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ABSTRACT

We consider the polynomials defined as Q,(z) = 11 pez*™!, where p;

is the kth prime number. We call these ‘Prime Polynomials’. The roots of
Q. are investigated, and certain properties commented on. The plots of the

roots, considered as points in the plane, show visually appealing phenomena.




1 Polynomials with Prime Coefficients

There are only a few technical statements in this note. It is mostly about
computations and pictures. But the computations suggest interesting theo-
rems, perhaps even deep, and the pictures are certainly visually appealing.
It seemed someone would be interested in the computations as well as the
pictures. We are not sure if the computations and the resulting pictures are
already available in the literature. We cannot rule that out at the time of

writing this note.

This note is about the roots of the sequence of polynomials Q,(z) =
EZ:} ppz®~1, where py is the kth prime number. We denote the roots of

Qn(z) bY 710,720, - - - s Tnn and let 75, = Tj 41y, With ¢ denoting as usual

v-1

1.1 A Few Technical Statements

Our main interest is in the values and properties of these roots {r;,}5_,;. We

make a few technical statements.

1) If a rational root 2 exists for some member Q,(z) of our sequence of
polynomials, then from general theory about rational roots of polynomials,
p must divide p; and ¢ must divide p,4;. This can happen only when § =

2 An instance of this is —2,

Pn+1
2 + 3z. It follows, from this, that with the exception of Q;(z), all real roots

which is the unique root of Q(z) =

of Qn(z),n < 100, are irrational. The computations presented here suggest

that there are in fact almost no real roots at all, rational or irrational.

2) Second, for any @,(z), the sum of the real parts of its roots, i.e.,




> i=1Tjn is equal to the ratio —p::l, This is because, the complex roots
occur in pairs, and so Y7_; Yj. is always zero. Thus, the sum of the real
parts is the same as >7_; rjn, which from general theory about roots of
polynomials, equals —;’n”‘:. Denoting the (n + 1)th prime gap pp4+1 — pn by
dpy1, this equals —1 + %ﬁ—. From the Prime number theorem, one has that
dn _, (. Thus, for large n, the sum of the real parts of the roots is close to

Pn
-1, and of course the sum of the imaginary parts is always zero.

3) Next, if the roots are treated as points (Z;,¥;.) in the plane, then
barring the very first one Q;(x), there seems to be, always, a fairly large circle
centered at the origin that is completely free of any roots. We can make the
following technically correct statement. For any given n, a circle with radius
smaller than mz’n{i—;, fﬁ, ey E%T} and centered at the origin is free of any
roots of Q,(z) (this follows from Pélya and Szeg6(1998, pp 107)). For the
first 500 polynomials, this implies that the circle of any radius ¢ < .6 cannot
have any roots. The computations suggest that a circle of radius about .8 is

free of roots for large n.

4) Another question of interest is the frequency of primes produced by
the polynomials Q,(z) at integer arguments. There are infinitely many for
the very first one Q;(z) = 2 + 3z, as a consequence of the 1837 result of
Dirichlet; see pp 148 in Ribenboim(1991). For n > 1, the only statement we
are able to make is that the asymptotic density of primes produced by Q.
at integer arguments is zero. That is, fix N > 1; then, limy_ o (Number of
prime values of @Q,(z) < N)/N = 0. This follows from a more general result
stated in pp 183 in Ribenboim(1991). The asymptotic zero density is true
for the case of n = 1 also. The exact number of prime values among the first
10,000 values of @,, are later reported for n < 50.




1.2 Distribution of the Roots : Spiders and Comets

First, we present six plots of the combined set of roots, treated as points
in the plane, of the first 10,25,35,50,60 and 75 polynomials of the {Q.(z)}
sequence. There are only five real roots, obviously all negative, of the first
10 polynomials. There is a huge empty space. When we look at the roots
of the ﬁrsf 25 polynomials, there are about a dozen real roots. In fact, the
exact number is 13. The empty space is as pronounced as the case for the
first 10 polynomials. But some structure has begun to emerge. In particular,
the two arcs approaching the edge of the positive real axis have closed up
considerably compared to the previous plot. Also, the pattern of the points
in the second quadrant is very different from the pattern in the first quadrant.
We also see ten roots that are almost purely imaginary; this number was four
in the first plot. Something really interesting happens in the next plot for the
roots of the first 35 polynomials. All on a sudden, two spiders have appeared,
symmetrically about the real axis, in the second and the third quadrant. The
number of real roots has increased too; now the exact number is 18. The
two arcs approaching the positive real axis have gotten much darker. The
large empty space still remains. Most interéstingly, when we look at the next
plot for the roots of the first 50 polynomials, two new spiders have appeared
in the first and the third quadrant. There is considerable darkening around
the edges, almost everywhere. The whole picture now looks very structured
to the eye, and appealing. And when we look at the roots of the first 75
polynomials, we see a new pair of spiders, now in the second and the third
quadrant, just slightly hiding, at vertical heights of about +.75. The two
arcs approaching the positive real axis now almost look like comets with
tails, and the middle empty space remains. In fact, the empty space remains
more or less unchanged over the six plots. There may be a theorem to this

regard stronger than what we stated in 3) above for large n. The roots of just

4




the 100th and the 250th degree polynomial are shown in the last two plots.
The roots are near the boundary of the unit circle, with a few stray points
here and there . This is like the bimodality phenomenon in the distribution
of roots of random algebraic polynomials with standard normal coefficients,
with the concentration of the real roots near +1; see Fig. 1.1 in Bharucha-
Reid and Sambandham(1986) . However, the distribution of the roots here
is less spherical than for normal random polynomials; compare Fig. 7.11 in
Bharucha-Reid and Sambandham(1986) to the six plots here.

The lengths of the roots(with the roots being considered as points in the
plane)are investigated in the next two plots. The smoothed histograms show
a sharp peak near 1 when only the first 25 polynomials are considered. But
if the first 45 are looked at, the peak looks more like a Gibbs phenomenon,
with the histogram being more or less a uniform distribution in the range
[.8,1]. There may be a theorem here too, but we are not able to comment

on how difficult it would be to prove.

Something rather interesting seems to be happening as regards the num-
ber of real roots of the polynomials @,(z). Upto n = 100, the even de-
gree ones have no real roots, and the odd degree ones have ezactly one real
root. If this were to be true in general, it would be a remarkable theorem!
Qs, @10, Q25 and Qsp are plotted in the domain [—1,0] in the next four plots.

They are not monotone, but do not cross the x-axis twice.

The most interesting aspects of the plots are the spiders, and the comets,
and the concentration of the roots near the boundary of the unit circle, with a
huge intermediate empty space. Unless theorems to these regards are already
known, it seems to us it would be very interesting to establish some of these

visual phenomena as theorems. We just do not know how hard it would be




to do so.

1.3 Frequency of Prime Values

We computed the number of values among the first 10,000 values of the
polynomials @1, Q2,...,Qso that are primes. A little reflection shows that
all the values of the even degree ones are even. So we report here the number
of prime values for only the odd degree ones. Generally speaking, the early
polynomials appear to produce more primes; but there are some interesting
exceptions. @11, @17, @31, @37, and Q9 produce primes at a visibly higher

rate than their neighbors. The frequencies of prime values are reported below.

Table 1

Degree Number of Primes Among First 10,000 Values
1 1633

3 459

5 277

7 188

9 154

11 249
13 142
15 39

17 84




Degree
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47

49

Number of Primes Among First 10,000 Values
31
43
27
30
39
24
56
15
22
75
14
38
26
43
38

62
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Roots of

Prime Polynomials up to Degree 10
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Roots of Prime Polynomials up to Degree 25

... .. ! ..... o o
es o o e o 0,
o % o . d
%, "% e0.75) SR S
$ te . "‘o.
. : .. o * e ...'0
° o hd e, o
. .
° ® * . . ‘e
« * * . %
L]
. &.. . 0.5 O. .o..
LA ] [ ] o,
o © % o . (3
. . ¢« °® * 'o.
.. L ] ..
. . \
e ° 0.25
v
.
K
s
-0.75 -0.5 -0.25 0.25 0.5 0.75
\o
.
L]
. o
% . -0.25 |+
. [ '/
.. Y .
. .
. ... . *
L] .".
o ®
LI . -0.5
.. . L]
.
.o . * o
° . .
H K o
' ..o...:. 0 75.-
oo o <
"4
e o ¢

10




Roots of Prime Polynomials up to Degree 35

n
~
Q .
oooooo.. -oo e ooo ouoro-o-oo
0\0.0. [ ) L] [] 00
ooooc oo ° o oo ooooo
. ® o L4 [ P .
cooo o o 0 ° Py 0...
ooo . P .« * ooo
fMO L4 * L '“\
oee® e o o © %%
e0 o ® oo,

s o © ® o 00
0ee o . “ . o © Gote
; S
. [ S .
b * ° * ooo.no
””.. L] . OOC”H

LN .
o o
? 1 L . L —wlgeeem
ek O R
O“.. [ =1 o .n_v 1 m ° ..“.
oooo“' . - . o“ooo-
®ee o ~ . oag®
%\oo. . n_u . ooof
s %
\ . ] . .. '
. [
-~ ~
mseee , * * o M e * o L, esem
%oy, e ®® o : e ® o 4 ooo‘
-cooooooo . L4 ooooooo.o
., oo*ooo . . . . ooo#ooo °®
% s o . = . o o 00,
2. o . o ° o o3°
ooooo ®oq ! K34 ooo.oo

NN

11



Roots of Prime Polynomials up to Degree 50
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Roots of Prime Polynomials up to Degree 60
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10

Smoothed Histogram of the Length of

Roots of First 25 Prime Polynomials
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Smoothed Histogram of the Length of Roots of First 45 Prime Polynomials
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The 5th Prime Polynomial
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The 10th Prime Polynomial
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The 25th Prime Polynomial
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The 50th Prime Polynomial
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Roots of the 100th Degree Prime Polynomial
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Roots of the 250th Degree Prime Polynomial
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