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Abstract 

Variance function estimation in nonparametric regression is considered and the 

minimax rate of convergence is derived. We are particularly interested in the effect of 

the unknown mean on the estimation of the variance function. Our results indicate 

that, contrary to the common practice, it is often not desirable to base the estimator 

of the variance function on the residuals from an optimal estimator of the mean. 

Instead it is desirable to  use estimators of the mean with minimal bias. In addition 

the results also correct the optimal rate claimed in Hall and Carroll (1989, JRSSB). 
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1 Introduction 

Consider the heteroscedastic nonparametric regression model 

p i=  f ( x , ) + l / ~ ( x z ) z i ,  i = l ,  ..., n,  (1) 

where x, = i l n  and zi are independent with zero mean, unit variance and uniformly 

bounded fourth moments. Both the mean function f and variance function V are defined 

on [O,1]  and are unknown. The main object of interest is the variance function V. The 

estimation accuracy is measured both globally by the mean integrated squared error 

and local.1~ by the mean squared error at a point 

We wish to study the effect of the unknown mean f on the estimation of the variance 

function V. In particular, we are interested in the case where the difficulty in estimation 

of V is driven by the degree of smoothness of the mean f .  

The effect of not knowing the mean f on the estimation of V has been studied before 

in Hall and Carroll (1989). The main conclusion of their paper is that it is possible 

to characterize explicitly how the smoothness of the unknown mean function influences 

the rate of convergence of the variance estimator. In association with this they claim 

an explicit minimax rate of convergence for the variance estimator under pointwise risk. 

For example, they state that the "classical" rates of convergence (nP4l5) for the twice 

differentiable variance function estimator is achievable if and only if f is in the Lipschitz 

class of order at  least 113. More precisely, Hall and Carroll (1989) stated that, under the 

pointwise mean squared error loss the minimax rate of convergence for estimating V is 

4 0  24 
rniwcIn-20r+l, n-28+1) (4) 

if f has cr derivatives and V has ,B derivatives. We shall show here that this result is in 

fact incorrect. 

In the present paper we revisit the problem in the same setting as in Hall and Carroll 

(1989). We show that the minimax rate of convergence under both the pointwise squared 

error and global integrated mean squared error is 



if f has a derivatives and V has p derivatives. The derivation of the minimax lower 

bound is involved and is based on a moment matching technique and a two-point testing 

argument. A key step is to study a hypothesis testing problem where the alternative 

hypothesis is a Gaussian location mixture with a special moment matching property. 

The minimax upper bound is obtained using kernel smoothing of the squared first order 

differences. 

Our results have two interesting implications. Firstly, if V is known to belong to a 

regular parametric model, such as the set of positive polynomials of a given order, the 

cutoff for the smoothness of f on the estimation of V is 114, not 112 as stated in Hall 

and Carroll (1989). That is, if f has at  least 114 derivative then the minimax rate of 

convergence for estimating V is solely determined by the smoothness of V as if f were 

known. On the other hand, if f has less than 114 derivative then the minimax rate 

depends on the relative smoothness of both f and V and will be completely driven by the 

roughness of f .  

Secondly, contrary to the common practice, our results indicate that it is often not 

desirable to base the estimator ? of the variance function V on the residuals from an 

optimal estimator f̂  of f .  In fact, the result shows that it is desirable to use an f with 

minimal bias. The main reason is that the bias and variance off have quite different effects 

on the estimation of V. The bias of f cannot be removed or even reduced in the second 

stage smoothing of the squared residuals, while the variance of f̂  can be incorporated 

easily. 

The paper is organized as follows. Section 2 presents an upper bound for the minimax 

risk while Section 3 derives a rate-sharp lower bound for the minimax risk under both the 

global and local losses. The lower and upper bounds together yield the minimax rate of 

convergence. Section 4 discusses the obtained results and their implications for practical 

variance estimation in the nonparametric regression. The proofs are given in Section 5. 

2 Upper bound 

In this section we shall construct a kernel estimator based on the square of the first order 

differences. Such and more general difference based kernel estimators of the variance 

function have been considered, for example, in Miiller and Stadtmiiller (1987 and 1993). 

For estimating a constant variance, difference based estimators has a long history. See 

von Neumann (1941, 1942), Rice (1984), Hall, Kay and Titterington (1990) and Munk, 

Bissantz, Wagner and Freitag (2005). 



Define the Lipschitz class Aa(M) in the usual way: 

Aa(M) = {g:  for all 0 5 x,y  5 1, 5 = 0 ,..., 101 - 1, 

~ g ( ~ ) ( x ) l  5 M, and lg(LaJ)(x) - g(LaJ)(y)l 5 M Jx - yla'} 

where 101 is the largest integer less than cu and a' = cu - LcuJ We shall assume that 

f E Aa(Mf) and V E AP(MV). We say that the function f "has cu derivatives" if 

f E Aa(Mf ) and V "has /3 derivatives" if V E A ~ ( & ) .  

For i = 1,2, ..., n - 1, set Di = yi - yi+l. Then one can write 

where 6, = f (xi) - f ( ~ , + ~ ) ,  v,; = J;(v(xi) + V(xi+l)) and 

has zero mean and unit variance. 

We construct an estimator by applying kernel smoothing to the squared differences 

D: which have means 6: + 22V,. Let K(x)  be a kernel function satisfying 

K(x)issupportedon[-1,1],  

S_: ~ ( x ) x ~ d x  = 0 for i = 1 , 2 , . . .  , 1/31 and 

It  is well known in kernel regression that special care is needed in order to avoid sig- 

nificant, sometimes dominant, boundary effects. We shall use the boundary kernels with 

asymmetric support, given in Gasser and Miiller (1979 and 1984), to control the boundary 

effects. For any t E [O, 11, There exists a boundary kernel function Kt(x) with support 

[-I, t] satisfying the same conditions as K (x), i.e. 

j- 1 
~ ~ ( x ) x ~ d x  = 0 for i = 1,2,.  . . , 1/31 

t 

11 ~ ~ ~ ( x ) d x  5 jE < oo for all t E [o, I]. 



We can also make Kt(x) + K(x)  as t + 1 (but this is not necessary here). See Gasser, 

Miiller and Mammitzsch (1985). For any 0 < h < a, x E [ O , l ] ,  and i = 1,2, . . . , n - 1, let 

(xz+xz+1)/2 1 
J(xz+xzl) /2  K )  when x E (h, 1 - h), 

(xz+xz+1)/2 
x z + x z l ~ 2  K t  when x = th for some t E [ O , l ] ,  

(x'+x'+1)/2 1 K t  ( - y ) d u  when x = 1 - th for some t E [O, 11, J(zz+xz-1)/2 h 

where for convenience we take the integral from 0 to (x1+x2)/2 instead of from (x1+x0)/2 

to (xl + x2)/2 when i = 1, and integral from (xn-1 + xn-2)/2 to 1 when i = n - 1. Then 

we can see that for any 0 < x < 1, c:!: K,h(z) = 1. Define estimator Q as 

Similar to the mean function estimation problem, the optimal bandwidth hn can be 

easily seen to be hn = ~ ( n - l / ( l + ~ f l ) )  for V E A ~ ( M v ) .  For this optimal choice of the 

bandwidth, we have the following theorem. 

Theorem 1 Under the regresszon model (1) where xi = i / n  and zt aare independent wzth 

zero mean, unit variance and uniformly bounded fourth moments, let the estimator Q be 

given as in (7) with the bandwidth h = ~ ( n - l / ( l + ~ f l ) ) .  Then there exists some constant 

Co > 0 depending only on a,  P, Mf and Mv such that for suficiently large n, 

20 -- 
SUP sup E ( ~ ( x * )  - ~ ( z * ) ) ~  5 CO . ma~{n-~O,  n 1+211) 

f EA"(M~) ,VEA~(MV) o s x *  51 
(8) 

and 

Remark 1: The uniform rate of convergence given in (8) yields immediately the pointwise 

rate of convergence that for any fixed point x, E [O,1]  

Remark 2: The upper bound given in (8) is smaller than the minimax risk lower bound 

given in Hall and Carroll (1989). The lower bound in their paper is incorrect and the 

upper bound not optimal. See Sections 3 and 4 for further discussion. 



3 Lower Bound 

In this section, we derive a lower bound for the minimax risk of estimating the variance 

function V under the regression model (1). The lower bound shows that the upper bound 

given in the previous section is rate-sharp. As in Hall and Carroll (1989) we shall assume 

in the lower bound argument that the errors are normally distributed, i.e., ti J N(0, l ) .  

Theorem 2 Under the regression model (1) with y % N(0, 1)) 

Z P  
inf SUP Ellv - V I I ;  > C1 . m a x { r ~ - ~ ~ ,  n - m )  
G ~ E A ~ ( M ~ ) , V E A P ( M V )  

(10) 

and for any fixed x, E (0 , l )  

20 
inf SUP E ( ~ ( x , )  - ~ ( 2 , ) ) ~  > C1 . m a ~ { n - ~ ~ ,  n-'+ZP) 
v ~ E A ~ ( M ~ ) , v E A ~ ( M v )  

(11) 

where Cl > 0 i s  a constant depending only o n  a,  P, Mf and Mv. 

It  follows immediately from Theorems 1 and 2 that the minimax rate of convergence for 

estimating V under both the global and local losses is 

The proof of this theorem can be naturally divided into two parts. The first step is to 

show 

This part is standard and relatively easy. Brown and Levine (2006) contains a detailed 

proof of this assertion for the case p = 2. Their argument can be easily generalized to 

other values of ,B. We omit the details. 

The proof of the second step, 

is much more involved. The derivation of the lower bound (13) is based on a moment 

matching technique and a two-point testing argument. One of the main steps is to study 

a complicated hypothesis testing problem where the alternative hypothesis is a Gaussian 

location mixture with a special moment matching property. 
iid 

More specifically, let X1, ..., X, - P and consider the following hypothesis testing 

problem between 

H~ : P = po = N(O,I + 8;) 



and 

HI : P = PI = J N(Bnv, l)G(dv) 

where On > 0 is a constant and G is a distribution of the mean v with compact support. 

The distribution G is chosen in such a way that, for some positive integer q depending on 

a, the first q moments of G match exactly with the corresponding moments of the standard 

normal distribution. The existence of such a distribution is given in the following lemma 

from Karlin and Studden (1966). 

Lemma 1 For any fixed positive integer q, there exist a B < oo and a symmetric dis- 

tribution G on [-B, B] such that G and the standard normal distribution have the same 

first q moments, i.e. 

+a JP, xjG(dx) = Lrn xjcp(x)dx, j = 1,2 , .  . . , q 

where cp denotes the density of the standard normal distribution. 

The moment matching property makes the testing between the two hypotheses L'difficult". 

The lower bound (13) then follows from a two-point argument with an appropriately 

chosen 8,. Technical details of the proof are given in Section 5. 

Remark 3: For a between 114 and 118, a much simpler proof can be given with a two- 

point mixture for PI which matches the mean and variance, but not the higher moments, 

of Po and PI .  However, this simpler proof fails for smaller a .  It appears to be necessary 

in general to match higher moments of Po and PI. 

Remark 4: Hall and Carroll (1989) gave the lower bound c max{n-4~l(1+2~)) ,  n-2Pl(1+2P))) 

for the minimax risk. This bound is larger than the lower bound given in our Theorem 

2 and as we have noted it is incorrect. This is due to a miscalculation on appendix C of 

their paper. A key step in that proof is to find some d 2 0 such that 

In the above expression, Nl denotes a standard normal random variable. But in fact 

- - exp(- - - -). I-, exp(x/a) + exp(-x/2) JZ;;;~ 2d 8 

This is an integral of an odd function which is identically 0 for all d. 



4 Discussion 

Variance function estimation in regression is more typically based on the residuals from 

a preliminary estimator f of the mean function. Such estimators have the form 

where w,(x) are weight functions. A natural and common approach is to subtract in (14) 

an optimal estimator f of the mean function f (x). See, for example, Hall and Carroll 

(1989), Neumann (1994), Ruppert, Wand, Holst, and Hossjer (1997), and Fan and Yao 

(1998). When the unknown mean function is smooth, this approach often works well since 

the bias in f is negligible and V can be estimated as well as when f is identically zero. 

However, when the mean function is not smooth, using the residuals from an optimally 

smoothed f will lead to a sub-optimal estimator of V. For example, Hall and Carroll 

(1989) used a kernel estimator with optimal bandwidth for f̂  and showed that the resulting 

variance estimator attains the rate of 

over f E Aa(Mf) and V E A ~ ( M V ) .  This rate is strictly slower than the minimax rate 
2B P when & < or equivalently, a < -. 

Consider the example where V belongs to  a regular parametric family, such as {V(x) = 

exp(ax + b) : a,  b E R). As Hall and Carroll have noted this case is equivalent to the 

case of ,f3 = ca in results like Theorems 1 and 2. Then the rate of convergence for this 
4a 

estimator becomes nonparametric a t  n-2.l+l for a < i, while the optimal rate is the usual 
1 

parametric rate n-3 for all a 1 4 and is n-4a for 0 < a < 4. 
The main reason for the poor performance of such an estimator in the non-smooth 

setting is the "large" bias in f .  An optimal estimator f of f balances the squared bias 

and variance. However, the bias and variance of f have significantly different effects 

on the estimation of V. The bias of f̂  cannot be further reduced in the second stage 

smoothing of the squared residuals, while the variance of f can be incorporated easily. 

For f E Aa(Mf ), the maximum bias of an optimal estimator f̂  is of order n-* which 
B becomes the dominant factor in the risk of P when a < m. 

To minimize the effect of the mean function in such a setting one needs to use an 

estimator f(xi)  with minimal bias. Note that our approach is, in effect, using a very crude 

estimator f̂  of f with f^(x,) = y,+l. Such an estimator has high variance and low bias. 

As we have seen in Section 2 the large variance of f does not pose a problem (in terms of 



rates) for estimating V. Hence for estimating the variance function V an optimal f̂  is the 

one with minimum possible bias, not the one with minimum mean squared error. (Here 

we should of course exclude the obvious, and not useful, unbiased estimator f"(xi) = yi). 

Another implication of our results is that the unknown mean function does not have 

any first-order effect for estimating V as long as f has more than 114 derivatives. When 

a > 114, the variance estimator is essentially adaptive over f E A f f ( M j )  for all a > 114. 

In other words, if f is known to have more than 114 derivatives, the variance function V 

can be estimated with the same degree of first-order precision as if f is completely known. 

However, when a < 114, the rate of convergence for estimating V is entirely determined 

by the degree of smoothness of the mean function f . 

5 Proofs 

5.1 Upper Bound: Proof of Theorem 1 

We shall only prove (8). Inequality (9) is a direct consequence of (8). Recall that 

1 

where 6, = f (xi) - f (xi+l), v,' = 4; (v(xi)  + V(xi+1)) and 

Without loss of generality, suppose h = n-1/(1+2p). It is easy to see that for any x, E [0, I.], 

xi K:(x,) = 1, and when X, > (xi + xi+1)/2 + h or X, 5 (xi + ~ ~ - ~ ) / 2  - h, K:(x,) equals 

to 0. Suppose Ic < c, we also have 

where K, (u) = K (u) when x, E (h, 1 - h); K, (u) = Kt (u) when x, = th for some 

t E [0, 11; and K,(u) = Kt(-u) when x, = 1 - th  for some t E [O, 11. 



For all f E A a ( M f )  and V E A ~ ( M v ) ,  the mean squared error of v at x ,  satisfies 

Suppose a 5 114, otherwise n-4a < n-2P/(1+2P) for any P. Since for any i ,  ldil = 

If  ( x i )  - f ( ~ i + ~ ) l  < M f  Ixi - xi+lla = Mfn-", we have 

Note that for any x ,  y E [ O , l ] ,  Taylor's theorem yields 

x ( x  - u)LPJ-l 

M v  Ix- Y I  P- LPJ du 
(LPl - 

M v  < 1 2 - Y I P .  
LPl 



and 

Since the kernel functions have vanishing moments, for j = 1,2, - .  , L,B] , 

i+l for some constant c' > 0. Similarly ~111' K , ~ ( X , ) ( ~  - x*)j 5 dn-l .  So, 

for some constant (? > 0 which does not depend on x,. Then we have 



The last inequality is due to  the fact 0 < h + < h + < 3h. On the other hand, 

and 

where p4 denotes the uniform bound for the fourth moments of the ei. 

Putting the four terms together we have, uniformly for all x, E [0, I], f E Aa(Mf) and 

v E A P ( M ~ )  

for some constant Co > 0. This proves (8). 1 

5.2 Lower Bound: : Proof of Theorem 2 

We shall only prove the lower bound for the pointwise squared error loss. The same proof 

with minor modifications immediately yields the lower bound under integrated squared 

error. Note that, to  prove inequality (13), we only need to focus on the case where 

a < 114, otherwise n-2Pl(1+2P) is always greater than nP4" for sufficiently large n and 

then (13) follows directly from (12). 

For a given 0 < a < 114, there exists an integer q such that (q + 1)a  > 1. For 

convenience we take q to  be an odd integer. From lemma 1, there is a positive constant 

B < r x  and a symmetric distribution G on [-B, B] such that G and N(0 , l )  have the 



same first q moments. Let ri, i = 1, ..., n,  be independent variables with the distribution 

G. Set On = $n-a, fa - 0, &(x) = 1 + $2 and Vl(x) = 1. Let g(x) = 1 - 2nlxl for 

x E [-&-, &-I and 0 otherwise. Define the random function fl by 

Then it is easy to see that fl is in Aa(Mj) for all realizations of Ti.  Moreover, f 1 (xi) = Onri 

are independent and identically distributed. 

Now consider testing the following hypotheses, 

where ~i are independent N(0 , l )  variables which are also independent of the ri's. Denote 

by Po and Pl the joint distributions of yi's under Ho and H1, respectively. Note that for 

any estimator p of V, 

where p(Po, PI )  is the Hellinger affinity between Po and PI .  See, for example, Le Cam 

(1986). Let po and pl be the probability density function of Po and Pl with respect to 

the Lebesgue measure p, then p(Po, PI )  = J m d p .  The minimax lower bound (13) 

follows immediately from the two-point bound (16) if we show that for any n, the Hellinger 

affinity p(Po, PI )  2 C for some constant C > 0. ( C  may depend on q, but does not depend 

on n.) 

Note that under Ho, yi N N ( 0 , l  + 02) and its density do can be written as 

Under HI, the density of yz is dl(t) J p( t  - u O ~ ) G ( ~ U ) .  

It is easy to see that p(Po, PI )  = (J &&'&d~)~, since the yz's are independent variables. 

Note that the Hellinger affinity is bounded below by the total variation affinity, 

Taylor expansion yields 



where H k ( t )  is the corresponding Hermite polynomial. And from the construction of 

distribution G ,  

v z p ( v ) d v  for i = 0 , 1 , .  . . , q. 

so, 

Suppose q + 1  = 2p for some integer p, it can be seen that 

and 

where (22 - I ) ! !  A (22 - 1) x (2i  - 3)  x . . . 3  x 1. So from (17) ,  



and then 

For the Hermite polynomial H2ir we have 

For sufficiently large n, 9, < 112 and it then from the above inequality that 

and 



Then from (18) 

where c is a constant that only depend on q. So 

Since cr(q + 1) 2 1, limn,,(l - ~ n - " ( q + l ) ) ~  2 ePC > 0 and the theorem then follows from 

(16). 1 
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