since V 5 Mv, we have due to (19) 

LPI k 

n-' h-d ) K x * )  ) d: ) k! ) ( x L 3  - X ; ~ ) D * V ( X * )  
~ E R  j E J  k=l l l t l l  ...l tkldr=l 

and 

LPI 
~ n - l h - ~  ) hk ) ~ ( u , ) ~ !  

k=l ZER  

= o(n-lh-(d-l) >. 



Putting the four terms together we have, uniformly for all x, E [0, l.Id, g E Aff(Mg) 

and V E AP(MV) 

for some constant Co > 0. This proves (14). 1 ' 

6 Proof of Theorem 2 

The proof of this theorem can be naturally divided into two parts. The first step is to 

show 
-zp 

igf SUP E(P(x,) - V ( X , ) ) ~  2 C1n d + ~ .  
v S E A ~ ( M ~ ) , V E A P ( M V )  

(21) 

This part is standard and relatively easy. The proof of the second step, 

is based on a moment matching technique and a two-point testing argument. More specif- 
iid 

ically, let X1, ..., Xn -- P and consider the following hypothesis testing problem between 

and 

H1 : P = P1 = N(0,v, l)G(dv) S 
where 0, > ,O is a constant and G is a distribution of the mean v with compact support. 

The distribution G is chosen in such a way that, for some positive integer q depending on 

a, the first q moments of G match exactly with the corresponding moments of the standard 

normal distribution. The existence of such a distribution is given in the following lemma 

from Karlin and Studden (1966). 

Lemma 1 For any fixed positive integer q, there exist a B < co and a symmetric dis- 

tribution G on  [-B, B] such that G and the standard normal distribution have the same 

first q moments, i.e. 

where cp denotes the density of the standard nonnal  distribution. 



We shall only prove the lower bound for the pointwise squared error loss. The same 

proof with minor modifications immediately yields the lower bound under integrated 

squared error. Note that, to prove inequality (22), we only need to focus on the case 

where a < d/4, otherwise n-2Pl(dS2P) is always greater than n-4ald for sufficiently large 

n and then (22) follows directly from (21). 

For a given 0 < a < d/4, there exists an integer q such that (q + l ) a  > d. For 

convenience we take q to be an odd integer. From lemma 1, there is a positive constant 

B < oo and a symmetric distribution G on [-B, B] such that G and N(0 , l )  have the 

same first q moments. Let ri, i = 1, ..., n ,  be independent variables with the distribution 
M G. Set 8, = go = 0, Vo(x) - 1 + 8; and &(x) - 1. Let h(x) = 1 - 2mlx( for 

1x1 E [- &, &I and 0 otherwise (Here 1x1 \/-) . Define the random function 

91 by 
n 

gl(x) = C B n q h ( x  - x,)I(x E [O, 1.1~). 
i=l 

Then it is easy to see that gl is in Aa(Mg) for all realizations of ri. Moreover, gl(xi) = 8,ri 

are independent and identically distributed. 

Now consider testing the following hypotheses, 

where E ,  are independent N(0 , l )  variables which are also independent of the ri's. Denote 

by Po and Pl the joint distributions of yi's under Ho and H1, respectively. Note that for 

any estimator p of V, 

where p(Po, PI) is the Hellinger affinity between Po and PI.  See, for example, Le Cam 

(1986). Let po and pl be the probability density function of Po and Pl with respect to 

the Lebesgue measure p, then p(Po, PI) = m d p .  The minimax lower bound (22) 

follows immediately from the two-point bound (23) if we show that for any n, the Hellinger 

affinity p(Po, PI) 2 C for some constant C > 0. (Note that m-4a = n-4ald). 

Note that under Ho, yi -- N ( 0 , l  + 8;) and its density do can be written as 



Under H1, the density of yi is dl (t) 4 J cp(t - vQ,)G(dv). 

It  is easy to see that p(Po, PI)  = (J @&dP),, since the Pi's are independent variables. 

Note that the Hellinger affinity is bounded below by the total variation affinity, 

00 

Taylor expansion yields cp(t - vQ,) = cp(t) UX$W) where Hk(t) is the corre- 

sponding Hermite polynomial. And from the construction of distribution G, J viG(dv) = 

J vicp(v)dv for i = 0,1, .  . . , q. So, 

Suppose q + 1 = 2p for some integer p, it can be seen that 

and 

where (22 - I)!! 4 (2i - 1) x (22 - 3) x 3 x 1. So from (24), 



and then 

For the Hermite polynomial H2i, we have 

For sufficiently large n, 8, < 112 and it then from the above inequality that 

and 



Then from (25) 

where c is a constant that only depend on q. So 

a ( q + l )  
Since - > 1 l i m n ( l  - 7 ) "  >_ ePC > 0 and the theorem then follows. I 
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