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Abstract

We introduce a boundedness condition on the Malliavin derivative of a random variable to study sub-
Gaussian and other non-Gaussian properties of functionals of random fields, with particular attention
to the estimation of suprema. We relate the boundedness of nth Malliavin derivatives to a new class
of “sub-nth Gaussian chaos” processes. An expected supremum estimation, extending the Dudley-
Fernique theorem, is proved for such processes. Sub-nth Gaussian chaos concentration inequalities for
the supremum are obtained, using Malliavin derivative conditions; for n = 1, this generalizes the Borell-
Sudakov inequality to a class of sub-Gaussian processes, with a particularly simple and efficient proof;
for n = 2 a natural extension to sub-2nd Gaussian chaos processes is established; for n > 3 a slightly less
efficient Malliavin derivative condition is needed.
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1 Introduction

Gaussian analysis, and in particular the Malliavin calculus, are powerful and versatile tools in contemporary
probability theory and stochastic analysis. The latter has applications ranging from other areas of probability
theory, to physics, to finance, to name a few; a very short selection of references might include [2], [5], [6],
[7], [12], [13], [14], [15], [16], [17], [22]. We will not attempt to give an overview of such a wide array of
areas. Instead, this article presents a new way of using Malliavin derivatives to uncover sub-Gaussian and
other non-Gaussian properties of functionals of random fields, with particular attention to the estimation of
suprema.

After introducing some standard material on Wiener chaoses and the Malliavin derivative in what we
hope is a streamlined and didactic way (Section 2), we introduce the fundamental lemma that serves as a
basis and a springboard for non-Gaussian results: it is the observation that if a random variable X has a
Malliavin derivative whose norm in L? [0, 1] is almost surely bounded, then X is sub-Gaussian (Lemma 3.3).
In Section 3, this lemma is exploited to analyze sub-Gaussian processes. Even though the proofs of the




results therein are quite elementary, we believe they may have far-reaching consequences in probability and
its applications. For example, even though it is not stated so explicitly, Lemma 3.3 is the key ingredient in the
new proofs of existence of Lyapunov exponents for the continuous space stochastic Anderson model and the
Brownian directed polymer in a Gaussian environment, obtained respectively in [8] and [18]; these existence
results had been open problems for many years (see e.g. [4]). Lemma 3.3, and its application to sub-Gaussian
deviations of the supremum of a sub-Gaussian random field (Theorem 3.6, which is a generalization of the
so-called Borell-Sudakov inequality, see [1]), are techniques applied in [21] for statistical estimation problems
for non-linear fractional Brownian functionals.

Inspired by the power of such applications, we postulate that in order to generalize the concept of sub-
Gaussian random variables, one would be well-advised to investigate the properties of random fields whose
nth Malliavin derivatives are bounded. Our study chooses to define the concept of sub-nth Gaussian chaos (or
sub-nth chaos, for short) random fields slightly differently, in order to facilitate the study of such processes’
concentration properties as well as those of their suprema. This is done in Section 4, which also includes an
analysis of the relation between the sub-nth chaos property and boundedness of nth Malliavin derivatives.
Our proofs in Section 4 are inspired by some of the techniques that worked well in the sub-Gaussian case of
Section 3; yet when n > 3, many technical difficulties arise, and our work opens up as many new problems
as it solves in that case.

‘While we prefer to provide full statements of our results in the main body of this paper, we include here
some typical consequences of our work under a simplifying assumption which is nonetheless relevant for some
applications, leaving it to the reader to check that the results now given do follow from our theorems.

Assumption Let n be a positive integer. Let X be a centered separable random field on an index set I.
Assume that there exists a non-random metric § on I x I such that almost surely, for all z,y € I, for
al0<s, <+ <59 <51 <1,

|Ds., -+ D5, Ds, (X (z) — X (y))| <6 (,9). (1)
Conclusions Let N (¢) be the smallest number of balls of radius ¢ in the metric § needed to cover I.
There is a constant C,, depending only on n such that, if the assumption above holds, the following
conclusions hold:
Sub-nth Gaussian chaos property: (see Theorem 4.7)
1 2/n

sub-nth Gaussian chaos extension of the Dudley-Fernique upper bound : (see Theorem 4.5)

X (z) - X (y)

B 5(5,9)

p=B [ x @] < [~ GosN @)

sub-nth Gaussian chaos extension of the Borell-Sudakov concentration inequality : (see Corol-

lary 4.15). With

o=esssup{sup|D;s, -+ D5, D5, X (z)| i 2 € ;0K 5, <+ < 59 < 57 <1},
weN

for all € > 0, for u large enough,

d

ilé};X(:E)—/,L’ >u] <2(1+¢)exp <—(1i6) (g)””)




It should be noted that in the sub-2nd-Gaussian chaos case (n = 2), we prove (Theorem 4.5, Theorem
4.7 case n = 2, Corollary 4.12) the three “Conclusions” above hold under the considerably weaker condition:
almost surely,

/|Dsn Dy, Dy, (X (2) — X ()2 dsydss - - dsp < 8 (z,9). @)
0,117

When n > 3, the conditions we need to draw the above conclusions are intermediate between (1) and (2).
However, we conjecture that the conclusions should hold under conditions much closer to (2). When n = 1,
the Dudley-Fernique theorem has been known for many years (see [11]) if one assumes the conclusion of
Lemma 3.3; our interpretation of this Lemma appears to be new, although its proof below clearly shows it is
a translation of Ustunel’s [22, Theorem 9.1.1]; however, our proof of the Borel-Sudakov inequality (Theorem
3.6) under the hypotheses of Lemma 3.3 is new, and the inequality itself might be new for any class of
non-Gaussian processes insofar as it does not seem to appear in the literature.

In addition to the obvious practical significance of results such as the “Conclusions” above, we think
the reader familiar with classical proofs of such results as the Borell-Sudakov inequality and the Dudley-
Fernique theorem, will appreciate the power of Malliavin derivatives: they provide, in Section 3 (n = 1),
stronger results with elegant, simpler proofs. We hope that beyond the issue of sharpening the results in
Section 4 (n > 3) to come closer to Condition (2), this paper will encourage the reader to use our Malliavin-
derivative based concentration inequalities in sub-Gaussian and non-sub-Gaussian settings, such as to study
the almost-sure moduli of continuity of random fields to extend classical results (see [1] or [20]).

We wish to thank the three organizers of the Fifth Seminar on Stochastic Analysis, Random Fields and
Applications (Ascona, Switzerland, 2005) for providing the impetus for the research which led to this paper.

2 Preliminairies

In this didactic section, we present some basic facts about Wiener chaoses and the Malliavin calculus, largely
with only sketches of proofs, to be used in the remainder of the article, and as a general quick reference
guide. Excellent and complete treatment of these results and many more can be found for instance in the
monographs [16] and [22]; both have been a constant source of inspiration for us.

We begin with a Brownian motion W = {W (¢): ¢ € [0,1} defined on a complete probability space
(Q, 7, P) and adapted to a filtration (73),¢(o,1) satisfying the usual conditions (see [9]). With dr representing
the Lebesgue measure, the Wiener integral W (f) = fo £ (r)dW (r) of a non-random f € H := L2 ([0, 1], dr)
is a centered Gaussian random variable with variance || f HH = fo f2 () dr; the set H; of all Wiener integrals
W (f) when f ranges over all of H is a set of jointly Gaussian random variables called the first Wiener chaos
of W, or Gaussian space of W, whose entire finite-dimensional distributions are thus defined via the formula
EW (YW (9)=(fi9)n= fo f(r)g (r)dr. The Wiener integral coincides with the It6 integral on Hi, which
can be seen via several different procedures, including the fact that both can be approximated in L? (Q)
by the same Riemann sums. To construct chaoses of higher order, one may for example use iterated It6
integration. Denote Iy (f) = f for any non-random constant f. Assume by induction that for any g € H®",
for almost every (¢t,w) € L2 ([0,1] x §, drdP),

I, (g)=n!/o /OSI~--/OS"_19(31,32,.-- ySn) AW (s) - - - AW (s2) dW (s1) (3)

has been defined. Given a symmetric function f € H®"H!, let

gt (81)32)' v )S’n) = f(ty'sl) 82, )s’n.) 1S1St'




We thus see that the function ¢t — I, (g¢) is a square-integrable (.Ft)telo’l]—martingale. We may then define

Ina1 (f) to be the It6 integral (n + 1) fol I, (g:) dW (t). The set H,+1 spanned by In4; (f) for all symmetric
f in H®"*1 is the (n + 1)-th Wiener chaos of W.

Remark 2.1 It holds that L? () is the direct sum — with respect to the inner product defined by expectations
of products of r.v.’s — of all the Wiener chaoses. Specifically for any X € L%(Q), there ezists a sequence
of mon-random symmetric functions f, € H® = L2([0,1]") with Y00, |fuloen < 00 such that X =

o2 o In (fn); moreover B, (fr) Im (fm)] = Om,an! |fn|$.¢®n where b equals 0 if m#n and 1 if m =n,

Remark 2.2 (see [16]) The n-th Wiener chaos Hy = I, (H®") coincides with the closed linear subspace of
L? () generated by all the random variables of the form Hy, (W (h)) where h € H, |h|,, = 1, and H, is the
n-th Hermite polynomial, defined by Ho = 1,H; (z) = , and Hpy1 (z) = (n+1)7" (zH, (2) — Hoo (2))-
Moreover, H], = H,_;.

We believe the easiest way to understand the Malliavin derivative operator is using the following three-
step “constructive” presentation; in fact, the essence of the construction of this operator only requires steps
1 and 2(a), as one can arguably see from step 3.

1. We define an operator D from H; into H by the formula

DWW (f)=f(r).

Thus the Malliavin derivative finds the integrand which a centered Gaussian r.v. in H; is formed from
as a Wiener integral. If X = W (f) + u where g is non-random, D.X = f, consistent with the fact
that the derivative is linear and kills constants.

2. We extend D by a consistency with the chain rule.

(a) For any m-dimensional Gaussian vector G = (G;)i~; € (H1)™, for any ® € C (R™) such that
X = ®(G) € L* (), in order to be consistent with the appellation “derivative”, one must set

LT )
DX = Z_; 77 (G) D,G; = V® (G) - D,G; (4)

that is to say, the chain rule must hold. It is a simple matter to check that the above requirement
(4) can be satisfied for all X of this form, defining D uniquely on them.

(b) Equivalently, by the chain rule in C* (R™), one can state that formula (4) holds for all Y of the
form Y = ¥ (Xq, -+ ,X,) with ¥ € C* (R™) and all X;’s as in part 2.a, if we replace D,G by
D,X: DY = V¥ (X)-D,X holds for any X,Y and ¥ such that the right hand side is in L? ().

3. The following argument can now be used to define D on a much larger set of random variables. For a
fixed random variable Z € L? (Q), we consider the orthogonal chaos decomposition Z =~ ; I, (f»)
of Remark 2.1. From Remark 2.2, I, (fn) can be further approximated in L2 (Q): I (fn) = 252 X;
where X; = Hy, (W (h;)) where H, is the nth Hermite polynomial and h; € H. By step 2.a, D, X; is
defined for almost all r, as it is trivial to see that D,.X; € L2 () for any r such that h; (r) is finite. More
to the point, since h; € H, we can say that D.X; € L? (Q) x H. We now need to have a criterion that
allows us to justify that D.I,, (f,) exists in the same space L? () X H as a limit in that space of the sums
of all the Malliavin derivatives D.X;. It turns out that no additional criterion is needed beyond the
fact that the symmetric f, is in H®". Indeed, using the relation H}, = H,_1, one proves that the series
>_; DrX; converges to nln_1 (fn (7)) in L? () x H. To complete the program of defining D.Z on as




wide a space of Z’s as possible, since from Remark 2.1 we have fol Einl,—1(fn(, 7"))|2 dr = nn! Ifnlg_l@n,
we immediately get that D.Z exists in L2 (92) x H and has orthogonal decomposition in that space

given by
o0
D2 = nlp1(fa(,7)
n=1
as soon as
o0
Z nn! |fn|${®n < 00. (5)

n=1

Remark 2.3 The set of all Z € L?(Q) such that (5) holds is called the (Gross-)Sobolev space DV:2 with
respect to W and its Malliavin derivative. It is a Hilbert space with respect to the inner product (Z,Z') =
E[ZZ']+ [} E[D,ZD,Z' dr.

Remark 2.4 (General Chain Rule for Malliavin derivatives) Combining relation (4) from Step 2a
and Step 3 above, for any Z € (DY), for any ® € C* (R™) such that V® (Z) € L* (Q), we get & (Z) € DY?
and the general chain rule formula

D.Z =V&(Z)-D,Z. (6)

3 Sub-Gaussian theory

In this section we develop the concept of sub-Gaussian random variables and processes/fields (a stochastic
process defined on an index set that is not a subset of R is normally called a random field). We define suf-
ficient Malliavin derivative conditions implying these concepts, and we investigate extensions of the familiar
concentration inequalities known as the Dudley-Fernique theorems (on the expected supremum of a process)
and the Borel-Sudakov inequalities (on the deviation from this expectation).

Definition 3.1 A centered random variable X is said to be sub-Gaussian relative to the scale o if for all
A>0,
E [exp AX] < exp A%62/2. (7

Remark 3.2 The interpretation of o2 above is that of an upper bound on X ’s variance. More specifically,
the following two statements imply (7) and are implied by it, with different universal constants c in each
implication

E [exp (X?/ (co?))] < 2, (8)

and for allu > 0,

P[|X| > u] < 2exp (— 2:;) .

For instance, (7) implies (8) with ¢ = 5. Consult lemma 4.6 for more general results than these implications,
and their proofs.

We will use the following fundamental lemmé, whose consequences are far-reaching.

Lemma 3.3 Let X be a centered random variable in DY? defined on the probability space (2, F,P) of the
previous section. Assume there exists a non-random constant M such that, P-almost surely,

1
/0 D, X|?dr < M. (9)

Then X is sub-Gaussian relative to 02 = M2,




Proof. The following result is due to Ustiinel [22, Theorem 9.1.1]: if (9) holds then P [|X| > u] <
2exp (—u2 /(2M 2)) The lemma is thus just a translation of this theorem using the definition of sub-Gaussian
random variables. m

In the previous section, we saw that in (2, F,P) a Gaussian random variable is one such that its Malli-
avin derivative is non-random. The above lemma states that a class of sub-Gaussian centered random
variables is obtained by requiring only that their Malliavin derivatives have an almost-surely bounded norm
in H = L2[0,1]. The reader will check that, equivalently, condition (9) says that D.X € L*(Q,H), and
ess sup|D. X |3{ is the smallest M > 0 satisfying (9) almost surely.

Definition 3.4 A pseudo-metric is a symmetric function § on I X I such that § (s,u) < 8 {s,t) + 8 (¢, u).

The axiom § (s,t) = 0 => s = t need not hold for pseudo metrics. Examples of pseudo-metrics are the

canonical metrics dz of all centered Gaussian fields Z on I: §z (s,t) := \/ E [(Z -z (s))z]

Definition 3.5 A centered process (random field) X on an arbitrary index set I is said to be sub-Gaussian
relative to the pseudo-meiric & on I if for any s,t € I, the random variable X (t) — X (s) is sub-Gaussian
relative to the scale o = & (s,t).

Our first theorem is the extension to the class of sub-Gaussian processes defined via condition (9) of the so-
called Borell-Sudakov inequality. The classical version of this inequality states that for a centered separable
Gaussian field on an index set I, if  := Esup; X < oo, then P [jsup; X — p| > u] < 2exp (—u?/ (20?))
where 02 = sup,¢; Var [X (¢)].

Theorem 3.6 Let X be a separable random field on I such that all finite-dimensional vectors of X are
formed of almost-surely distinct components. Assume p = E[sup; X|] < oo. Assume for each t € I,
X (t) € D*2, and there exist a constant o2 (t) such that almost surely

/ DX (O dr < 0 (1), (10)
0

Then the random variable sup; X — p is sub-Gaussian relative to 02 = sup,cy 02 (t). In other words

7|
Proof. Step 1: setup.
Separability of X means that its distribution only requires knowledge of X on a countable subset of I,
i.e. we can assume [ is countable in the expression sup; X. Hence, by the dominated convergence theorem,

the problem reduces to the case of finite I. Thus we assume I = {1,2,--- , N} where N is a positive integer
and X = {X;, X5, -, Xn}. Now let

u2
SI}pX—/Ll > u] < 2exp <——2—05> .

Sn =max{0(1)’0'(2)7"' ’U(n)}7

and
Sn =ma,x{X1,X2,~-- ,XN}.

Since @ (z,y) = max (2,y) = £ls>y + ylacy, thus we have Spp1 = ® (Xpy1,S0) where 88/0z (z,y) = 1554
and 82/0y (z,y) = lo<y.

Step 2: explicit extension of the chain rule

Unfortunately @ is not of class C*, so to keep our proof rigorous, since we will need to use the chain rule
formula (6) with ®, we indicate how to extend it for our purposes. We claim the following.




Lemma 3.7 The chain rule (6) holds with Z any vector of random variables in DV2, for any ® that is of
class C off of a finite union T' of hyperplanes, with V® bounded, with ® (Z) € DY?, and with Z ¢ T almost
surely.

See the appendix for a proof of this result which is spelled out for the situation we need.

Step 3: induction.

We prove the theorem by induction on n. Our induction hypothesis need only be that S, € D'? and
almost surely,

1
/ |D,8,)? dr < s2. (11)
1}

Indeed, this inequality is satisfied with n = 1 by hypothesis since S; = X1; when n = N, Lemma 3.3 applied
to Sy = sup; X proves that this induction hypothesis implies the statement of the theorem. Therefore, we
only need to prove that if S, € D¥? and (11) holds for some n € {1,--- , N — 1}, then Sp41 € D% and (11)
holds for n + 1. Since Sp41 = ® (Xpn+1,5n), and by hypothesis X, 41 # S, almost surely, we can apply the
above lemma; for almost every 7 € [0, 1],

o o
DrSn+1 = % (Xn+1y Sn) Dan+1 + "5:'1; (Xn+17 Sn) DrSn

=1x,,,28, Dr Xoq1 + 1x,,,<5,.DrSn
= 1Xﬂ+1>SnDT-X’IL+1 + 1Xn+1<SnDT‘STl'

The last equality holds a.s. again because the X;’s are distinct almost surely. Therefore, since the product
of the two terms in the last line above is zero, using the induction hypothesis (11) and the assumption
]|D.Xn+1”iz[0,1] < o?(n+ 1), we obtain

1 1 1
/ |D7'Sn+1|2 dr = 1Xn+1ZSn / |DT*X7L+1|2 dr + 1Xn+1<Sn / [D,-Sn|2 dr
0 0 0

2 2

<o (n+1)1x,,,>5, +5,1x,1<S,
2 2

S S’I‘I.+11X1l+lzsn + s’ﬂ+11X"+1<Sn

— o2

= Sp+1-

By induction, the proof of the theorem is complete. m

Remark 3.8 The assumption in the previous theorem that any vector of X'’s have almost surely distinct
components can be easily satisfied using a now classical result on the existence of densities of random vectors.
From [16, Theorem 2.1.2] we learn that we only need to check that the matriz of Malliavin derivatives’ inner
products ({D.Xn; D.Xn/))i:{n,=l 18 almost surely invertible, since this implies that the law of X has a density.
Thus the theorem’s two assumptions can be phrased in terms of Malliovin derivatives, one as a boundedness
condition, the other as a non-degeneracy condition. The latter is of course much weaker than the former.

The only assumption on the non-diagonal correlations of X in the above theorem is the finiteness of
4, which has evidently little or nothing to do with the sub-Gaussian property at the process level. The
main Malliavin derivative boundedness hypothesis is only a set of one-dimensional distributional hypotheses,
which represents a significant improvement over assuming that the entire vector X is jointly Gaussian.

When comparing Lemma 3.3 and Theorem 3.6, one may wonder whether the Borell-Sudakov inequality
holds under the weaker hypothesis that each X (t) is sub-Gaussian. This represents a gap which we are not
able to fill at this time. It is instructive to note that the main issue here is that the converse of Lemma 3.3
is false: if the r.v. X is sub-Gaussian relative to the scale o, it does not imply that (9) holds for the scale o,
or even for any other scale. To see this, consider a random variable X = fol u (s} dW (s) where u is adapted




t0 (F)sepo,1) 2nd is such that fo (8) ds is almost surely bounded by ¢2. For any ), using the exponential
martingale £ (AM), based on the martingale M; = fo u (s) dW (s), we immediately get,

ElexpAX]=E [5 (AM), exp)‘;/o1 u? (s) ds]

which means X is sub-Gaussian relative to the scale o. But for the specific case of u (s) = f (W) where f
is bounded and in C? (R) we can easily find examples of f where (9) does not hold for any scale. Using

the formula D, X = )+ f D, u(s)dW (s)(see [16]), which in our example yields DX = f(W,) +
f D W f' (Ws) dWs, and then using It6’s formula, we get
1
/ D, xPdr = [ |fow) +/ F v aws)|
0

dr (12)

0
=/01f

1 1 1
— 2 (W) — f (Wh) /0 sf”(Ws)ds+—£11 /0 /O £ (Wa) £ (W) min (s, ') dsds’  (13)

w2 [ 7 owas

Even if f is bounded, it is simple to construct examples where f” is not bounded: e.g. f(w) = sin (wz),
with f (w) = —2cos (w?) —4w? sin (w?). Whether in line (12) or line (13), we see that the expression above
can take arbitrarily large values with positive probability.

In order to use the Borell-Sudakov inequality efficiently, it is necessary to be able to estimate the expected
supremum effectively. We recall here the classical result of Dudley (upper bound) and Fernique (lower bound)
for Gaussian processes.

1/2
Theorem 3.9 Let Z be a separable Gaussian field on an index set I. Let§z (s,t) = (E [(X (s) - X (t))z])

be its canonical metric. Let the metric entropy N (¢) be the smallest number of balls of radius € in the pseudo-
metric 6z needed to cover I. There ezist two positive universal constants K and K’ such that

E [31;px] <K /0 ~ Viog N (¢)de, (14)

and, if I is a subset of a group G and the law of X, defined on G, is translation invariant (e.g. I C R? and
d (s,t) depends only on |s —t|, i.e. X is homogeneous or stationary)

E {supX] > K’/ V3og N (g)de.
I 0

For what classes of processes does a result of the same type as the lower bound above hold? This an
open problem which we will not tackle in this paper. Yet the Dudley upper bound (14) of this theorem is
true, with the same N (¢), for all processes which are sub-Gaussian relative to the same pseudo-metric 8.
This result even extends beyond the sub-Gaussian case, as we are about to see in the next section, which is
why we omit the proof that Theorem 3.9 holds for sub-Gaussian processes. Another reason for omiting the
proof is that the result is now classical (see [11]). For the sake of completeness, we still record the statement
here.

Remark 3.10 If X is sub-Gaussian on I, as in Definition 8.5, relative to the pseudo-metric §, then with
the notation of Theorem 8.9, (14) holds.




4 Sub-Gaussian chaos processes

One of the difficulties with Wiener chaos expansions such as X = >~ I, (f») (defined in Remark 2.1)
is that they often mask fundamental properties of processes. In particular, a typical sub-Gaussian random
variable has components of all orders in its chaos expansion, so that any estimation done term by term
using this expansion will miss the sub-Gaussian property, while the entire sum of the expansion, being
sub-Gaussian, is thus more akin to its term of order » = 1. In this section we introduce a concept which
generalizes this idea to higher values of n. We use it to derive a Dudley-type theorem (Subsection 4.1). Then
we attempt to relate the concept to iterated Malliavin derivative calculations (Subsection 4.2), and derive
an extension of the Borell-Sudakov concentration inequality as a consequence (Subsection 4.3).

Definition 4.1 Let n be a positive integer. A centered random variable X is said to have the sub-nth-
Gaussian-chaos property (or is a sub-nth chaos .v., or is a sub-Gaussian chaos r.v. of order n, etc...)

relative to the scale M if
2/n
exp ((£> )} <2
M

Obviously, when n = 1, such an X is sub-Gaussian relative to the scale V5M. Our definition is similar
to the definition of an Orlicz norm of X, although the only intersection between the concepts appears to
occur for n = 1 or 2, since Orlicz norms have a requirement of convexity of their Young function, which is
not the case here for n > 2 (see [11], or [19]).

E

Remark 4.2 From Definition 8.1 and Remark 3.2, we get the following equivalent definitions of the sub-
nth-Gaussian chaos property, up to universal multiplicative scale constants c: for all A,u >0

E [exp/\ (1X11/" -E |X|1/")} < exp cAZM?2/2
and 2
P [IXII/" > u] < 2exp <_W) .
Definition 4.3 Let § be a pseudo-metric on a set I. A centered random field X on I is said to be a sub-

nth-Gaussian chaos field with respect to & if for any s,t € I, the random variable X (t) — X (s) has the
sub-nth-Gaussian chaos property relative to the scale § (s,t).

Definition 4.4 Let § and X be as in the previous definition. We use the notation Ns, and we say that Nj
is a metric entropy for X, if N is the smallest number of balls of radius € in the pseudo-metric & needed to
cover I.

4.1 Expected suprema

As announced in the previous section, we now prove a Dudley upper bound for sub-nth-chaos processes.

Theorem 4.5 For each fized positive integer n, there ezxists a universal constant C, depending only on n
such that if X defined on I is a separable sub-nth-Gaussian chaos field with respect to the pseudo-metric 6,
then with N5 a metric entropy for X,

Esup X (¢) < C’n/ (log Nj(g))™ *de.
tel 0

This theorem is a new result for n > 2; it has been established in [23] for n < 2 using convexity of the
Orlicz space’s Young function. Our proof of this theorem, which works for any integer n > 1, requires the
first two inequalities of the following lemma, which is established in the Appendix.




Lemma 4.6 For every integer n, there exists a universal constant v, such that, for any sub-nth-chaos r.v.
X relative to the scale &, the following inequalities hold: for every u > 0,

P[X| > u] < 2exp (— (%)2’”) ;

E [X?] < (vad)?,
and for every A > 0
BE

X 1/n
exp ()\ e < 'une)‘2/2.
L)
The converse also holds. Namely, with possibly some other universal constant vl > 1, each of the three
inequalities above implies that X is a sub-nth-chaos r.v. relative to the scale M = vl,6.

Proof of Theorem 4.5. Our proof is patterned from Michel Ledoux’s notes [10] on “Isoperimetry and
Gaussian Analysis”, although here no Young function convexity is used, and indeed we do not have the
restriction n < 2. We may and do assume that T is finite (see Step 1 of proof of Theorem 3.6). If the
right-hand side of the conclusion of the theorem is infinite, there is nothing to prove. Therefore we may
assume that sup; X is integrable.

Step 1: chaining argument. Let ¢ > 1 be fixed and let £, be the largest integer £ in Z such that
Ns(g~%) = 1. For every £ > 45, we consider a family of cardinality N(£) := Ns(g~%) of balls of radius g~
covering T'. One may therefore construct a partition A of T of cardinality N(£) on the basis of this covering
with sets of diameter less than 2¢~¢. In each A of Ay, fix a point of T and denote by T the collection of
these points. For each ¢ in T, denote by A,(t) the element of A, that contains ¢. For every ¢t and every ¢, let
then s¢(t) be the element of T} such that t € Ag(se(t)). Note that 8(t,se(t)) < 2¢~¢ for every t and £ > 4.
Also note that

(se(t), s0-1(1)) < 2¢7F + 2074 = 2(g + 1)g .

Hence, by the second inequality in the previous lemma, the series Ze>eo (X se(t) — Xse_l(t)) converges in
L' (Q), and also s, (t) converges to ¢ in L! (Q) as £ — co. By the telescoping property of the the above sum,
we thus get that almost surely for every ¢,

Xi=Xo + Z (Xspty — Xse_l(t)) (15)
>4

where 84, (t) := so may be chosen independent of t € T'.
Step 2: Applying the lemma. Let ¢y be a constant that will be chosen in the next step. It follows from
the decomposition (15) above, and the identity EX,, = 0, that

E (sup Xt>
teT

Koo +5up D (Xsp) = Xsos(t))
1 >4

=E

<Y w+E (Sup > Xewry - XsM(t)|1{|Xse<,>-xse_1(t>|>q})
e t€T pop
11 0

<S> a+E| D Y [ Xu— Xo|lxu-xui>e)

>4 >4 (‘LL,U)EHe
<Dty Y, E(Xu-X|lgx.xise)
>4 £>£o (u,v)EH,
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where Hy = {(u,v) € Ty x To_1;6(u,v) < 2(qg + 1)g~¢}. Using Holder’s inequality, we get

<Supxt) Yat+d 3 (ElXe- X)) P(Xe - Xo| > ).

teT £>4o £>8p (u,v)EH,

Using Lemma 4.6 now, and applying a uniform upper bound for all (u,v) € Hy, we get

E (§2¥Xt> e+ >, > by, <2exP ( <5(1cf v))z/n>>1/2

£>4£9 £>8p (u,v)EH,
. 2/n\ \ /2
< - 2 1)g~*¢ Y O
_bz;ce +£§;v Card(H)2(g + 1)g <2exp< (2(q+1)q—e> ))
o >£

Step 8: Choosing cg. Since Card(Hg) < N(£)?, it is now apparent that a convenient choice for ¢,
in order to exploit the summability of ¢=¢ without having to worry about the size of Card(Hy), is ¢; =
2(g + 1)g~%(4log N(£))™/?. We thus obtain

E (sup Xt) < Z ¢+ Z N (0)*2(q+ 1)g~%v, exp(—2log N(£))

teT

£>4 >4
< > 2g+ g (4log N(£))™2 + >~ 23/2(q + 1)g vy
>4 >4

Step 4: Conclusion. Now, since for £ > £y, log N(£) > log2, then (log N(Z))"/2 > (log ™% forn > 1. It
follows that

E (supXt> <kn(g+1) Z g %(log N(£))™/?

>4

where k,, = 2-4™/2 4-23/2y,, log™™2 2. By comparing our series to an integral, since Nj is decreasing, we get

E (sup Xt) < kn <1q__+ql ) (1-q¢™") Z g *(log N(£))"/?

teT £>€0
g+1
<k (1_q_1) Z/_  (log Ny(e))"de
>4

<C, / (log Ns(&))™/2de
0

where Cp, = k,, <g—(;—_ti-1—)-> The theorem is proved with C,, = (2v2+3) kn. m

4.2 Malliavin derivative conditions

A connection between the above definition of sub-nth-chaos r.v.’s and Malliavin derivatives is provided by
the following.

Theorem 4.7 Let X be a random variable in D™2. That is to say, X has n iterated Malliavin derivatives,
and the nth derivative D, o X = D, (Dop_y (-+*Dsy (D, X) - ++)) is @ member of L? (Q x H®").
With the notation X = zm= I (fm) + Xn where each fr, is a non-random symmetric function in H®™,
X is a sub-nth-Gaussian chaos random variable in the following two cases.

11




Case m = 2 Assume

9 1/2
D§§331X| d82d81> < 00.

1 81
My = ess sup (/ /
weN 0o Jo

Then X — EX is a sub-2nd-Gaussian chaos random variable relative to the scale mv/10My.

Proposition 4.8 Case m > 3 Let

G (z) = i (%\/g)%/n%xk. (16)

Assume that almost surely,

1 81 Sn—-1
M, :=esssup(/ / / [B[DE... 000, XI7
weN 0 0 0

and assume there exists Mg non random such that almost surely

/1 /s‘.../s"_lan (|MG|_2 &[S nes X7
0 0 0

Then X, is a sub-nth-Gaussian chaos random variable relative to any scale M > max (log_n/ % (3/2) Ma; Mg) .

9 1/2
ds,, - --dszdsl) < 00 (17

2/n
> dsy - dsads) <1/2. (18)

In particular, with K, a universal constant, the following choice of M is satisfactory if it is finite:

) dsy - - dszdsl>

(log fol 051 Os""l nlexp (IE [Dgf?...',SZ,lelfsn]
M = ess sup

weN logn/ﬁ (1 + %)

Note that f may be taken to be symmetric in the above theorem. Also note that this theorem is
presumably inefficient for n > 3, since the case n = 2 has a much more natural conclusion. In fact one
may conjecture that up to a universal constant, Condition (17) by itself is sufficient to ensure that X, is
a sub-nth-Gaussian chaos random variable relative to Mpy; yet we have not found a proof of this fact in
general. Our result in the above theorem in the case n = 2 matches this conjecture in that case, up to the
multiplicative universal constant 7+/10 which is presumably not sharp; the proof is self-contained, and of
independent interest, but does not seem to allow passage to m > 3; the proof is also intriguing in that it
seems to make rather wasteful use of the hypothesis of boundedness of |D(2)X | o2: and one may wonder
whether examples can be found where X is a sub-2nd-chaos r.v. without lD(z)X ne2 Deing bounded. The
conjecture does holds for the special case of n-th Wiener chaos random variables, i.e. X = I, (f5,) for some
non-random f € H®"; we have not found an elementary proof of this fact; nevertheless it is a consequence of
the proof of a result by C. Borell in [3], where the isoperimetric inequality is used (see Lemma 4.16 below).
Lastly, note that the proof of Theorem 4.7 for n = 2 does not seem to extend to n > 3, while it is not
possible to adapt the proof for n > 3 to the case n = 2 because, in the latter case, the function G5 would
not have an infinite radius of convergence.

The classical Clark-Ocone representation will be needed to prove Theorem 4.7.

Remark 4.9 (Clark Ocone Representation) Any random varieble X in D2 can be written as X =
EX + [} E[DsX|F]dWs.

By iterating this proposition, we obtain the following, whose proof is in the appendix.
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Lemma 4.10 Let X € D™? ¢ L?(Q) with the Wiener chaos decomposition X = Y o> (I (fn) where
fn € H®™ and f, is symmetric. Then

n—1 1 S1 Sn—1
X= S tnla)t [ [ [ B i X)W AW,
= 0 Jo 0

Proof of Theorem 4.7, “Case n > 3”. From Lemma 4.10, where the functions ( f,,,,)nm;lO are identified,
we have that

n—1 1 81 Sn~—1
anX—ZIm(fm)=/ / / w (51,82, »5n) AW, -+ AWy dWa,
0 0 0

m=0
where the stochastic process u (s1,s2, - , ) is adapted to (F:),5q, and u € L® (Q; L2 (H®™)), that is to say,
with the non-random number |[u|l,, 5 = (1/7!) [[ufl oo (0;12(30ny), 2lmost surely,
1 s1 Sn—1
/ / / lw(s1, 82, - ,sn)|2 dsy - -dseds; < ||u|]i02 (19)
o Jo 0
Let now
1 ps1 Sn-1 1/n
U= / / / u (81,82, ,8) dWs_ - - dWs,dW,, . (20)
0 Jo 0

Intuitively, since one way to construct an nth Wiener chaos r.v. is to take a polynomial of degree n and
apply it to a Gaussian r.v., the definition of U should presumably give us a sub-Gaussian r.v. In any event,
to prove the theorem, we only need to show that

where L = M1/,

Step 1: Taylor expansion. For simplicity we use the notation V = U/L. We simply evaluate the Taylor
expansion of the exponential above in the following way, where for the terms with £k = 1, ,n, we used
Jensen’s inequality:

. e VZIc n V2k: x V2k
EexpV =EZ—k!—=E 1+ZT+ > -
k=0 k=1 k=n+1
"R [Vzn]k/" © B [V%]
S~ —t 2 g
k=1 k=n+1
"R [Vzn]k/n © B [Vzk]
s fEl, 8 Bl
k=1 k=n+1
" Ry k/n @ [y2k
51+Z~—[7']—+ > [k' ]. (21)
k=1 ’ k=n+1 )

Step 2: Moments evaluations. We have that V2F = (V”)‘%/" = (|Y(”) m|/Lm) 2k/n rhere (Y™ 1))

te[0,1]
is the (ft)te[m]-martingale defined by

i S1 Sp—1
v (1) =/ / / u (51,82, ,8n) AWs, -+ AW, dW,,.
4] 0 0
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The bracket of Y(™ thus satisfies

<y(n>> (t) = /t ds
0

2

81 Spn~1
/ / u(51’32,...,Sn)dWSn...dWSZ
0 0

We begin by evaluating the moments in the tail of the series (21). By the Burkholder-Davis-Gundy

inequality, for any k > n + 1, since then we have p := 2k/n > 2,

E [V?] < ¢(2k/n) E [<y<n>>k/ " (1)] /L%,

where ¢ (2k/n) is the efficient constant defined in Proposition 5.1 in the Appendix. Let us evaluate the

moments of this bracket by induction. We begin by defining a sequence of martingales: for ¢ < sy,

t Sn—-1
Ys(ln—l) (t):/ .../ u(SI)SZ)"' 73n)dWsn"'dW32§
0 0
for t < 35 < 37,
t Sn—1
}/-9(1”-:3_22) (t):/ / U(SI,SZ,"' 1sn)dWSndW53,
0 0
more generally for t < s; < 551 <+ < 51,4
(n—3) Y
Yagraae 85 (t)=/ / w (81,82, ,8n) dWs, - AW, ;
0 0

the last iteration is for t < s,_1 < sp_2 < --- < 81,

i
}G(lly)sw"' »Sn—1 (t) = / u (81» 82, )Sn) dWSn'
0

We now have, iterating the use of the Burkholder-Davis-Gundy inequality, and using Jensen’s inequality

for the measures ds;1/s; on [0, s;] for each j =0,--+ ,n—1,

e [(v@)" )

—¢(p)E |:(/01d31 ‘Ys(ln—l) (81)12>p/z]

Sc(p)/oldle[

ys(ln—l) (sl)|p}

0 1 s1 o\ P/2
< c(p) / dsiE ( / dss 1@‘;?;"’)@2)1)
0 0

1 S1
< c(p)z/ ds1sP/*E [/ dsy
0 0

1 S1 Sn—3 Sn—2
Sc(p)n_l/O dsls’l’/z_l/o dszsg/z_l---/o dsn_gsﬁ/_zz_l/o dsn_lE[

1 51
=c(;p)""1/0 dslsfﬂ_l/o dszsg/z_lu-

Sn—3 /21 Sn—2 Sn—1 p/2
/ dsp—288"%5 / dsp1E (/ u? (51,82, ,Sn—l,Sn)dSn) . (22)
0 0 0
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Now for the first terms in the series (21), note that an immediate calculation from (20) (as in Step 2,
with p = 2, so that ¢(2) = 1) yields

E [U%] <ess sup/ / lu (5)]> dsy - -
weN 0<s, < <8 <1
=l , -

Thus we have

n k/n
PR WA I 23
< oalEe) (23)

Step 8. General conclusion. We first deal with the terms in (23). Let us show that we can find a constant
¢(n) depending only on 7 such that if L2 > ¢ (n) ||ju]’, 2 then the term in (23) is bounded by 1/2. Indeed,

since
n 2 k/n
Z i ( ”u”oo,2>
1 2n
P k! L

c(n)—k/n

I
NE
Fal

k=1

Il
[
=

)

S ec(n)‘l/“ - 1)

B
Il

it is sufficient to have e¢™ ™ "/" = 3/2, i.e. c(n) =log™" (3/2), or in other words
" > 1og™" (3/2) |lullcs 2 - (24)
Under this constraint, with inequality (21), we thus get
E[expV?] <1+1/2+T (25)

where the tail term T of the Taylor expansion, is dealt with as follows. We apply line (22) above with
p = 2k/n and then sum over all K > n + 1. Thus one last use of Jensen’s inequality, and the upper bound

(19) on |u|, with the shorthand notation u (3) := u(s1, 82, -+ , Sn—1, 8n), yield
= BV & o [
Te= 3, =g < 2~ KY( ’) (1)}
k=n+1 k=n+1
oo n—1
< E Z 6(2:'/1;7';)’6 / ds Sk;/n 1/ dS Sk/n 1
k=n+1
Sn—3 Sn—2 Sn—1 k/n
/ dsp_ 28];/7;—1/ dSp_1 </ u? (3) dsn)
0 0
<o > SB[ dsy - fu (94"
e k 0<sn <o <s1<1
— c(2
<esssup » k,kL/Sc / / dsy -+ dsq Ju (3)]*/™. (26)
weR k=nt1 0<s,<--<51<1
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Below for any m > 2, || f||,, denotes the L™ norm of any function f on the simplex 0 < s, <--- <1 <1
with respect to Lebesgue measure. Hence we can write from (25) and from (26):

Eexp V?
o~ c(2k/n)" | ok/m
< 3/2 + ess sup,,eq Z TEIL2E ”u”2k;n
k=n+1 ’
=) n 2/n k
2 - _
=3/2 4+ ess sup/-.-/ dsy---dsp Z ol k{n) 1,52 ’;n 120 :
weN 0<5, <+ <531 <1 k=n+1 k! L

Now the estimate in Proposition 5.1 in the appendix tells us that

c(2k/n)"< 2k [e Zk/n_l_
k! “\n\V2 k!’

so that, with G, (z) as in the statement of the theorem,

2 u (3"
EexpV*<3/2+esssup [ - dsy - dsnGn | —75— | -
wen 0<sn< <1<l L

Choosing L? such that the last térm above is less than 1/2, and with the constraint (24), the statement
following line (18) in the theorem now follows immediately.

Step 4. Analytic conclusion. To finish the proof of the theorem in the case n > 3, we only need to study
the function G, more specifically. Using the Stirling-type formula which is valid for all k > 1, k! > kk3—F,
and using the fact that n > 3, we get easily

G (2) < i (%)m o

k=n-+1

For any integer m > 2, consider the three values k = 3m, 3m + 1, or 3m + 2. We then obtain k*/3 > (3m)™.
On the other hand, for these same values of k, with = > 1, we get z* < (z%)™ z%. Thus

Gn(z) < 42/342 Z (%) m™™ (mS)m.
m=1

Using again the Stirling-type formula, valid for all m > 1, 2™m~™ < 1/ml!, we get

nors e 3 1 (32)

m=1
= 42/322 <exp <§m3> - 1) .

Gn(z)<9- 43/3 (exp (m3) - 1) -

Thus for z > 1,

even though the universal constant 9 - 4%/2 may not be optimal. When 0 < z < 1, on the other hand, a
similar inequality is found, with a different universal constant; we use the notation K, for the maximum of
the two constants. We may now rewrite the left-hand side of (18), which we call T, using the last inequality
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above:

) / G (.L*2 lu (§)|2/") dsp -~ dsadsy
[0,1]"
< —K, + Ku/ exp (L_6 lu (§)|6/") dsp - - - dsadsy
[0,1]»

=-K,+ K, /[0 " [exp <|u (§)|6/")] vy dsp, - - - dsadsy.

We now make a temporary assumption that L > 1. This allows us to use Jensen’s inequality in the above
time integral over the simplex:

1/L®
nll' < K, + K, (/ exp (Iu (g)|6/n> dsy - -dszd.s‘]) .
(0.1~
Hence, since we only need to satisfy the condition (18), i.e. I' < 1/2 almost surely, we only need to have
=16
o 2 198 (Joa o (e ()*"™) dsn - dsads)
B log (1 + %)
almost surely. Jensen’s inequality can then be used to check that this last expression is always larger than
the right-hand side of 17. The last statement of the theorem is thus proved if the essential supremum (L*)6
of the right-hand side of (27) happens to be greater than 1. If it is not, we leave it to the reader to check
that the same conclusion holds by repeating the above calculation (Steps 3 and 4) for the random variable

U=U /L*, thereby allowing us not to require L>1. =
Proof of Theorem 4.7, “Case n = 2”. The proof is based on Lemma 3.3, applied to the random

variable
1 1/2
Y:(/ |DTX|2ds) — DX,y
0

The first step is to prove the following: almost surely,

(27)

§2,81

2 1 31 2 1/2
DY), < M2 =ess sup | DPX = ss sup D®_X| dsyds; .
" 2 HE? 0 Jo

wEeN weN

Indeed we have
2

1 1
|D.Y|§i=/ DM// |D, X dr| dt
0 [¢]

2
B /1 D; [} |\D. X *dr
0 |24/ 3 | DX |? dr
/1 ‘ D) (D§?2X) dr
~Jo Sy 1D-X | dr
2
1y 1D, X dr- [y DR X| ar
B et v
Jo |DeX " dr

dt

’2

0
1 1 2
= / 1D§?2X1 drdt < M2.
0 0
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Thus we can consider that Z =Y — EY is a random variable satisfying the hypotheses of Lemma, 3.3.
We can thus conclude that Z is sub-Gaussian relative to the scale M;. In particular we get, from Remark

3.2, \
Z
E — )| <2,
o (57|
Because we will need to find a smaller constant than 2 above, we restate this as
E[exp<10M2>] <v2 (28)

We now invoke an exponential Poincaré inequality of Ustiinel [22, Theorem 9.2.3(i)]: for any random
centered variable V in D12,

ElexpV]<E [exp (%2 |D.V|${)] .

Applying this to V = Z/c¢ for some constant ¢ > 0, we get
X ] 71'2 2
| < — |D.
E [exp ( - >] <E -exp (802 |D X|H)]
- 2 ,

<E :exp (EZZH exp (12 [|D X|HD (29)

Now if we choose 72/ (4¢?) = 1/ (10M$), from (28), the first term in the last line above is bounded above
by /2. In order to control the second term, we use the Clark-Ocone representation to get

B[D.X[] = ) / / [p@x\7,) aw,aw, }
=E[ / / ‘E [Dg?gxlf,.] drds]
0 0
1 8§ 2
<E ﬁ,gx‘ drds
< M2,

Certainly, the above choice for ¢ implies 72/ (4c?) < (log v/2) /MZ. From (29) we now get

X

The last step in the proof is to allow the use of | X| instead of X above. Since we have no information
about the symmetry of X, we proceed as follows. Since X and —X satisfy the same hypotheses, we have

that (30) holds for X replaced by —X. Now we can write, with X’ = X/ (mv/10M), and using the notation
p=P[X' > 0]

E

E [exp (|X'])] = E [exp (X") 1x/>0] + E [exp (= X") 1x7<0]
< VPVE[exp (2X)] + /1 — pV/E [exp (—2X")]

3\/5(\/5+\/1—~—p)

<2

This finishes the proof of Case n = 2 of the theorem. =

18




4.3 Concentration: the sub-nth chaos property for suprema
We now prove the core of a Borell-Sudakov-type inequality for sub-nth chaos random fields.

Proposition 4.11 Let X be a separable random field on an index set I such that all finite-dimensional
vectors of X are formed of almost-surely distinct components. Assume u := Elsup; X] < oo. Assume
X (t) € D™? for each t € I. Assume there exist non-random constants o (t) for each t € I such that almost

surely Lo .
2 1 n—1

(12240 :=/ / /

2 0o Jo 0

Then supye; X (¢) € D2 and

2
Dg:),...,,sle ()| dsp---dszdsy < o (t).

2

< supo?(t).

HD.(n) sup X (t)
2 tel

tel

Proof. As in the proof of Theorem 3.6, we can assume without loss of generality that I = {1,2,---N}.
Here we have n > 2. Using the same strategy as in the proof of Theorem 3.6, we denote X, = X (m) and
define S, = max {X1, Xa, -+ , X;n}, s0 that Sp,q1 = max { X, Si}. In order to prove that max; X € D2,
the approximation technique used in the proof of Theorem 3.6 can again be used. We omit the details, only
to say that 1x,,.,>9m can be approximated in D2 by a smooth function of X,, 1 — S whose Malliavin
derivative tends to 0 for almost every (w,s) in L%(f2) X ‘H because Xyi1 — Sm # 0 a.s. In particular,
D1x,.,>sm=0in L? () x H, and for any k < n, the kth-order Malliavin derivative of 1x_,,>5m is 0 in
L% (Q) x H®* as well.

This justifies the following computation, where equalities hold in L? () x H®™:

Dgzz 182,81 S'm-+1 = Dgz,_l),sz (D51Xm+11Xm+1>Sm + D51 Slem+1<Sm)
= Dg::-?).,sa ([D32D81Xm+1] 1Xm+1>Sm + [D32Dslsm] 1Xm+1<Sm)
= [Dy:? -ySZ,Sle+1] 1Xm+1 >Sm + [D-E‘:? 182,81 Smil 1Xm+1<5m' (31)
Now, still following the strategy of the proof of Theorem 3.6, we let 072 = max {o? (1);--- ;0% (m)}, and we

2
assume by induction that HD.(")Sm”2 < 072 almost surely. Our hypothesis and equality (31) implies that

2 1 S1 Sn—1
”Dgn>5m+1” =/ / /
2 o Jo 0

1 S1 Sn—1 (n) 2
= 1Xm+1>Sm / / s / ‘Dsn,--- .,sa,lem+1| dsy, -+ - dsads;
0 o 0

1 Sy Sn—1
+1Xm+1<Sm/ / /
o JO 0

(n) 2 maq |I?
= 1Xm+1>Sm “D -Xm+1“2 + 1Xm+1<Sm “D Sm”2

2 2
S g (m + 1) 1Xm+1>Sm + 0;1 1Xm+1 <Sm

almost surely

D(n)

8nyter

2
wszisy S| don - dsadsy

2
.. ,,sz,slsm‘ ds, - - - dsads,

%2
S 0m+1'

Since ”D.(")X 1H2 < o3? = 0% (1) by hypothesis, induction implies the conclusion of the proposition when
m=N. m 2

Combining the results of Theorem 4.7 and Proposition 4.11, we state the extension of the Borell-Sudakov
inequality in two separate results, depending on whether n =2 or n > 3.
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Corollary 4.12 Let X and p be as in Proposition 4.11 with n = 2. Then sup; X — p is a sub- 2nd~chaos
random variable. It can be decomposed as

1
supX—,u:/ f(s)dWs + X,
1 0

where f € H and X, is a sub-2nd-chaos r.v. relative to the scale M = 7/10sup,; 02 (t). In particular we
get the following extension of the Borell-Sudakov inequality: for any u > 0,

P [m;px - /Olf(s)dWs —ul > u} = P[|Xo| > u] < Zexp (—%) . (32)

Proof. The first statement follows immediately from the conclusion of Proposition 4.11 as applied to
“Case n = 2" in Theorem 4.7. The second statement is an immediate consequence of the tail estimate in
Lemma 4.6. m

The presence of the function G, in Theorem 4.7 case n > 3 makes it impossible to apply Proposition
4.11 directly. Moreover, the conditional expectation in that same portion of the theorem causes further
difficulties, making it necessary to impose slightly stronger conditions on D(™ X than in that theorem, in
order to derive a Borell-Sudakov extension.

Proposition 4.13 Let X and p be as in Proposition 4.11 with n > 3. Recall the function G, defined in
“Case n = 3” of Theorem 4.7. Assume moreover that for any t € I and for any s, € {0,1], there exists a
non-random value M (t) not dependent on s, such that, almost surely

1 psy Sn—2 9 2/n
/ / / G, (M(t)— ‘Dg’:?..._,SZ,SIX(t)‘ >dsn_1---dS2dsl <1/2 (33)
Sn v Sp Sn
and
M(t) > \/—Z—e—HD.(")X (t)”H

Then the random variable sup; X — p is o sub-nth-chaos r.v. It can be decomposed as sup; X — p =
Z;;ll Im (fm) + X, where each f. is a non-random symmeiric function in H®™, and X, is a sub-nth-
Gaussian chaos random variable relative to the scale

M =sup M (t).
tel

In particular, the extension (32) of the Borell-Sudakov inequality holds for X,, with this M, namely

n—1
P l:lsupX— ZIm(.fm)_l"‘l >u
I m=0

=P [|Xa| > u] < Zexp (— (%)”“) . (34)

Remark 4.14 The hypothesis of this proposition is clearly satisfied if there exist constants o (t) such that
almost surely, for all 81,82, -, Sn, |D§z? . ¢ (t)‘ < o (t). Then there is a constant k,, depending only
on n such that we may take M = kysup,cyo (t).

Proof of Proposition 4.13. Here, we may not apply Proposition 4.11 directly. Instead, we return to
its proof, and use the notation therein. Let T),—1 (s5) = {(si)7—11 181> 83> - > sn 1> sn}, a simplex

for any fixed s, € [0,1]. Let M,, = M (m). Also use the shorthand notation § = (s;)}, !. By hypothesis we

e / /G (M )72 | D (m )12/ )d % (35)

Thoa Sn)
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We also define
M}, = max{M;, Ma, - ,Mn}.

Then, since G, is an increasing function, we have, from line (31),

[ (05

2/n
)7 D[ ) s

Tn_ 1(sn)
= 1X(m+1)>s ( Myi1)” (") sX (m+ 1)‘ >
Th- l(sn)
1 G [ (M2 D(") sl ds
+ 1x(m41)<Sm 1) s..50m 3
Th- 1(371.)
_ 2/n\
< 1X(m+1)>Sm/ /Gn ( +1) 'D X (m + 1)’ ) ds
T l(sn)
2| n(n /N
+ 1X (m4+1)<5m / / G ((M*) *| D& m j )ds.
Tn- l(sn)
Thus, if we assume that
_ n 2/ 1
//Gn ((M;;) 2 D§n3§sm| n) ds < 3, (36)
Tn—l(sn)

using (35), we obtain that (36) holds at rank m + 1, and thus, by induction, for all m < N.
The definition (16) of G,, shows that the function z — G, (|x|2/ ") is convex for all z. Let M = My, =
max {My, Ma,--- ,My}. We may now write, using Jensen, and (36) for m = N,

/ dsy / / G (M“ & [D{sswiF.,] 2/"> ds

Tn-1 S-n.
/n
o] - ol
0 Tn—1(sn)
(n) 2/n
=/ ds,E / /dsG Dsn,gsNI | Fsn
0 Tn- l(sn)

IA
N>'I —

This establishes Condition (18) of Theorem 4.7. We omit the details needed to check the other conditions
of this Theorem. Inequality (34) is again only a consequence of Lemma 4.6. =

The presence of the Wiener chaos correction terms ZZ;IO Ly (fm) in the statement of the generalizations
(32) and (34) of Borell-Sudakov are somewhat of an annoyance, because these inequalities’ proofs present
no way of calculating the magnitude of the non-random functions {fn : m=1,--- ,n — 1}. We propose an
additional result which shows that asymptotically, these functions are irrelevant.
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Corollary 4.15 With the hypotheses and notation as in Corollary 4.12 or Proposition 4.18, we have for
any € > 0, for u large enough,

P {|SL}pX—u| > u] <2(1+¢)exp (-(1+€) (%)2/") .

More concisely, we can write

1

] 1
uangomlogP [| stlle — | > u] < ~

Proof. First note that, for any r € (0,1)
3 n—1
P[lsupX—m >,u}=P an+Zlm(fm)|>u]
I L m=1

r n—1
<P I)(n|>’U'— j{:an(fm)@
L m=1

n—1 n—1
<P |)(n|>'u - j{:llﬁz(fnJl;:E:Ilfz(j%zﬂ <rul +P
L m=1 m=1

n—1
> o (fm)l > 'ru]
m=1

<SP[Xal > (1)) + i P [iIm () > — } (37)

n—1
The following lemma is a trivial consequence of the results in [3].

Lemma 4.16 Let f € H®™. Then there exists a constant M, (f) such that

u 2/m
P I (fm)] > u] < exp (- (m) + Nm, (u) uz/m>
where lim,_,0 m {(w) = 0.

Armed with this Lemma, and with the inequalities (32) or (34), and choosing r so that (1—1r) >
(1+¢)"™2, we may write from (37)

P [| Sup X~ | > u] <P [|Xn| >u/(1+ 6)_"/2] + :ép [IIm (fm)| > nrfl]
<2 (~ i ()"")
n—1 " 2/m
O = R

< 2exp <—ﬁ (%)2/n> +(n—1)exp (—% (%)2/@-1)) (38)

<2(1+¢€)exp (—(Ti—s) <Ku4_)2/n) , (39)

where in line (38), the constant K is (n ~ 1) max,,ef1,..n—1} Mm (fm) and u is chosen so large that for every
m<n—1 0y, <271 (T/K)Z/m, while in line (39), u is chosen so large that the second term in (38) is

less than £ times the first. The first statement of the corollary is proved, and the second follows trivially due
to the fact that € > 0 is arbitrary. m
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5 Appendix

5.1 Efficient constant in the Burkholder-Davis-Gundy inequality

Proposition 5.1 For any square integrable martingale Y, and any p > 2, we have

E [ sup |Y (s)[?
s€[0,t]

<c®E[(Y) 0P

where the constant c (p) satisfies ¢(2) = 1 and for any p > 2,
p/2
1 prt! P
=l < .
¢(p) (2 o 1)p_1> < (VeR2) v

Proof. One only needs to keep track of the constants in the classical proof of this inequality: starting
with Ito’s formula (where the function f (z) = |z} is of class C?),

Bl OF =& [ [ oIV OF s @) a¥ 0+ 5 [ o-DI¥ 0P ) @)

t — P
_ p(pZ-— Vg [/0 ¥ ()72 (¥) (ds)} < 3(”2—1)E {( sup |Y (S)l) (Y) (t)}

s€[0,t]

<P-1g

py (p=2)/p o/p
< 2T (sup |Y<s>!>] E[|(Y) P

s€[0,2]

The proposition’s constant ¢ (p) follows from some elementary calculations and Doob’s inequality

E [( sup IY(S)I> ] <(p/(p-1)° Szt[lopt]EHY(S)lp]-

s€[0,1]

The second statement in the proposition is equally elementary. =

5.2 Proof of Lemma 3.7

Such a ® as in the statement of the lemma can be replaced by an approximation ®,, such that ®,, is of class
C1, such that ® = ®,, for all points distant by more than 1/m of all hyperplanes, and such that ® — &,
and V®,, are both bounded uniformly in m by multiples of |V®|_,: this can be achieved by interpolating
® and V@ from the boundary of the 1/m-neighborhood T, of the union T of the hyperplanes using scaled
polynomials. For example, in the case we are interested in, let P be a polynomial of degree 4 on [~1,1],
which is increasing and convex, such that P (—=1) = P’ (—1) =0 and P (1) = P’ (1) = 1. Define the function
®,, = & off the set T}, = {|z — y| < 1/m}, and on that set define &, (z,y) = m~'P (m(z —y)) +y. This
sequence ®,, has the required property, and in fact |V®,| , < 1 and |® — &}, < 1. Now since @,
converges to ® pointwise, the dominated convergence theorem implies that ®,, (Z) converges to ® (Z) in
L? (Q). Moreover, we can write using the chain rule (6) for C? functions: ®,, (Z) € D% and

D@ (Z) = (1 - 11, (2))V®(Z) Do Z + 11, (2) V,, (Z) D, 2.

Since 17, (Z) converges to 0 almost surely, and D.Z € L? (Q x [0, 1]), by the dominated convergence theorem
in L2 (Q x [0,1]), we have D.®,, (Z) converging to V® (Z) D.Z in that space. Now we invoke the fact (see
[16]) that the Malliavin derivative operator D is a closed operator from its domain D2 into L? ( x [0, 1]),
to conclude that ® (Z) € D2 and D.® (Z) = V®(Z) D.Z, as was to be proved.
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5.3 Proof of Lemma 4.6

The proofs of this lemma’s statements are elementary; we detail some of them. First, we have using Cheby-
shev’s inequality:

PX|>u =P [exp(X/é)z/" > exp(u/é)z/"]
< exp (~(u/8)/" ) E [exp(X/0)%/" |
< 2exp (——(u/é)z/") ,
which is the first statement of the lemma. This then implies that
E [X’] =/0°°P [1X] > V] du
< 2/000 exp (__(\/17/5)2/11) du = 262 /Ooo e  dv = v,62

where v, = 2 f0°° e‘"l/"dv, hence the second statement. The proof of the estimate for E [exp (/\ 1 X [1/ ")} is
left to the reader.
For the first converse, let ¢ > 1 be fixed. Using the estimate P [| X| > u] < 2exp (—(u/8)?/"), we get

E (exp [(?S) o > = /Ooo P [|X1 > cé(log r)“/z] dr

<1 +/ 2exp (—02/” logr) dr
1

*® 2/n
= 1+2/ r=¢ dr
1

2
c2/m— 1’

Thus we only need to choose v/, = ¢ = 3™/2. The proofs of the other converses are left to the reader.

5.4 Proof of Lemma 4.10

The proof uses three simple facts from the theory of Wiener chaoses. For any symmetric function g in H®™,
the first fact is simply the definition of I, (g) as an iterated It6 integral in (3). The second, from Step 2 in
Section 2, is the calculation D, I, (9) = mIy (g (-,7)). The last, from Lemma 1.2.4 in [16], says that

E I (9) 17} = In (9m1875) -

For X € D™?, we may now calculate, for s, <sp_1 <--- <83 <81 <1,

oo
DgZ?'“wsz,&X = Dg:? .82 (Z M1 (fm (81, )))

m=1
=Y " m(m—1)D..._ sy (Im—2 (fim (51,52,7)))
m=2

= Zm(m—-1)-~-(m——n+l)Im_n(fm(sl,sz,--- 2 Sny))
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Thus we obtain
E {Im—n (.fm (311 82, ,8n, )) |f3n] =ILnn (hm)slys2)"' .Sn)

where the function h above is defined by

Bnysiosa,eesm (Sntls s 5 8m) = fm (81,7, 8m) H 1s,<sns

j=n+1
which proves that Am s, s,,- s, 1S Symmetric in the variables sp41, -+, Sm, and thus we can write
Sn41
E [In—n (fm (51,82, ,8n,")) |-7:sn]— m— ’I’L)'/ / / m (81,7 ysm)dWsm"'dWan-

The following calculation now finishes the proof of the lemma:

1 ps1 Sn—1
/ / / B [D).. ,sz,slxlfsn] AW, - dW,,
) / / / I n(fm (317527 Tty Sn,y ))IJ: } dWSl

Sn+41l
m'/ / / [/ / / (81, Sm) AW, AW, ., | AW, - AW,

I (fm) -

MS iMS [

3
I

n
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